As the growing requirements for the stability and safety of process industries,the fault detection and diagnosis of pneumatic control valves have crucial practical significance.Many of the approaches were presented in...As the growing requirements for the stability and safety of process industries,the fault detection and diagnosis of pneumatic control valves have crucial practical significance.Many of the approaches were presented in the literature to diagnose faults through the comparison of residual sequences with thresholds.In this study,a novel hybrid neural network model has been developed to address the issue of pneumatic control valve fault diagnosis.First,the feature extractor automatically extracts in-depth features of the signals through multi-scale convolutional neural networks with different kernel sizes,which not only adequately explores the local distinguishable features,but also takes into account the global features.The extracted features are then fused by the feature fusion layer to reduce redundant features.Finally,the long short-term memory for fault identification and the dense layer for fault classification.Experimental results demonstrate that the average test accuracy is above 94%and 16 out of the 19 conditions can be successfully detected in the simulated actual industrial environment.The effectiveness and practicability of the proposed method have been verified through a comparative analysis with existing intelligent fault diagnosis methods,and the results suggest that the developed model has better robustness.展开更多
The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonline...The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonlinearity of such systems limit its application in the field of pressure tracking control. In order to meet the demand of generating dynamic pressure signal in the application of the hardware-in-the-loop simulation of aerospace engineering, a positive and negative pneumatic pressure servo system is provided to implement dynamic adjustment of sealed chamber pressure. A mathematical model is established with simulation and experiment being implemented afterwards to discuss the characteristics of the system, which shows serious asymmetry in the process of charging and discharging. Based on the analysis of the system dynamics, a fuzzy proportional integral derivative (PID) controller with asymmetric fuzzy compensator is proposed. Different from conventional adjusting mecha- nisms employing the error and change in error of the controlled variable as input parameters, the current cham- ber pressure and charging or discharging state are chosen as inputs of the compensator, which improves adaptability. To verify the effectiveness and performance of the pro- posed controller, the comparison experiments tracking sinusoidal and square wave commands are conducted. Experimental results show that the proposed controller can obtain better dynamic performance and relatively consis- tent control performance across the scope of work (2-140 kPa). The research proposes a fuzzy control method to overcome asymmetry and enhance adaptability for the positive and negative pneumatic pressure servo system.展开更多
A fuzzy control algorithm of asymmetric fuzzy strategy is introduced for a servo-pneumatic position system. It can effectively solve the difficult problems of single rod low friction cylinders, which are mainly caused...A fuzzy control algorithm of asymmetric fuzzy strategy is introduced for a servo-pneumatic position system. It can effectively solve the difficult problems of single rod low friction cylinders, which are mainly caused by asymmetric structures and different friction characteristics in two directions. On the basis of this algorithm, a traditional PID control is used to improve dynamic performance. Furthermore, a new asymmetric fuzzy PID control with α factor is advanced to improve the self-adaptability and robustness of the system. Both the theoretical analyses and experimental results prove that, with this control strategy, the dynamic performance of the system can be greatly improved. The system using this control algorithm has strong robustness and it obtains desired overshoot and repeatability in both transient and steady-state responses.展开更多
A parallel manipulator joint driven by three pneumatic muscles and its posture control strategy are presented. Based on geometric constraints and dynamics, a system model is developed through which some influences on ...A parallel manipulator joint driven by three pneumatic muscles and its posture control strategy are presented. Based on geometric constraints and dynamics, a system model is developed through which some influences on dynamic response and open-loop gain are analyzed including the supply pressure, the initial pressure and the volume of pneumatic muscle. A sliding-mode controller with a nonlinear switching function is applied to control posture, which adopts the combination of a main method that separates control of each muscle and an auxiliary method that postures error evaluation of multiple muscles, especially adopting the segmented and intelligent adjustments of sliding-mode parameters to fit different expected postures and initial states. Experimental results show that this control strategy not only amounts to the steady-state error of 0. 1° without overshoot, but also achieves good trajectory tracking.展开更多
This paper provided a fuzzy-PI control. It makes use of the advantages of fuzzy controller for dynamic characteristics, and the advantages of PI control for steady characteristics of pneumatic position servo. Experime...This paper provided a fuzzy-PI control. It makes use of the advantages of fuzzy controller for dynamic characteristics, and the advantages of PI control for steady characteristics of pneumatic position servo. Experimental results show that positioning accuracy meets the conventional industrial needs, and prove that the fuzzy-PI controller to be correct and more effective than the usual PID controller. The control method improve the dynamic and steady characteristics of the system.展开更多
