This paper discusses the issue of pollution reduction in metropolises by means of intelligent negotiation in multi-agent systems. For situations of complete information, it gives a stochastic hill-climbing search algo...This paper discusses the issue of pollution reduction in metropolises by means of intelligent negotiation in multi-agent systems. For situations of complete information, it gives a stochastic hill-climbing search algorithm for computing the pollution-reduction solutions; For situations of incomplete information, it puts forward a genetic algorithm for computing the best solutions for every plants subjectively and proposes market-mechanism-based algorithm for computing the emission-redistribution solutions objectively. Key words intelligent negotiation - game theory - pollution reduction - genetic algorithm CLC number TP 391.1 Foundation item: Supported by the National 863 Project (2002AA134020-04)Biography: HAN Wei (1975-) male, Ph.D. candidate, research direction: MAS and Electronic Commercial.展开更多
This paper evaluates the efficacy of two sequential vertical flow filters (VFF), FV1 and FV2, implanted with Typha, in a pilot-scale wastewater treatment system. FV1 comprises three cells (FV1a, FV1b, and FV1c), while...This paper evaluates the efficacy of two sequential vertical flow filters (VFF), FV1 and FV2, implanted with Typha, in a pilot-scale wastewater treatment system. FV1 comprises three cells (FV1a, FV1b, and FV1c), while FV2 consists of two cells (FV2a and FV2b), each designed to reduce various physicochemical and microbiological pollutants from wastewater. Quantitative analyses show significant reductions in electrical conductivity (from 1331 to 1061 μS/cm), biochemical oxygen demand (BOD5 from 655.6 to 2.3 mg/L), chemical oxygen demand (COD from 1240 to 82.2 mg/L), total nitrogen (from 188 to 37.3 mg/L), and phosphates (from 70.9 to 14.6 mg/L). Notably, FV2 outperforms FV1, particularly in decreasing dissolved salts and BOD5 to remarkably low levels. Microbiological assessments reveal a substantial reduction in fecal coliforms, from an initial concentration of 7.5 log CFU/100mL to 3.7 log CFU/100mL, and a complete elimination of helminth eggs, achieving a 100% reduction rate in FV2. The study highlights the impact of design parameters, such as filter material, media depth, and plant species selection, on treatment outcomes. The findings suggest that the judicious choice of these components is critical for optimizing pollutant removal. For instance, different filtration materials show varying efficacies, with silex plus river gravel in FV1c achieving superior pollutant reduction rates. In conclusion, VFFs emerge as a promising solution for wastewater treatment, underscoring the importance of design optimization to enhance system efficiency. Continuous monitoring and adaptation of treatment practices are imperative to ensure water quality, allowing for safe environmental discharge or water reuse. The research advocates for ongoing improvements in wastewater treatment technologies, considering the environmental challenges of the current era. The study concludes with a call for further research to maximize the effectiveness of VFFs in water management.展开更多
Based on China's provincial panel data from 2004 to 2014,the net effect and threshold characteristics of local governments' fiscal expenditure structure on environmental pollution were tested with the nonlinear pane...Based on China's provincial panel data from 2004 to 2014,the net effect and threshold characteristics of local governments' fiscal expenditure structure on environmental pollution were tested with the nonlinear panel threshold model. The results showed that the net effect of fiscal expenditure structure on regional pollution emission intensity had significant inverted V-shaped single threshold characteristics. Besides,the threshold value of economic density was 6. 039 6 million yuan/km^2,and that of population density was 201 people/km^2. That is,the fiscal expenditure structure inclining to productive expenditure was relatively conducive to the promotion of pollution reduction in the areas with low economic density or low population density. The fiscal expenditure structure inclining to non-productive expenditure was relatively conducive to the promotion of pollution reduction in the areas with high economic density or high population density.展开更多
● The demand for organics reduction in power industry needs to be analyzed. Generally speaking, the organicsfrom power plants is neither a main source of water pollution nor an emphasis of pollution control.● The no...● The demand for organics reduction in power industry needs to be analyzed. Generally speaking, the organicsfrom power plants is neither a main source of water pollution nor an emphasis of pollution control.● The normal operation of FGD facilities is the key to fulfill the mission of SO2 emission reduction.● The control of SO2 emission should not be imposed uniformly on all power plants nationwide.● It is difficult to promote the emission trading of SO2 institutionally.● The active policy of levying for SO2 emission starting from zero emission and using levies for SO2 control isunreasonable. It should be reformed as levying only for over-limit emission, and not levying for emissionsbelow limit or levying indicatively.● Environmental regulations on SO2 control should make differences depending on environmental function ofzones, time period of generating units installed and manner of emissions.展开更多
