The plasma mirror system was installed on the 1 PW laser beamline of Shanghai Superintense Ultrafast Laser Facility[SULF]for enhancing the temporal contrast of the laser pulse.About 2 orders of magnitude improvement o...The plasma mirror system was installed on the 1 PW laser beamline of Shanghai Superintense Ultrafast Laser Facility[SULF]for enhancing the temporal contrast of the laser pulse.About 2 orders of magnitude improvement on pulse contrast was measured on picosecond and nanosecond time scales.The experiments show that high-contrast laser pulses can significantly improve the cutoff energy and quantity of proton beams.Then different target distributions are assumed in particles in cell simulations,which can qualitatively assume the expansion of nanometer-scale foil.The high-contrast laser enables the SULF-1PW beamline to generally be of benefit for many potential applications.展开更多
The quantum vacuum plays a central role in physics. Quantum electrodynamics(QED) predicts that the properties of the fermionic quantum vacuum can be probed by extremely large electromagnetic fields. The typical field ...The quantum vacuum plays a central role in physics. Quantum electrodynamics(QED) predicts that the properties of the fermionic quantum vacuum can be probed by extremely large electromagnetic fields. The typical field amplitudes required correspond to the onset of the ‘optical breakdown’ of this vacuum, expected at light intensities>4.7×10^(29) W/cm^(2). Approaching this ‘Schwinger limit’ would enable testing of major but still unverified predictions of power lasers. To close this considerable gap, a promising paradigm consists of reflecting these laser beams off a mirror in relativistic motion, to induce a Doppler effect that compresses the light pulse in time down to the attosecond range and converts it to shorter wavelengths, which can then be focused much more tightly than the initial laser light. However, this faces a major experimental hurdle: how to generate such relativistic mirrors? In this article, we explain how this challenge could nowadays be tackled by using so-called ‘relativistic plasma mirrors’. We argue that approaching the Schwinger limit in the coming years by applying this scheme to the latest generation of petawatt-class lasers is a challenging but realistic objective.展开更多
We report on the design and characterization of the plasma mirror system installed on the J-KAREN-P laser at the Kansai Photon Science Institute,National Institutes for Quantum Science and Technology.The reflectivity ...We report on the design and characterization of the plasma mirror system installed on the J-KAREN-P laser at the Kansai Photon Science Institute,National Institutes for Quantum Science and Technology.The reflectivity of the single plasma mirror system exceeded 80%.In addition,the temporal contrast was improved by two orders of magnitude at 1 ps before the main pulse.Furthermore,the laser near-field spatial distribution after the plasma mirror was kept constant at plasma mirror fluence of less than 100 kJ/cm^(2).We also present the results of investigating the difference and the fluctuation in energy,pulse width and pointing stability with and without the plasma mirror system.展开更多
The femtosecond laser pulses reflected from the self-induced plasma mirror(PM) surface are characterized. More than two orders of magnitude improvement on intensity contrast both in nanosecond and picosecond tempora...The femtosecond laser pulses reflected from the self-induced plasma mirror(PM) surface are characterized. More than two orders of magnitude improvement on intensity contrast both in nanosecond and picosecond temporal scales are measured. The far-field distribution, i.e., focusability, is measured to degrade in comparison with that without using a PM. Experiments on proton accelerations are performed to test the effect of the balance between degraded focusability and increased reflectivity. Our results show that PM is an effective and robust device to improve laser contrast for applications.展开更多
The first mirror (FM) samples made of polycrystal (PC) stainless steel (SS), molybdenum (Mo) and tungsten (W) were mounted at different locations in HT-7 tokamak to investigate the surface modifications caus...The first mirror (FM) samples made of polycrystal (PC) stainless steel (SS), molybdenum (Mo) and tungsten (W) were mounted at different locations in HT-7 tokamak to investigate the surface modifications caused by erosion and deposition. The optical transmission characteristics of first mirror samples were measured by a spectrophotometer. It was found that different irradiation environment had different influences on the first mirror surfaces, especially with wave antenna nearby. In addition, the erosion made the reflectivity of FM degrade to some extents as a whole. But the deposition on the mirror influences more than erosion does. Comparing the mirrors of SS, W and Mo, irradiated in the same environment, the W-mirror had the least changes in reflectivity with regularity, while the SS-mirror had most serious changes.展开更多