By applying a nonlinear control and arranging a transient process, the initiative error of the pneumatic servo positioning system is reduced largely, and a larger gain of the controller is used to improve the respondi...By applying a nonlinear control and arranging a transient process, the initiative error of the pneumatic servo positioning system is reduced largely, and a larger gain of the controller is used to improve the responding speed of the system at the same damping ratio. Therefore, a compromise is made among the responding speed, overshoot, robustness, adaptability and stability. In addition, a dynamic output feedback controller, including position velocity and acceleration (PVA) feedback, is designed to improve the performance of the system. And a nonlinear controller is reconstructed based on the linear output feedback controller to decrease noises and disturbances. The dynamic responses of the system are simulated and tested. Results show that the error is kept within 0.02 mm under different mass loads and the positioning transient process is smooth, without overshoot and speedy.展开更多
A newly designed pneumatic spring with two separate chambers is promoted and double-loop active control is introduced to overcome the following drawbacks of passive pneumatic isolation: ① The low frequency resonance...A newly designed pneumatic spring with two separate chambers is promoted and double-loop active control is introduced to overcome the following drawbacks of passive pneumatic isolation: ① The low frequency resonances introduced into the system; ② Conflict between lower isolation frequency and stiffness high enough to limit quasi-static stroke;③ Inconsistent isolation level with different force load. The design of two separate chambers is for the purpose of tuning support frequency and force independently and each chamber is controlled by a different valve. The inner one of double-loop structure is pressure control, and in order to obtain good performance, nonlinearities compensation and motion flow rate compensation (MFRC) are added besides the basic cascade compensation, and the influence of tube length is studied. The outer loop has two functions: one is to eliminate the resonance caused by isolation support and to broaden the isolation frequency band by payload velocity feedback and base velocity feed forward, and the other is to tune support force and support stiffness simultaneously and independently, which means the support force will have no effect on support stiffness. Theoretical analysis and experiment results show that the three drawbacks are overcome simultaneously.展开更多
Vortex-induced vibration is likely to occur when subjected to wind loads because of low horizontal stiffness,resulting in internal force and large lateral amplitude.Long-term wind-induced vibration can not only affect...Vortex-induced vibration is likely to occur when subjected to wind loads because of low horizontal stiffness,resulting in internal force and large lateral amplitude.Long-term wind-induced vibration can not only affect the normal service and durability performance of chemical towers,but also seriously endanger the safety of towers in service periods,and cause property losses.In this study,a passive control method for suppressing wind-induced vibration of chemical towers is proposed.The flow around the flow field is guided by a pre-set air-blowing channel,thus destroying the unsteady vortex shedding in the wake region of the flow field and achieving the purpose of flow control.Two accelerometers are used to measure the vibration signal of the chemical tower model with and without the perforated pipe.The control effects of the spacing and the installation position of the perforated pipe are then studied.Experimental results show that the passive perforated pipe control method can effectively reduce the vibration amplitude of the chemical tower under wind loads,and decrease the potential wind-induced vibration.展开更多
When adaptive robust control(ARC) strategy based on backstepping design is applied in pneumatic servo control, accurate pressure tracking in motion is especially necessary for both force and position trajectories tr...When adaptive robust control(ARC) strategy based on backstepping design is applied in pneumatic servo control, accurate pressure tracking in motion is especially necessary for both force and position trajectories tracking ofrodless pneumatic cylinders, and therefore an adaptive robust pressure controller is developed in this paper to improve the tracking accuracy of pressure trajectory in the chamber when the pneumatic cylinder is moving. In the proposed adaptive robust pressure controller, off-line fitting of the orifice area and on-line parameter estimation of the flow coefficient are utilized to have improved model compensation, and meanwhile robust feedback and Kalman filter are used to have strong robustness against uncertain nonlinearities, parameter fluctuations and noise. Research results demonstrate that the adaptive robust pressure controller could not only track various pressure trajectories accurately even when the pneumatic cylinder is moving, but also obtain very smooth control input, which indicates the effectiveness of adaptive model compensation. Especially when a step pressure trajectory is tracked under the condition of the movement of a rodless pneumatic cylinder, maximum tracking error of ARC is 4.46 kPa and average tracking error is 0.99 kPa, and steady-state error of ARC could achieve 0.84 kPa, which is very close to the measurement accuracy of pressure transducer.展开更多