A knowledge-based network for Section Yidong Bridge,Dongyang River,one tributary of Qiantang River,Zhejiang Province,China,is established in order to model water quality in areas under small data.Then,based on normal ...A knowledge-based network for Section Yidong Bridge,Dongyang River,one tributary of Qiantang River,Zhejiang Province,China,is established in order to model water quality in areas under small data.Then,based on normal transformation of variables with routine monitoring data and normal assumption of variables without routine monitoring data,a conditional linear Gaussian Bayesian network is constructed.A "two-constraint selection" procedure is proposed to estimate potential parameter values under small data.Among all potential parameter values,the ones that are most probable are selected as the "representatives".Finally,the risks of pollutant concentration exceeding national water quality standards are calculated and pollution reduction decisions for decision-making reference are proposed.The final results show that conditional linear Gaussian Bayesian network and "two-constraint selection" procedure are very useful in evaluating risks when there is limited data and can help managers to make sound decisions under small data.展开更多
Carbon dioxide(CO2)emissions from motor vehicles have been increasing in large urban centers,thus contributing to air pollution.The general objective of this study is to analyze simulations of CO2 emissions among stud...Carbon dioxide(CO2)emissions from motor vehicles have been increasing in large urban centers,thus contributing to air pollution.The general objective of this study is to analyze simulations of CO2 emissions among students who use public transport in the city of Passo Fundo,in the state of Rio Grande do Sul,Brazil.Methodologically,this study was developed in three stages:(1)verification of the time used by higher education students at Faculdade Meridional(IMED)in relation to urban mobility;(2)understanding of the transport mode used by these students,taking into account the one which appears with the highest incidence;(3)simulating CO2 emissions from the modes of transport used by students after the application of the Environmental Impact Simulator(EIS)used by the National Public Transport Association(ANTP,in Portuguese)for the modeling of transport indexes aimed at analyzing CO2 emissions.When considering the total of 3,079 students who assigned to a sample of 66 questionnaires,a reduction of CO2 emissions of 4,527.04 kg during a year in relation to the use of public transport was found.展开更多
The migration law of runoff pollutants in bio-retention tank was studied through the experimental research, containing calculation formula of pollutants reduction coefficient. After that, the technology of reducing an...The migration law of runoff pollutants in bio-retention tank was studied through the experimental research, containing calculation formula of pollutants reduction coefficient. After that, the technology of reducing and controlling runoff pollution by bio-retention tank was demonstrated. The result showed that bio-retention tank can reduce runoff by 15%-85%, and the pollutant emissions can be cut by 35%-95%. At the same time, it had good ecological landscape effect. The study can provide a reference for the design method of road bio-retention tank in sponge city construction, and basic technical methods and parameters for the subsequent construction of comprehensive control platform for urban rainwater runoff and the layout optimization of comprehensive measures of water quality and quantity.展开更多
Although the relationship between the size of urban industrial land use and pollutant emissions has been widely discussed from different perspectives(e.g.,the scale and crowding effects),the results of various studies...Although the relationship between the size of urban industrial land use and pollutant emissions has been widely discussed from different perspectives(e.g.,the scale and crowding effects),the results of various studies have revealed positive,negative,and combined impact relationships.However,how the expansion of urban industrial land use affects SO_(2) emissions remains unknown.We need to clarify this relationship in order to facilitate the realization of China’s pollution reduction and emission reduction goals.This study used the panel data from 294 cities spanning from 2011 to 2019 to construct a spatial econometric model.The objective was to explore the correlation between the scale of urban industrial land and sulfur dioxide emissions in China.The results show that a large scale of urban industrial land use corresponds to lower sulfur dioxide emissions per unit of industrial added value.By gaining a deeper understanding of the relationship between the scale of urban industrial land use and sulfur dioxide emissions,policymakers can further reduce pollutant emissions by rationalizing the planning of urban industrial land use and industrial layout.In addition to promoting industrial agglomeration and economies of scale in cities with extensive industrial land use,this strategy can support the development of efficient and environmentally friendly industries in areas with limited industrial land use.Optimizing the technology and encouraging the development of green industries can help reduce environmental pollution and promote sustainable urban development.展开更多
Zinc extraction residue,a solid waste generated from the treatment of zinc-containing dust in rotary kilns,is commonly stockpiled in steel companies for extended periods.It poses significant disposal challenges and en...Zinc extraction residue,a solid waste generated from the treatment of zinc-containing dust in rotary kilns,is commonly stockpiled in steel companies for extended periods.It poses significant disposal challenges and environmental pollution risks.So far,research on the treatment of zinc extraction residues has been slow,inadequate,and sporadic.For this gap,a novel approach was proposed to effectively treat the zinc extraction residue via the iron ore sintering process.It was feasible to add 1 wt.%of zinc extraction residues to the sintering raw materials.The more adequate mineralization reaction resulted in higher yield and tumbler indexes,despite a slight decrease in sintering speed.Although this may result in a slight decrease in sintering speed,the more complete mineralization reaction leads to improved sintering yield and tumbler index.Interestingly,the addition of zinc extraction residues reduced the CO and NO_(x) concentrations in the sintering flue gas.Thus,the iron ore sintering process provided a viable solution for resource utilization and environmentally friendly treatment of zinc extraction residues.展开更多
