Achieving the strength-ductility synergy in Mg alloys is a gigantic challenge,especially in rare-earth-free Mg alloys.In this study,a new Mg-Sn-Zn-Zr alloy with high ultimate tensile strength(~284-326 MPa)without sacr...Achieving the strength-ductility synergy in Mg alloys is a gigantic challenge,especially in rare-earth-free Mg alloys.In this study,a new Mg-Sn-Zn-Zr alloy with high ultimate tensile strength(~284-326 MPa)without sacrificing elongation-to-failure(~22.1-27.6%)was developed by utilizing casting,pre-treatment and hot extrusion.Strong random rather than basal texture is observed both in as-cast and pre-treatment samples.Subsequently,the strong texture is effectively weakened via hot extrusion whilst remaining random.More importantly,after hot extrusion,the grain sizes of as-cast and pre-treatment samples were significantly refined down to about 10μm.Examination of as-extruded microstructures of the alloy reveals that the grain refinement is highly associated with the particle stimulated nucleation(PSN)and continuous/discontinuous dynamic recrystallization(C/DDRX)mechanisms.Moreover,the results suggest that the combination of pre-treatment and hot extrusion not only promotes multiplication of geometrically-necessary dislocations(GNDs)but enhances dynamic precipitation,which boosts the formation of fine and homogenous precipitates.Based on the results of X-ray diffraction(XRD),transmission electron microscope(TEM)and selected area electron diffraction(SAED),the precipitates are Mg_(2)Sn phases.Furthermore,the main orientation relationship identified by high resolution TEM(HRTEM)between Mg_(2)Sn phases andα-Mg matrix could be described as(111)Mg_(2)Snor(220)Mg_(2)Sn∥(0001)Mgwith a coherent interface.The refined grains size,ultra-fine precipitates and high density of GNDs would substantially contribute to the enhancement of the strength and the corresponding contributions are calculated to be~183-185 MPa,~30.9-38 MPa and~14.2-31.7 MPa,respectively.Besides,texture weakening or randomizing,grain refinement and coherent interfaces are mainly responsible for the high ductility.The current study can provide beneficial insights into the development of high-performance rare-earth-free Mg alloys with favorable microstructure via a combination of casting,pre-treatment and hot extrusion processing.展开更多
China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and m...China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and materials scientists over the past decades. Nowadays, a large number of young-generation researchers have been inspired by their predecessors and become the key participants in the fields of Mg alloys, which consequently led to the establishment of China Youth Scholar Society for Magnesium Alloys Research in 2015. Since then, the first two China Youth Scholars Symposiums on Mg Alloys Research had been held at Harbin (2015) and Chongqing (2016) China, respectively. A number of crucial research inter- ests related to fundamental and applied Mg research were discussed at the conferences and summarized in this short perspective, aiming to boost far-reaching initiatives for development of new Mg-based materials to satisfy the requirements for a broad range of industrial employments. Herein, four main aspects are included as follows: i) Plastic deformation mechanism and strengthening strategy, ii) Design and development of new Mg-based materials, iii) Key service properties, and iv) New processing technologies.展开更多
The precipitation behavior of topological close-packed(TCP)μphase in powder metallurgy(P/M)nickelbased superalloy FGH97 was investigated.The results showed that proper addition of solution strengthening elements,...The precipitation behavior of topological close-packed(TCP)μphase in powder metallurgy(P/M)nickelbased superalloy FGH97 was investigated.The results showed that proper addition of solution strengthening elements,such as Co,Cr,W,Mo,improved tensile strength,while excessive addition of those elements facilitated the precipitation ofμphase,which seriously aggravated the plasticity of the P/M superalloy.For the heat-treated specimens,the relationship between critical aging time(whenμstarted to precipitate),aging temperature,and the average electron vacancy number ofγmatrix was established.展开更多
基金National Natural Science Foundation of China(No.12162023)The Key Talent Projects of Gansu Province,Gansu Basic Research Innovation Group Project(No.23JRRA757)Incubation Program of Excellent Doctoral Dissertation-Lanzhou University of Technology。
文摘Achieving the strength-ductility synergy in Mg alloys is a gigantic challenge,especially in rare-earth-free Mg alloys.In this study,a new Mg-Sn-Zn-Zr alloy with high ultimate tensile strength(~284-326 MPa)without sacrificing elongation-to-failure(~22.1-27.6%)was developed by utilizing casting,pre-treatment and hot extrusion.Strong random rather than basal texture is observed both in as-cast and pre-treatment samples.Subsequently,the strong texture is effectively weakened via hot extrusion whilst remaining random.More importantly,after hot extrusion,the grain sizes of as-cast and pre-treatment samples were significantly refined down to about 10μm.Examination of as-extruded microstructures of the alloy reveals that the grain refinement is highly associated with the particle stimulated nucleation(PSN)and continuous/discontinuous dynamic recrystallization(C/DDRX)mechanisms.Moreover,the results suggest that the combination of pre-treatment and hot extrusion not only promotes multiplication of geometrically-necessary dislocations(GNDs)but enhances dynamic precipitation,which boosts the formation of fine and homogenous precipitates.Based on the results of X-ray diffraction(XRD),transmission electron microscope(TEM)and selected area electron diffraction(SAED),the precipitates are Mg_(2)Sn phases.Furthermore,the main orientation relationship identified by high resolution TEM(HRTEM)between Mg_(2)Sn phases andα-Mg matrix could be described as(111)Mg_(2)Snor(220)Mg_(2)Sn∥(0001)Mgwith a coherent interface.The refined grains size,ultra-fine precipitates and high density of GNDs would substantially contribute to the enhancement of the strength and the corresponding contributions are calculated to be~183-185 MPa,~30.9-38 MPa and~14.2-31.7 MPa,respectively.Besides,texture weakening or randomizing,grain refinement and coherent interfaces are mainly responsible for the high ductility.The current study can provide beneficial insights into the development of high-performance rare-earth-free Mg alloys with favorable microstructure via a combination of casting,pre-treatment and hot extrusion processing.
基金support from Chinese Committee for Magnesium and its Application
文摘China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and materials scientists over the past decades. Nowadays, a large number of young-generation researchers have been inspired by their predecessors and become the key participants in the fields of Mg alloys, which consequently led to the establishment of China Youth Scholar Society for Magnesium Alloys Research in 2015. Since then, the first two China Youth Scholars Symposiums on Mg Alloys Research had been held at Harbin (2015) and Chongqing (2016) China, respectively. A number of crucial research inter- ests related to fundamental and applied Mg research were discussed at the conferences and summarized in this short perspective, aiming to boost far-reaching initiatives for development of new Mg-based materials to satisfy the requirements for a broad range of industrial employments. Herein, four main aspects are included as follows: i) Plastic deformation mechanism and strengthening strategy, ii) Design and development of new Mg-based materials, iii) Key service properties, and iv) New processing technologies.
基金Item Sponsored by International Science and Technology Cooperation Program of China(2014DFR50330)
文摘The precipitation behavior of topological close-packed(TCP)μphase in powder metallurgy(P/M)nickelbased superalloy FGH97 was investigated.The results showed that proper addition of solution strengthening elements,such as Co,Cr,W,Mo,improved tensile strength,while excessive addition of those elements facilitated the precipitation ofμphase,which seriously aggravated the plasticity of the P/M superalloy.For the heat-treated specimens,the relationship between critical aging time(whenμstarted to precipitate),aging temperature,and the average electron vacancy number ofγmatrix was established.