In recent years, the sustainable development of automatic manual transmissions (AMTs) control in vehicles is conspicuous. The control applications have grown fast and steadily due to the tremendous progress in power e...In recent years, the sustainable development of automatic manual transmissions (AMTs) control in vehicles is conspicuous. The control applications have grown fast and steadily due to the tremendous progress in power electronics components and the control software that enhance the requirements for delivering higher vehicles performance. AMTs control strategies achieve a reduction in the driveline dynamic oscillations behavior during gear shifting and clutch starting up processes. AMTs future expectations are an increase of torque capacity, more speed ratios and the development of advanced and efficient electronic control systems. This paper concerns with the progressing view of AMTs in the past, today and future, gives an overview of the potential dynamic problems concerned with AMTs and some control strategies used to solve those problems.展开更多
Rotary pneumatic actuators that are made out of linear one are always best suited for exoskeleton joint actuation due to its inherent power to weight ratio. This work is a modified version of knee actuation system tha...Rotary pneumatic actuators that are made out of linear one are always best suited for exoskeleton joint actuation due to its inherent power to weight ratio. This work is a modified version of knee actuation system that has already been developed and major modifications are made in order to make it more suitable for human wearing and also to reduce its bulkiness and complexity. The considered actuator system is a rotary actuator where a pulley converts the linear motion of the standard pneumatic piston into the rotary motion. To prove the capability of the actuator, its performance characteristics such as torque and power produced are compared to the required torque and power at the knee joint of the exoskeleton in swing phase and are found to be excellent. The two-way analysis of variance(ANOVA)is performed to find the effect of the throat area valve on knee angle. The ANOVA shows the significant effect of the throat area variation on the knee angle flexion made by the proposed actuator. A relationship between the throat area of flow control valve, that is connected to the exit port of the direction control valve, and angular displacement of the knee joint has been formulated. This relationship can be used to design a control system to regulate the mass flow rate of air at the exit and hence the angular velocity of the knee joint can be controlled.展开更多
In the semi-physical simulation of aeroengines,using the pneumatic pressure servo control technology to provide realistic pneumatic excitation to the sensors and electronic controller can improve the confidence of the...In the semi-physical simulation of aeroengines,using the pneumatic pressure servo control technology to provide realistic pneumatic excitation to the sensors and electronic controller can improve the confidence of the simulation and reduce the test cost and risk.However,the existing methods could not satisfy the precise simulation of large-amplitude and high-frequency pulsating pressure during aeroengine surge.In this paper,a pneumatic pressure control system with asymmetric groups of the High-Speed on–off Valve(HSV)is designed,and an Improved Nonlinear Model Predictive Control(INMPC)method is proposed.First,the volumetric flow characteristics of HSV are tested and analyzed with Pulse Width Modulation(PWM)signal input.Then,a simplified HSV model with the volume flow characteristic correction is developed.Based on these,an integrated model for the whole system is further established and used as the prediction model in INMPC.To improve the computational speed of the rolling optimization process,the mapping scheme from control signal to PWM duty cycle of HSVs and the objective function with exterior penalty function are designed.Finally,the random step,sinusoidal and real engine surge data are set as the reference pressure in multiple comparative experiments to verify the effectiveness of the pressure tracking system.展开更多
Unlike traditional manipulators with high rigidity and limited degrees of freedom,pneumatic manipulators have significant superiorities such as flexibility,lightweight and cleanliness,and therefore,have been one of th...Unlike traditional manipulators with high rigidity and limited degrees of freedom,pneumatic manipulators have significant superiorities such as flexibility,lightweight and cleanliness,and therefore,have been one of the most popular research directions in robotics.However,most existing pneumatic manipulators have disadvantages such as low rigidity and simple functionality.In order to make up for the shortcomings of existing pneumatic manipulators,this paper proposes a new pneumatic flexible manipulator inspired by the concept of origami,which realizes the combination and balance of flexibility and rigidity.Finite element analysis is conducted to study influences of the number of airbags,the angle of main beam,and the width of main beam on the performance of the flexible manipulator.The simulation results are utilized to optimize the structure of the flexible manipulator.A pneumatic control system is designed to realize the automatic control of the pneumatic flexible manipulator.At the same time,a prototype is 3D printed,the experimental platform for pneumatic deformation is built,and the verification experiments of the single-jaw manipulator and the three-jaw manipulator are completed.展开更多