Building a rainwater system based on the idea of low-impact development (LID) is an important aspect of the current "sponge city" construction in China. The "sponge city" concept emphasizes that the runoff can p...Building a rainwater system based on the idea of low-impact development (LID) is an important aspect of the current "sponge city" construction in China. The "sponge city" concept emphasizes that the runoff can permeate the soil or be stored temporarily, and rainwater could be used again when it is needed. Beijing is one of the earliest cities to study rainwater harvesting and LID techniques in China.Through long-terua monitoring of rainfall, runoff flow, and water quality of a campus demonstration project in Beijing, the runoff quantity and pollutant concentration variations have been analyzed. Furthermore, the runoffreduction effects of single LID measure, such as green roof, filtration chamber, and permeable pavement, have been investigated. Additionally, the overall reduction effectiveness of the LID system on the average annual rainfall runoff and pollution load has been discussed.展开更多
Pollution has become an unavoidable concern as China’s high-quality development is underway.How to reduce pollution is an imperative issue for China to address.Pollution emissions are closely related to factor inputs...Pollution has become an unavoidable concern as China’s high-quality development is underway.How to reduce pollution is an imperative issue for China to address.Pollution emissions are closely related to factor inputs,production processes and pollution control measures.Are there other forces to cut emissions besides regulatory control?Taking sulfur dioxide as an example,this paper probes into the potential mechanism through which technical efficiency drives pollution reduction in the context of opening to foreign investment.The results reveal that the openness to foreign investment remarkably lowers pollution emissions of fi rms,with SOEs,large fi rms and exporters seeing more pronounced pollution reduction eff ect after opening to foreign investment,while fi rms in pollution-intensive industries and less regulated areas are weaker in pollution reduction.A look into fi rm behavior suggests that the openness to foreign investment reduces pollutant emissions by improving technical efficiency rather than by raising investment in pollution control.The pollution reduction eff ect resulting from the openness is refl ected in the improvement of intra-fi rm emission reduction capacity instead of inter-fi rm resource reallocation eff ect,according to an analysis at the aggregate level.This paper concludes that technical efficiency gains are an important tool to advance pollution reduction,and that China must be more flexible in leveraging the pollution reduction effect of other policies regarding technical effi ciency to drive its high-quality development that is green.展开更多
Residential low efficient fuel burning is a major source of many air pollutants produced during incomplete combustions, and household air pollution has been identified as one of the top environmental risk factors. Her...Residential low efficient fuel burning is a major source of many air pollutants produced during incomplete combustions, and household air pollution has been identified as one of the top environmental risk factors. Here we compiled literature-reported emission factors of pollutants including carbon monoxide(CO), total suspended particles(TSPs), PM2.5, organic carbon(OC),elemental carbon(EC) and polycyclic aromatic hydrocarbons(PAHs) for different household energy sources, and quantified the potential for emission reduction by clean fuel adoption. The burning of crop straws, firewood and coal chunks in residential stoves had high emissions per unit fuel mass but lower thermal efficiencies, resulting in high levels of pollution emissions per unit of useful energy, whereas pelletized biofuels and coal briquettes had lower pollutant emissions and higher thermal efficiencies. Briquetting coal may lead to 82%–88% CO, 74%–99%TSP, 73%–76% PM2.5, 64%–98% OC, 92%–99% EC and 80%–83% PAH reductions compared to raw chunk coal. Biomass pelletizing technology would achieve 88%–97% CO, 73%–87% TSP, 79%–88%PM2.5, 94%–96% OC, 91%–99% EC and 63%–96% PAH reduction compared to biomass burning. The adoption of gas fuels(i.e., liquid petroleum gas, natural gas) would achieve significant pollutant reduction, nearly 96% for targeted pollutants. The reduction is related not only to fuel change, but also to the usage of high efficiency stoves.展开更多
For achieving air pollutant emission reduction targets,total pollutant amount control is being continuously promoted in China.However,the traditional pattern of pollutant emission reduction allocation regardless of ec...For achieving air pollutant emission reduction targets,total pollutant amount control is being continuously promoted in China.However,the traditional pattern of pollutant emission reduction allocation regardless of economic cost often results in unreasonable emission reduction pathways,and industrial enterprises as the main implementers have to pay excessively high costs.Therefore,this study adopted economic efficiency as its main consideration,used specific emission reduction measures(ERMs)of industrial enterprises as minimum allocation units,and constructed an enterprise-level pollutant emission reduction allocation(EPERA)model with minimization of the total abatement cost(TAC)as the objective function,and fairness and feasibility as constraints for emission reduction allocation.Taking City M in China as an example,the EPERA model was used to construct a Pareto optimal frontier and obtain the optimal trade-off result.Results showed that under basic and strict emission reduction regulations,the TAC of the optimal trade-off point was reduced by 46.40%and 45.77%,respectively,in comparison with that achieved when only considering fairness,and the Gini coefficient was 0.26 and 0.31,respectively.The abatement target was attained with controllable cost and relatively fair and reasonable allocation.In addition,enterprises allocated different emission reduction quotas under different ERMs had specific characteristics that required targeted optimization of technology and equipment to enable them to achieve optimal emission reduction effects for the same abatement cost.展开更多