The stainless steel (SS) first mirror pre-exposed in the deposition-dominated envi- ronment of the HT-7 tokamak was cleaned in the newly built radio frequency (RF) magnetron sputtering plasma device. The depositio...The stainless steel (SS) first mirror pre-exposed in the deposition-dominated envi- ronment of the HT-7 tokamak was cleaned in the newly built radio frequency (RF) magnetron sputtering plasma device. The deposition layer on the FM surface formed during the exposure was successfully removed by argon plasma with a RF power of about 80 W and a gas pressure of 0.087 Pa for 30 min. The total reflectivity of the mirrors was recovered up to 90% in the wavelength range of 300-800 nm, while the diffuse reflectivity showed a little increase, which was attributed to the increase of surface roughness in sputtering, and residual contaminants. The FMs made from single crystal materials could help to achieve a desired recovery of specular reflectivity in the future.展开更多
Target plasmas, on which the formation of the electrostatic potentials and the improvement of the confinement are studied, are produced with ICRF in the GAMMA 10 tandem mirror. The ion temperature of more than 10 keV ...Target plasmas, on which the formation of the electrostatic potentials and the improvement of the confinement are studied, are produced with ICRF in the GAMMA 10 tandem mirror. The ion temperature of more than 10 keV has been achieved in relatively low density plasmas. When the strong ICRF heating is applied, it is observed that the high frequency and the low frequency fluctuations are excited and suppress the increase of the plasma parameters. Recently, a new high power gyrotron system has been constructed and the ECRH power in plug extends up to 370 kW. The improvement of the confinement due to the formation of the potential in the axial direction and the strong radial electric field shear has been observed.展开更多
Research on magnetic mirror reactors has had two serious problems since the beginning stage. One is the magnetohydrodynamic instability due to the negative curvature of the magnetic field lines around the center regio...Research on magnetic mirror reactors has had two serious problems since the beginning stage. One is the magnetohydrodynamic instability due to the negative curvature of the magnetic field lines around the center region of a mirror bottle. Another is the loss of charged particles escaping from the loss cone of a magnetic mirror. We have continued to inquire into a means to solve the latter problem. We here propose a new way which will be able to make a magnitude of a loss angle of a magnetic mirror for deuterons virtually zero.展开更多
基金supported by the National Natural Science Foundation of China(No.12075306)the Natural Science Foundation of Shanghai(No.22ZR1470900)+1 种基金the Key Research Programs in Frontier Science(No.ZDBSLY-SLH006)the China Postdoctoral Science Foundation(No.2021M703328)。
文摘The plasma mirror system was installed on the 1 PW laser beamline of Shanghai Superintense Ultrafast Laser Facility[SULF]for enhancing the temporal contrast of the laser pulse.About 2 orders of magnitude improvement on pulse contrast was measured on picosecond and nanosecond time scales.The experiments show that high-contrast laser pulses can significantly improve the cutoff energy and quantity of proton beams.Then different target distributions are assumed in particles in cell simulations,which can qualitatively assume the expansion of nanometer-scale foil.The high-contrast laser enables the SULF-1PW beamline to generally be of benefit for many potential applications.
基金financial support from the European Research Council(ERC Grant Agreement No.694596)supported by the French National Research Agency(ANR)T-ERC program(Grant No.ANR-18-ERC2-0002)。
文摘The quantum vacuum plays a central role in physics. Quantum electrodynamics(QED) predicts that the properties of the fermionic quantum vacuum can be probed by extremely large electromagnetic fields. The typical field amplitudes required correspond to the onset of the ‘optical breakdown’ of this vacuum, expected at light intensities>4.7×10^(29) W/cm^(2). Approaching this ‘Schwinger limit’ would enable testing of major but still unverified predictions of power lasers. To close this considerable gap, a promising paradigm consists of reflecting these laser beams off a mirror in relativistic motion, to induce a Doppler effect that compresses the light pulse in time down to the attosecond range and converts it to shorter wavelengths, which can then be focused much more tightly than the initial laser light. However, this faces a major experimental hurdle: how to generate such relativistic mirrors? In this article, we explain how this challenge could nowadays be tackled by using so-called ‘relativistic plasma mirrors’. We argue that approaching the Schwinger limit in the coming years by applying this scheme to the latest generation of petawatt-class lasers is a challenging but realistic objective.