Pneumatic cryogenic control valves(PCCV)are designed to meet the special requirements for the large cryogenic helium refrigeration system.Polychlorotrifluoroethylene(PCTFE)is adopted as the flat seal material of the v...Pneumatic cryogenic control valves(PCCV)are designed to meet the special requirements for the large cryogenic helium refrigeration system.Polychlorotrifluoroethylene(PCTFE)is adopted as the flat seal material of the valve seat.The leakage rates and compressive strain of the PCTFE gasket with different sealing stress are tested at both room temperature(293 K)and liquid nitrogen temperature(77 K).After 300 open/close cycles,the experimental results show that the sealing properties of the PCTFE gasket are improved.The leakage rates are about 10-8(293 K)and 10-4(77 K)Pam3 s-1 respectively.Finally,the effects of working pressure on sealing characteristics are discussed.The working pressure has little effect on compressive strain but it has a great influence on leakage rate.The leakage rate is linear with the working pressure of inlet at room temperature,but at liquid nitrogen temperature the leakage rate is linear with the square of the working pressure.展开更多
This article presented a four-fingered soft bionic robotic gripper with variable effective actuator lengths. By combining approaches of finite element analysis, quasi-static analytical modeling, and experimental measu...This article presented a four-fingered soft bionic robotic gripper with variable effective actuator lengths. By combining approaches of finite element analysis, quasi-static analytical modeling, and experimental measurements, the deformation of the single soft actuator as a function of air pressure input in free space was analyzed. To investigate the effect of the effective actuator length on the gripping per- formance of the gripper, we conducted systematical experiments to evaluate the pull-off force, the actuation speed, the precision and error tolerance of the soft gripper while grasping objects of various sizes and shapes. A combination of depressurization and pressurization in actuation as well as applying variable effective actuator length enhanced the gripper's performance significantly, with no sensors. For example, with tunable effective actuator length, the gripper was able to grasp objects ranging from 2 mm 170 mm robustly. Under the optimal length, the gripper could generate the maximum pull-off force for the corresponding object size; the precision and the error tolerance of the gripper were also significantly improved compared to those of the gripper with full-length. Our soft robotic prototype exhibits a simple control and low-cost approach of gripping a wide range of objects and may have wide leverage for future industrial operations.展开更多
基金funded by the“Ningxia Key Research and Development Project”,grant number“2022BEE02002”.
文摘As the growing requirements for the stability and safety of process industries,the fault detection and diagnosis of pneumatic control valves have crucial practical significance.Many of the approaches were presented in the literature to diagnose faults through the comparison of residual sequences with thresholds.In this study,a novel hybrid neural network model has been developed to address the issue of pneumatic control valve fault diagnosis.First,the feature extractor automatically extracts in-depth features of the signals through multi-scale convolutional neural networks with different kernel sizes,which not only adequately explores the local distinguishable features,but also takes into account the global features.The extracted features are then fused by the feature fusion layer to reduce redundant features.Finally,the long short-term memory for fault identification and the dense layer for fault classification.Experimental results demonstrate that the average test accuracy is above 94%and 16 out of the 19 conditions can be successfully detected in the simulated actual industrial environment.The effectiveness and practicability of the proposed method have been verified through a comparative analysis with existing intelligent fault diagnosis methods,and the results suggest that the developed model has better robustness.
基金Supported by National Natural Science Foundation of China(Grant No.51575199)
文摘The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonlinearity of such systems limit its application in the field of pressure tracking control. In order to meet the demand of generating dynamic pressure signal in the application of the hardware-in-the-loop simulation of aerospace engineering, a positive and negative pneumatic pressure servo system is provided to implement dynamic adjustment of sealed chamber pressure. A mathematical model is established with simulation and experiment being implemented afterwards to discuss the characteristics of the system, which shows serious asymmetry in the process of charging and discharging. Based on the analysis of the system dynamics, a fuzzy proportional integral derivative (PID) controller with asymmetric fuzzy compensator is proposed. Different from conventional adjusting mecha- nisms employing the error and change in error of the controlled variable as input parameters, the current cham- ber pressure and charging or discharging state are chosen as inputs of the compensator, which improves adaptability. To verify the effectiveness and performance of the pro- posed controller, the comparison experiments tracking sinusoidal and square wave commands are conducted. Experimental results show that the proposed controller can obtain better dynamic performance and relatively consis- tent control performance across the scope of work (2-140 kPa). The research proposes a fuzzy control method to overcome asymmetry and enhance adaptability for the positive and negative pneumatic pressure servo system.