‘Co-control',or synergistically reducing CO_(2)and local air polluta nt emissions,is an important strategy for cities to achieve'low carb on'and'blue sky'simultaneously.However,there were few stud...‘Co-control',or synergistically reducing CO_(2)and local air polluta nt emissions,is an important strategy for cities to achieve'low carb on'and'blue sky'simultaneously.However,there were few studies to evaluate and compare the level of co-control of CO_(2) and local air pollutants in cities year.The present study proposed qualitative and quantitative methods to evaluate the level of co-control of CO_(2)and three local air pollutant(SO_(2).NOX,and particulate matter PM)emissions in key environmental protection cities in China over two periods(2012-2015 and 2015-2018).Statistical analysis found that,though three local air pollutant emissions positively correlated with CO_(2) emission,no significantly positive correlation was found between local air pollutants emission reductions and CO_(2) emission reductions,indicating that co-control effects were poor in general.By using the co-control effect coordinate system,qualitative evaluation showed that less than half of the sample cities could achieve co-control of the total amount of CO_(2) and local air pollutants.By employing the indicator of emission reduction equivalence(EReq),quantitative evaluation showed that the co-control level of the sample cities improved in 2015-2018 compared with 2012-2015.Further regression analysis showed that,reducing coal consumption and economic development significantly enhanced the co-control performance of the observed cities.The present case study proved that the proposed methods for evaluation and comparison of the city co-control performance works well,and can be used in other countries and regions to promote global cities racing to carbon and local air pollutants co-control.展开更多
The flue gas pollutants deep-removal technology(DRT) focusing on PM2.5removal is the prime method of further reducing pollutants emission from coal-fired power plants. In view of the four key technological challenges ...The flue gas pollutants deep-removal technology(DRT) focusing on PM2.5removal is the prime method of further reducing pollutants emission from coal-fired power plants. In view of the four key technological challenges in developing the DRT, studies were conducted on a series of purification technologies and the DRT was developed and successfully applied in 660 MW and 1000 MW coal-fired units. This paper analyzes the application results of the demonstration project, and proposes a roadmap for the follow-up researches and optimizations.展开更多
As the world's most populous country,China has witnessed rapid urbanization in recent decades,with population migration from rural to urban(RU)regions as the major driving force.Due to the large gap between rural ...As the world's most populous country,China has witnessed rapid urbanization in recent decades,with population migration from rural to urban(RU)regions as the major driving force.Due to the large gap between rural and urban consumption and investment level,large-scale RU migration impacts air pollutant emissions and creates extra uncertainties for air quality improvement.Here,we integrated population migration assessment,an environmentally extended inputeoutput model and structural decomposition analysis to evaluate the NOx,SO2 and primary PM2.5 emissions induced by RU migration during China's urbanization from 2005 to 2015.The results show that RU migration increased air pollutant emissions,while the increases in NOx and SO2 emissions peaked in approximately 2010 at 2.4 Mt and 2.2 Mt,accounting for 9.2%and 8.7%of the national emissions,respectively.The primary PM2.5 emissions induced by RU migration also peaked in approximately 2012 at 0.3 Mt,accounting for 2.8%of the national emissions.The indirect emissions embodied in consumption and investment increased,while household direct emissions decreased.The widening gap between urban and rural investment and consumption exerted a major increasing effect on migration-induced emissions;in contrast,the falling emission intensity contributed the most to the decreasing effect benefitting from end-of-pipe control technology applications as well as improving energy efficiency.The peak of air pollutant emissions induced by RU migration indicates that although urbanization currently creates extra environmental pressure in China,it is possible to reconcile urbanization and air quality improvement in the future with updating urbanization and air pollution control policies.展开更多
文摘This paper discusses the issue of pollution reduction in metropolises by means of intelligent negotiation in multi-agent systems. For situations of complete information, it gives a stochastic hill-climbing search algorithm for computing the pollution-reduction solutions; For situations of incomplete information, it puts forward a genetic algorithm for computing the best solutions for every plants subjectively and proposes market-mechanism-based algorithm for computing the emission-redistribution solutions objectively. Key words intelligent negotiation - game theory - pollution reduction - genetic algorithm CLC number TP 391.1 Foundation item: Supported by the National 863 Project (2002AA134020-04)Biography: HAN Wei (1975-) male, Ph.D. candidate, research direction: MAS and Electronic Commercial.