文摘We report on the design and characterization of the plasma mirror system installed on the J-KAREN-P laser at the Kansai Photon Science Institute,National Institutes for Quantum Science and Technology.The reflectivity of the single plasma mirror system exceeded 80%.In addition,the temporal contrast was improved by two orders of magnitude at 1 ps before the main pulse.Furthermore,the laser near-field spatial distribution after the plasma mirror was kept constant at plasma mirror fluence of less than 100 kJ/cm^(2).We also present the results of investigating the difference and the fluctuation in energy,pulse width and pointing stability with and without the plasma mirror system.
基金supported by National Basic Research Program of China (No. 2013CBA01502)the National Natural Science Foundation of China (Nos. 11121504, 11205100, and 11305103)the National Key Scientific Instrument Development Project (No. 2012YQ030142)
文摘The femtosecond laser pulses reflected from the self-induced plasma mirror(PM) surface are characterized. More than two orders of magnitude improvement on intensity contrast both in nanosecond and picosecond temporal scales are measured. The far-field distribution, i.e., focusability, is measured to degrade in comparison with that without using a PM. Experiments on proton accelerations are performed to test the effect of the balance between degraded focusability and increased reflectivity. Our results show that PM is an effective and robust device to improve laser contrast for applications.
基金National Natural Science Foundation of China(No.10775138)
文摘The first mirror (FM) samples made of polycrystal (PC) stainless steel (SS), molybdenum (Mo) and tungsten (W) were mounted at different locations in HT-7 tokamak to investigate the surface modifications caused by erosion and deposition. The optical transmission characteristics of first mirror samples were measured by a spectrophotometer. It was found that different irradiation environment had different influences on the first mirror surfaces, especially with wave antenna nearby. In addition, the erosion made the reflectivity of FM degrade to some extents as a whole. But the deposition on the mirror influences more than erosion does. Comparing the mirrors of SS, W and Mo, irradiated in the same environment, the W-mirror had the least changes in reflectivity with regularity, while the SS-mirror had most serious changes.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2013GB105003)National Natural Science Foundation of China(No.11175205)
文摘The stainless steel (SS) first mirror pre-exposed in the deposition-dominated envi- ronment of the HT-7 tokamak was cleaned in the newly built radio frequency (RF) magnetron sputtering plasma device. The deposition layer on the FM surface formed during the exposure was successfully removed by argon plasma with a RF power of about 80 W and a gas pressure of 0.087 Pa for 30 min. The total reflectivity of the mirrors was recovered up to 90% in the wavelength range of 300-800 nm, while the diffuse reflectivity showed a little increase, which was attributed to the increase of surface roughness in sputtering, and residual contaminants. The FMs made from single crystal materials could help to achieve a desired recovery of specular reflectivity in the future.
基金supported in part by the JSPS-CAS Core University Program in the field of Plasma and Nuclear Fusion
文摘Target plasmas, on which the formation of the electrostatic potentials and the improvement of the confinement are studied, are produced with ICRF in the GAMMA 10 tandem mirror. The ion temperature of more than 10 keV has been achieved in relatively low density plasmas. When the strong ICRF heating is applied, it is observed that the high frequency and the low frequency fluctuations are excited and suppress the increase of the plasma parameters. Recently, a new high power gyrotron system has been constructed and the ECRH power in plug extends up to 370 kW. The improvement of the confinement due to the formation of the potential in the axial direction and the strong radial electric field shear has been observed.
文摘Research on magnetic mirror reactors has had two serious problems since the beginning stage. One is the magnetohydrodynamic instability due to the negative curvature of the magnetic field lines around the center region of a mirror bottle. Another is the loss of charged particles escaping from the loss cone of a magnetic mirror. We have continued to inquire into a means to solve the latter problem. We here propose a new way which will be able to make a magnitude of a loss angle of a magnetic mirror for deuterons virtually zero.