文摘A fuzzy control algorithm of asymmetric fuzzy strategy is introduced for a servo-pneumatic position system. It can effectively solve the difficult problems of single rod low friction cylinders, which are mainly caused by asymmetric structures and different friction characteristics in two directions. On the basis of this algorithm, a traditional PID control is used to improve dynamic performance. Furthermore, a new asymmetric fuzzy PID control with α factor is advanced to improve the self-adaptability and robustness of the system. Both the theoretical analyses and experimental results prove that, with this control strategy, the dynamic performance of the system can be greatly improved. The system using this control algorithm has strong robustness and it obtains desired overshoot and repeatability in both transient and steady-state responses.
基金This project is supported by International Cooperation with Festo.
文摘A parallel manipulator joint driven by three pneumatic muscles and its posture control strategy are presented. Based on geometric constraints and dynamics, a system model is developed through which some influences on dynamic response and open-loop gain are analyzed including the supply pressure, the initial pressure and the volume of pneumatic muscle. A sliding-mode controller with a nonlinear switching function is applied to control posture, which adopts the combination of a main method that separates control of each muscle and an auxiliary method that postures error evaluation of multiple muscles, especially adopting the segmented and intelligent adjustments of sliding-mode parameters to fit different expected postures and initial states. Experimental results show that this control strategy not only amounts to the steady-state error of 0. 1° without overshoot, but also achieves good trajectory tracking.
文摘This paper provided a fuzzy-PI control. It makes use of the advantages of fuzzy controller for dynamic characteristics, and the advantages of PI control for steady characteristics of pneumatic position servo. Experimental results show that positioning accuracy meets the conventional industrial needs, and prove that the fuzzy-PI controller to be correct and more effective than the usual PID controller. The control method improve the dynamic and steady characteristics of the system.
基金The National Natural Science Foundation of China (No.50085002)
文摘By applying a nonlinear control and arranging a transient process, the initiative error of the pneumatic servo positioning system is reduced largely, and a larger gain of the controller is used to improve the responding speed of the system at the same damping ratio. Therefore, a compromise is made among the responding speed, overshoot, robustness, adaptability and stability. In addition, a dynamic output feedback controller, including position velocity and acceleration (PVA) feedback, is designed to improve the performance of the system. And a nonlinear controller is reconstructed based on the linear output feedback controller to decrease noises and disturbances. The dynamic responses of the system are simulated and tested. Results show that the error is kept within 0.02 mm under different mass loads and the positioning transient process is smooth, without overshoot and speedy.
基金This project is supported by Commission of Science Technology and Industry for National Defense, China.
文摘A newly designed pneumatic spring with two separate chambers is promoted and double-loop active control is introduced to overcome the following drawbacks of passive pneumatic isolation: ① The low frequency resonances introduced into the system; ② Conflict between lower isolation frequency and stiffness high enough to limit quasi-static stroke;③ Inconsistent isolation level with different force load. The design of two separate chambers is for the purpose of tuning support frequency and force independently and each chamber is controlled by a different valve. The inner one of double-loop structure is pressure control, and in order to obtain good performance, nonlinearities compensation and motion flow rate compensation (MFRC) are added besides the basic cascade compensation, and the influence of tube length is studied. The outer loop has two functions: one is to eliminate the resonance caused by isolation support and to broaden the isolation frequency band by payload velocity feedback and base velocity feed forward, and the other is to tune support force and support stiffness simultaneously and independently, which means the support force will have no effect on support stiffness. Theoretical analysis and experiment results show that the three drawbacks are overcome simultaneously.
基金This work was supported by the National Natural Science Foundation of China(Nos.51578188,51722805,51378153 and 51808173)the Fundamental Research Funds for Central Universities(HIT.BRETIII.201512,HIT.BRETIV.201803 and HIT.NSRIF.201862).