文摘This paper evaluates the efficacy of two sequential vertical flow filters (VFF), FV1 and FV2, implanted with Typha, in a pilot-scale wastewater treatment system. FV1 comprises three cells (FV1a, FV1b, and FV1c), while FV2 consists of two cells (FV2a and FV2b), each designed to reduce various physicochemical and microbiological pollutants from wastewater. Quantitative analyses show significant reductions in electrical conductivity (from 1331 to 1061 μS/cm), biochemical oxygen demand (BOD5 from 655.6 to 2.3 mg/L), chemical oxygen demand (COD from 1240 to 82.2 mg/L), total nitrogen (from 188 to 37.3 mg/L), and phosphates (from 70.9 to 14.6 mg/L). Notably, FV2 outperforms FV1, particularly in decreasing dissolved salts and BOD5 to remarkably low levels. Microbiological assessments reveal a substantial reduction in fecal coliforms, from an initial concentration of 7.5 log CFU/100mL to 3.7 log CFU/100mL, and a complete elimination of helminth eggs, achieving a 100% reduction rate in FV2. The study highlights the impact of design parameters, such as filter material, media depth, and plant species selection, on treatment outcomes. The findings suggest that the judicious choice of these components is critical for optimizing pollutant removal. For instance, different filtration materials show varying efficacies, with silex plus river gravel in FV1c achieving superior pollutant reduction rates. In conclusion, VFFs emerge as a promising solution for wastewater treatment, underscoring the importance of design optimization to enhance system efficiency. Continuous monitoring and adaptation of treatment practices are imperative to ensure water quality, allowing for safe environmental discharge or water reuse. The research advocates for ongoing improvements in wastewater treatment technologies, considering the environmental challenges of the current era. The study concludes with a call for further research to maximize the effectiveness of VFFs in water management.
基金Supported by Project for Key Subject Construction of Shanghai Open University(ZDXK1601)Scientific Research Project of Shanghai Science and Technology Committee(13DZ2252200)Humanities and Social Sciences Foundation of Ministry of Education of China(16YJC790097)
文摘Based on China's provincial panel data from 2004 to 2014,the net effect and threshold characteristics of local governments' fiscal expenditure structure on environmental pollution were tested with the nonlinear panel threshold model. The results showed that the net effect of fiscal expenditure structure on regional pollution emission intensity had significant inverted V-shaped single threshold characteristics. Besides,the threshold value of economic density was 6. 039 6 million yuan/km^2,and that of population density was 201 people/km^2. That is,the fiscal expenditure structure inclining to productive expenditure was relatively conducive to the promotion of pollution reduction in the areas with low economic density or low population density. The fiscal expenditure structure inclining to non-productive expenditure was relatively conducive to the promotion of pollution reduction in the areas with high economic density or high population density.
文摘● The demand for organics reduction in power industry needs to be analyzed. Generally speaking, the organicsfrom power plants is neither a main source of water pollution nor an emphasis of pollution control.● The normal operation of FGD facilities is the key to fulfill the mission of SO2 emission reduction.● The control of SO2 emission should not be imposed uniformly on all power plants nationwide.● It is difficult to promote the emission trading of SO2 institutionally.● The active policy of levying for SO2 emission starting from zero emission and using levies for SO2 control isunreasonable. It should be reformed as levying only for over-limit emission, and not levying for emissionsbelow limit or levying indicatively.● Environmental regulations on SO2 control should make differences depending on environmental function ofzones, time period of generating units installed and manner of emissions.
基金Project(50809058)supported by the National Natural Science Foundation of China
文摘A knowledge-based network for Section Yidong Bridge,Dongyang River,one tributary of Qiantang River,Zhejiang Province,China,is established in order to model water quality in areas under small data.Then,based on normal transformation of variables with routine monitoring data and normal assumption of variables without routine monitoring data,a conditional linear Gaussian Bayesian network is constructed.A "two-constraint selection" procedure is proposed to estimate potential parameter values under small data.Among all potential parameter values,the ones that are most probable are selected as the "representatives".Finally,the risks of pollutant concentration exceeding national water quality standards are calculated and pollution reduction decisions for decision-making reference are proposed.The final results show that conditional linear Gaussian Bayesian network and "two-constraint selection" procedure are very useful in evaluating risks when there is limited data and can help managers to make sound decisions under small data.
基金We thank the Center for Studies and Research on Urban Mobility—NEPMOUR,IMED and PPGArq/IMED for supporting research.We also thank the Meridional Foundation for the institutional productivity grant.
文摘Carbon dioxide(CO2)emissions from motor vehicles have been increasing in large urban centers,thus contributing to air pollution.The general objective of this study is to analyze simulations of CO2 emissions among students who use public transport in the city of Passo Fundo,in the state of Rio Grande do Sul,Brazil.Methodologically,this study was developed in three stages:(1)verification of the time used by higher education students at Faculdade Meridional(IMED)in relation to urban mobility;(2)understanding of the transport mode used by these students,taking into account the one which appears with the highest incidence;(3)simulating CO2 emissions from the modes of transport used by students after the application of the Environmental Impact Simulator(EIS)used by the National Public Transport Association(ANTP,in Portuguese)for the modeling of transport indexes aimed at analyzing CO2 emissions.When considering the total of 3,079 students who assigned to a sample of 66 questionnaires,a reduction of CO2 emissions of 4,527.04 kg during a year in relation to the use of public transport was found.
基金Supported by National Water Project (2013ZX07304-001)。
文摘The migration law of runoff pollutants in bio-retention tank was studied through the experimental research, containing calculation formula of pollutants reduction coefficient. After that, the technology of reducing and controlling runoff pollution by bio-retention tank was demonstrated. The result showed that bio-retention tank can reduce runoff by 15%-85%, and the pollutant emissions can be cut by 35%-95%. At the same time, it had good ecological landscape effect. The study can provide a reference for the design method of road bio-retention tank in sponge city construction, and basic technical methods and parameters for the subsequent construction of comprehensive control platform for urban rainwater runoff and the layout optimization of comprehensive measures of water quality and quantity.
基金The Yunnan Fundamental Research Projects(202301AT070062,202401AT070108,202401AS070037)The Key Program of the NationalNatural Science Foundation of China(42130712)+2 种基金The Scientific Research Fund Project of Yunnan Provincial Department of Education(2024Y155)The Yunnan Province Innovation Team Project(202305AS350003)The Yunnan Revitalization Talent Support Program in YunnanProvince(XDYC-QNRC-2022-0740,XDYC-WHMJ-2022-0016).
文摘Although the relationship between the size of urban industrial land use and pollutant emissions has been widely discussed from different perspectives(e.g.,the scale and crowding effects),the results of various studies have revealed positive,negative,and combined impact relationships.However,how the expansion of urban industrial land use affects SO_(2) emissions remains unknown.We need to clarify this relationship in order to facilitate the realization of China’s pollution reduction and emission reduction goals.This study used the panel data from 294 cities spanning from 2011 to 2019 to construct a spatial econometric model.The objective was to explore the correlation between the scale of urban industrial land and sulfur dioxide emissions in China.The results show that a large scale of urban industrial land use corresponds to lower sulfur dioxide emissions per unit of industrial added value.By gaining a deeper understanding of the relationship between the scale of urban industrial land use and sulfur dioxide emissions,policymakers can further reduce pollutant emissions by rationalizing the planning of urban industrial land use and industrial layout.In addition to promoting industrial agglomeration and economies of scale in cities with extensive industrial land use,this strategy can support the development of efficient and environmentally friendly industries in areas with limited industrial land use.Optimizing the technology and encouraging the development of green industries can help reduce environmental pollution and promote sustainable urban development.
基金supported by the National Natural Science Foundation of China (52204331)Natural Science Foundation of Anhui Province Youth Project (2208085QE145)Open Fund of Key Laboratory of Metallurgical Emission Reduction and Resource Utilization,Ministry of Education (JKF20-03).
文摘Zinc extraction residue,a solid waste generated from the treatment of zinc-containing dust in rotary kilns,is commonly stockpiled in steel companies for extended periods.It poses significant disposal challenges and environmental pollution risks.So far,research on the treatment of zinc extraction residues has been slow,inadequate,and sporadic.For this gap,a novel approach was proposed to effectively treat the zinc extraction residue via the iron ore sintering process.It was feasible to add 1 wt.%of zinc extraction residues to the sintering raw materials.The more adequate mineralization reaction resulted in higher yield and tumbler indexes,despite a slight decrease in sintering speed.Although this may result in a slight decrease in sintering speed,the more complete mineralization reaction leads to improved sintering yield and tumbler index.Interestingly,the addition of zinc extraction residues reduced the CO and NO_(x) concentrations in the sintering flue gas.Thus,the iron ore sintering process provided a viable solution for resource utilization and environmentally friendly treatment of zinc extraction residues.