文摘Vortex-induced vibration is likely to occur when subjected to wind loads because of low horizontal stiffness,resulting in internal force and large lateral amplitude.Long-term wind-induced vibration can not only affect the normal service and durability performance of chemical towers,but also seriously endanger the safety of towers in service periods,and cause property losses.In this study,a passive control method for suppressing wind-induced vibration of chemical towers is proposed.The flow around the flow field is guided by a pre-set air-blowing channel,thus destroying the unsteady vortex shedding in the wake region of the flow field and achieving the purpose of flow control.Two accelerometers are used to measure the vibration signal of the chemical tower model with and without the perforated pipe.The control effects of the spacing and the installation position of the perforated pipe are then studied.Experimental results show that the passive perforated pipe control method can effectively reduce the vibration amplitude of the chemical tower under wind loads,and decrease the potential wind-induced vibration.
基金supported by National Natural Science Foundation of China (Grant No. 50775200)
文摘When adaptive robust control(ARC) strategy based on backstepping design is applied in pneumatic servo control, accurate pressure tracking in motion is especially necessary for both force and position trajectories tracking ofrodless pneumatic cylinders, and therefore an adaptive robust pressure controller is developed in this paper to improve the tracking accuracy of pressure trajectory in the chamber when the pneumatic cylinder is moving. In the proposed adaptive robust pressure controller, off-line fitting of the orifice area and on-line parameter estimation of the flow coefficient are utilized to have improved model compensation, and meanwhile robust feedback and Kalman filter are used to have strong robustness against uncertain nonlinearities, parameter fluctuations and noise. Research results demonstrate that the adaptive robust pressure controller could not only track various pressure trajectories accurately even when the pneumatic cylinder is moving, but also obtain very smooth control input, which indicates the effectiveness of adaptive model compensation. Especially when a step pressure trajectory is tracked under the condition of the movement of a rodless pneumatic cylinder, maximum tracking error of ARC is 4.46 kPa and average tracking error is 0.99 kPa, and steady-state error of ARC could achieve 0.84 kPa, which is very close to the measurement accuracy of pressure transducer.
文摘In recent years, the sustainable development of automatic manual transmissions (AMTs) control in vehicles is conspicuous. The control applications have grown fast and steadily due to the tremendous progress in power electronics components and the control software that enhance the requirements for delivering higher vehicles performance. AMTs control strategies achieve a reduction in the driveline dynamic oscillations behavior during gear shifting and clutch starting up processes. AMTs future expectations are an increase of torque capacity, more speed ratios and the development of advanced and efficient electronic control systems. This paper concerns with the progressing view of AMTs in the past, today and future, gives an overview of the potential dynamic problems concerned with AMTs and some control strategies used to solve those problems.
基金supported by the Technical Education Quality Improvement Programme (TEQIP),India (NITC/TEQIP-II/R & d/2014)
文摘Rotary pneumatic actuators that are made out of linear one are always best suited for exoskeleton joint actuation due to its inherent power to weight ratio. This work is a modified version of knee actuation system that has already been developed and major modifications are made in order to make it more suitable for human wearing and also to reduce its bulkiness and complexity. The considered actuator system is a rotary actuator where a pulley converts the linear motion of the standard pneumatic piston into the rotary motion. To prove the capability of the actuator, its performance characteristics such as torque and power produced are compared to the required torque and power at the knee joint of the exoskeleton in swing phase and are found to be excellent. The two-way analysis of variance(ANOVA)is performed to find the effect of the throat area valve on knee angle. The ANOVA shows the significant effect of the throat area variation on the knee angle flexion made by the proposed actuator. A relationship between the throat area of flow control valve, that is connected to the exit port of the direction control valve, and angular displacement of the knee joint has been formulated. This relationship can be used to design a control system to regulate the mass flow rate of air at the exit and hence the angular velocity of the knee joint can be controlled.
基金co-supported by the National Natural Science Foundation of China(No.51976089)the Natural Science Foundation of Fujian Province of China(No.2021J05113).