基金This work was supported by the National Major Science and Technology Program (Grant No. 2013ZX07304-001) and the National Science Foundation of Beijing (Grant No. 8161002).
文摘Building a rainwater system based on the idea of low-impact development (LID) is an important aspect of the current "sponge city" construction in China. The "sponge city" concept emphasizes that the runoff can permeate the soil or be stored temporarily, and rainwater could be used again when it is needed. Beijing is one of the earliest cities to study rainwater harvesting and LID techniques in China.Through long-terua monitoring of rainfall, runoff flow, and water quality of a campus demonstration project in Beijing, the runoff quantity and pollutant concentration variations have been analyzed. Furthermore, the runoffreduction effects of single LID measure, such as green roof, filtration chamber, and permeable pavement, have been investigated. Additionally, the overall reduction effectiveness of the LID system on the average annual rainfall runoff and pollution load has been discussed.
基金funded by the National Natural Science Foundation of China(72173015)the“Mechanism of Environmental Regulation Impacting Industrial Pollution Emissions under Heterogeneous Firm Constraints”project funded by the National Natural Science Foundation of China(71774028)the“Analysis of Element Mix of Innovation in Northeast China under Supply-Side Structural Reform and the Optimizing Measures”project supported by the National Social Science Fund of China(18ZDA042).
文摘Pollution has become an unavoidable concern as China’s high-quality development is underway.How to reduce pollution is an imperative issue for China to address.Pollution emissions are closely related to factor inputs,production processes and pollution control measures.Are there other forces to cut emissions besides regulatory control?Taking sulfur dioxide as an example,this paper probes into the potential mechanism through which technical efficiency drives pollution reduction in the context of opening to foreign investment.The results reveal that the openness to foreign investment remarkably lowers pollution emissions of fi rms,with SOEs,large fi rms and exporters seeing more pronounced pollution reduction eff ect after opening to foreign investment,while fi rms in pollution-intensive industries and less regulated areas are weaker in pollution reduction.A look into fi rm behavior suggests that the openness to foreign investment reduces pollutant emissions by improving technical efficiency rather than by raising investment in pollution control.The pollution reduction eff ect resulting from the openness is refl ected in the improvement of intra-fi rm emission reduction capacity instead of inter-fi rm resource reallocation eff ect,according to an analysis at the aggregate level.This paper concludes that technical efficiency gains are an important tool to advance pollution reduction,and that China must be more flexible in leveraging the pollution reduction effect of other policies regarding technical effi ciency to drive its high-quality development that is green.
基金Funding for the study was supported by the United Nation Foundation (No. RFP 13-1)the National Natural Science Foundation (No. 41301554)Jiangsu Natural Science Foundation (No. BK20131031)
文摘Residential low efficient fuel burning is a major source of many air pollutants produced during incomplete combustions, and household air pollution has been identified as one of the top environmental risk factors. Here we compiled literature-reported emission factors of pollutants including carbon monoxide(CO), total suspended particles(TSPs), PM2.5, organic carbon(OC),elemental carbon(EC) and polycyclic aromatic hydrocarbons(PAHs) for different household energy sources, and quantified the potential for emission reduction by clean fuel adoption. The burning of crop straws, firewood and coal chunks in residential stoves had high emissions per unit fuel mass but lower thermal efficiencies, resulting in high levels of pollution emissions per unit of useful energy, whereas pelletized biofuels and coal briquettes had lower pollutant emissions and higher thermal efficiencies. Briquetting coal may lead to 82%–88% CO, 74%–99%TSP, 73%–76% PM2.5, 64%–98% OC, 92%–99% EC and 80%–83% PAH reductions compared to raw chunk coal. Biomass pelletizing technology would achieve 88%–97% CO, 73%–87% TSP, 79%–88%PM2.5, 94%–96% OC, 91%–99% EC and 63%–96% PAH reduction compared to biomass burning. The adoption of gas fuels(i.e., liquid petroleum gas, natural gas) would achieve significant pollutant reduction, nearly 96% for targeted pollutants. The reduction is related not only to fuel change, but also to the usage of high efficiency stoves.
基金This study was supported by the Capital Blue Sky Action Cultivation Program of“Research on the Whole Process Control Technology of Pollution Sources in Industrial Parks and Research and Demonstration of Smart Environmental Protection Platforms”Project of Beijing Science and Technology Plan(Project No.Z191100009119010).