文摘In the semi-physical simulation of aeroengines,using the pneumatic pressure servo control technology to provide realistic pneumatic excitation to the sensors and electronic controller can improve the confidence of the simulation and reduce the test cost and risk.However,the existing methods could not satisfy the precise simulation of large-amplitude and high-frequency pulsating pressure during aeroengine surge.In this paper,a pneumatic pressure control system with asymmetric groups of the High-Speed on–off Valve(HSV)is designed,and an Improved Nonlinear Model Predictive Control(INMPC)method is proposed.First,the volumetric flow characteristics of HSV are tested and analyzed with Pulse Width Modulation(PWM)signal input.Then,a simplified HSV model with the volume flow characteristic correction is developed.Based on these,an integrated model for the whole system is further established and used as the prediction model in INMPC.To improve the computational speed of the rolling optimization process,the mapping scheme from control signal to PWM duty cycle of HSVs and the objective function with exterior penalty function are designed.Finally,the random step,sinusoidal and real engine surge data are set as the reference pressure in multiple comparative experiments to verify the effectiveness of the pressure tracking system.
基金National Natural Science Foundation of China(12002032).
文摘Unlike traditional manipulators with high rigidity and limited degrees of freedom,pneumatic manipulators have significant superiorities such as flexibility,lightweight and cleanliness,and therefore,have been one of the most popular research directions in robotics.However,most existing pneumatic manipulators have disadvantages such as low rigidity and simple functionality.In order to make up for the shortcomings of existing pneumatic manipulators,this paper proposes a new pneumatic flexible manipulator inspired by the concept of origami,which realizes the combination and balance of flexibility and rigidity.Finite element analysis is conducted to study influences of the number of airbags,the angle of main beam,and the width of main beam on the performance of the flexible manipulator.The simulation results are utilized to optimize the structure of the flexible manipulator.A pneumatic control system is designed to realize the automatic control of the pneumatic flexible manipulator.At the same time,a prototype is 3D printed,the experimental platform for pneumatic deformation is built,and the verification experiments of the single-jaw manipulator and the three-jaw manipulator are completed.
基金supported by the fund of the State Key Laboratory of Technologies in Space Cryogenic Propellants (Grant No. SKLTSCP1210)
文摘Pneumatic cryogenic control valves(PCCV)are designed to meet the special requirements for the large cryogenic helium refrigeration system.Polychlorotrifluoroethylene(PCTFE)is adopted as the flat seal material of the valve seat.The leakage rates and compressive strain of the PCTFE gasket with different sealing stress are tested at both room temperature(293 K)and liquid nitrogen temperature(77 K).After 300 open/close cycles,the experimental results show that the sealing properties of the PCTFE gasket are improved.The leakage rates are about 10-8(293 K)and 10-4(77 K)Pam3 s-1 respectively.Finally,the effects of working pressure on sealing characteristics are discussed.The working pressure has little effect on compressive strain but it has a great influence on leakage rate.The leakage rate is linear with the working pressure of inlet at room temperature,but at liquid nitrogen temperature the leakage rate is linear with the square of the working pressure.
基金Acknowledgment This work was supported by the National Science Foundation support projects, China (grant numbers 61633004, 61403012, and 61333016) the Open Research Fund of Key Laboratory Space Utilization, Chinese Academy of Sciences (No.6050000201607004). Many thanks to Ziyu Ren and Hui Wang for their kind help in implementing the experimental apparatus, con- ducting the force experiments and performing the data analysis. Thanks to Xi Fang for her kind help in revising the paper.
文摘This article presented a four-fingered soft bionic robotic gripper with variable effective actuator lengths. By combining approaches of finite element analysis, quasi-static analytical modeling, and experimental measurements, the deformation of the single soft actuator as a function of air pressure input in free space was analyzed. To investigate the effect of the effective actuator length on the gripping per- formance of the gripper, we conducted systematical experiments to evaluate the pull-off force, the actuation speed, the precision and error tolerance of the soft gripper while grasping objects of various sizes and shapes. A combination of depressurization and pressurization in actuation as well as applying variable effective actuator length enhanced the gripper's performance significantly, with no sensors. For example, with tunable effective actuator length, the gripper was able to grasp objects ranging from 2 mm 170 mm robustly. Under the optimal length, the gripper could generate the maximum pull-off force for the corresponding object size; the precision and the error tolerance of the gripper were also significantly improved compared to those of the gripper with full-length. Our soft robotic prototype exhibits a simple control and low-cost approach of gripping a wide range of objects and may have wide leverage for future industrial operations.