文摘For achieving air pollutant emission reduction targets,total pollutant amount control is being continuously promoted in China.However,the traditional pattern of pollutant emission reduction allocation regardless of economic cost often results in unreasonable emission reduction pathways,and industrial enterprises as the main implementers have to pay excessively high costs.Therefore,this study adopted economic efficiency as its main consideration,used specific emission reduction measures(ERMs)of industrial enterprises as minimum allocation units,and constructed an enterprise-level pollutant emission reduction allocation(EPERA)model with minimization of the total abatement cost(TAC)as the objective function,and fairness and feasibility as constraints for emission reduction allocation.Taking City M in China as an example,the EPERA model was used to construct a Pareto optimal frontier and obtain the optimal trade-off result.Results showed that under basic and strict emission reduction regulations,the TAC of the optimal trade-off point was reduced by 46.40%and 45.77%,respectively,in comparison with that achieved when only considering fairness,and the Gini coefficient was 0.26 and 0.31,respectively.The abatement target was attained with controllable cost and relatively fair and reasonable allocation.In addition,enterprises allocated different emission reduction quotas under different ERMs had specific characteristics that required targeted optimization of technology and equipment to enable them to achieve optimal emission reduction effects for the same abatement cost.
基金This work was co-supported by The Energy Foundation project‘Co-control effect assessment of deep decarbonization measures and the co-control path way in China'(G-1809-28536)the Major Projects of the National Social Science Foundation‘Study on action plan for peaking carbon emissions by 2030 in China'(21ZDA085).
文摘‘Co-control',or synergistically reducing CO_(2)and local air polluta nt emissions,is an important strategy for cities to achieve'low carb on'and'blue sky'simultaneously.However,there were few studies to evaluate and compare the level of co-control of CO_(2) and local air pollutants in cities year.The present study proposed qualitative and quantitative methods to evaluate the level of co-control of CO_(2)and three local air pollutant(SO_(2).NOX,and particulate matter PM)emissions in key environmental protection cities in China over two periods(2012-2015 and 2015-2018).Statistical analysis found that,though three local air pollutant emissions positively correlated with CO_(2) emission,no significantly positive correlation was found between local air pollutants emission reductions and CO_(2) emission reductions,indicating that co-control effects were poor in general.By using the co-control effect coordinate system,qualitative evaluation showed that less than half of the sample cities could achieve co-control of the total amount of CO_(2) and local air pollutants.By employing the indicator of emission reduction equivalence(EReq),quantitative evaluation showed that the co-control level of the sample cities improved in 2015-2018 compared with 2012-2015.Further regression analysis showed that,reducing coal consumption and economic development significantly enhanced the co-control performance of the observed cities.The present case study proved that the proposed methods for evaluation and comparison of the city co-control performance works well,and can be used in other countries and regions to promote global cities racing to carbon and local air pollutants co-control.
文摘The flue gas pollutants deep-removal technology(DRT) focusing on PM2.5removal is the prime method of further reducing pollutants emission from coal-fired power plants. In view of the four key technological challenges in developing the DRT, studies were conducted on a series of purification technologies and the DRT was developed and successfully applied in 660 MW and 1000 MW coal-fired units. This paper analyzes the application results of the demonstration project, and proposes a roadmap for the follow-up researches and optimizations.
基金the National Natural Science Foundation of China(No.72025401,71974108,and 71690244)the Tsinghua University-Inditex Sustainable Development Fund.
文摘As the world's most populous country,China has witnessed rapid urbanization in recent decades,with population migration from rural to urban(RU)regions as the major driving force.Due to the large gap between rural and urban consumption and investment level,large-scale RU migration impacts air pollutant emissions and creates extra uncertainties for air quality improvement.Here,we integrated population migration assessment,an environmentally extended inputeoutput model and structural decomposition analysis to evaluate the NOx,SO2 and primary PM2.5 emissions induced by RU migration during China's urbanization from 2005 to 2015.The results show that RU migration increased air pollutant emissions,while the increases in NOx and SO2 emissions peaked in approximately 2010 at 2.4 Mt and 2.2 Mt,accounting for 9.2%and 8.7%of the national emissions,respectively.The primary PM2.5 emissions induced by RU migration also peaked in approximately 2012 at 0.3 Mt,accounting for 2.8%of the national emissions.The indirect emissions embodied in consumption and investment increased,while household direct emissions decreased.The widening gap between urban and rural investment and consumption exerted a major increasing effect on migration-induced emissions;in contrast,the falling emission intensity contributed the most to the decreasing effect benefitting from end-of-pipe control technology applications as well as improving energy efficiency.The peak of air pollutant emissions induced by RU migration indicates that although urbanization currently creates extra environmental pressure in China,it is possible to reconcile urbanization and air quality improvement in the future with updating urbanization and air pollution control policies.