The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybuty- rate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and opti...The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybuty- rate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed.展开更多
Photochemical reactions of poly(3-butoxythiophene-2,5-diyl) with chloroform under irradiation with light were studied. The reactions were separately carried out under air, oxygen, and nitrogen. The obtained results sh...Photochemical reactions of poly(3-butoxythiophene-2,5-diyl) with chloroform under irradiation with light were studied. The reactions were separately carried out under air, oxygen, and nitrogen. The obtained results showed that this reaction belongs to the pseudo-first-order reaction with a rate constant kobs of 1.4×10?5 s?1 at room temperature. The presence or absence of air, oxygen, and nitrogen did not have obvious effects on the reaction rate under irradiation with light.展开更多
This work explores the use of poly(3- hexylthiophene) (P3HT) modified carbon nanotubes (CNTs@P3HT) for the cathodes of hole transporter free, mesoscopic perovskite (CH3NH3PbI3) solar cells (PSCs), simultaneo...This work explores the use of poly(3- hexylthiophene) (P3HT) modified carbon nanotubes (CNTs@P3HT) for the cathodes of hole transporter free, mesoscopic perovskite (CH3NH3PbI3) solar cells (PSCs), simultaneously achieving high-performance, high stability and low-cost PSCs. Here the thin P3HT modifier acts as an electron blocker to inhibit electron transfer into CNTs and a hydrophobic polymer binder to tightly cross-link the CNTs together to compact the carbon electrode film and greatly stabilize the solar cell. On the other hand, the presence of CNTs greatly improve the conductivity of P3HT. By optimizing the concentration of the P3HT modifier (2 mg/mL), we have improved the power conversion efficiencies (PCEs) of CNTs@P3HT based PSCs up to 13.43% with an average efficiency of 12.54%, which is much higher than the pure CNTs based PSCs (best PCE 10.59%) and the sandwich-type P3HT/CNTs based PSCs (best PCE 9.50%). In addition, the hysteresis of the CNTs@P3HT based PSCs is remarkably reduced due to the intimate interface between the perovskite and CNTs@P3HT electrodes. Degradation of the CNTs@ P3HT based PSCs is also strongly retarded as compared to cells employing the pure CNTs electrode when exposed to the ambient condition of 20%- 40% humidity.展开更多
Effect of the device fabrication conditions on photovoltaic performance of the polymer solar cells based on poly(3-hexylthiophene) (P3HT) as donor and indene-C70 bisadduct (IC70BA) as acceptor was studied system...Effect of the device fabrication conditions on photovoltaic performance of the polymer solar cells based on poly(3-hexylthiophene) (P3HT) as donor and indene-C70 bisadduct (IC70BA) as acceptor was studied systematically. The device fabrication conditions we studied include pre-thermal annealing temperature, active layer thickness, and the P3HT : IC70BA weight ratios. For devices with a 188-nm-thick active layer of P3HT : ICToBA (1 : 1, w ' w) blend film and pre-thermal annealing at 150 ℃C for 10 rain, maximum power conversion efficiency (PCE) reached 5.82% with Voc of 0.81 V, Isc of 11.37 mA/cm2, and FF of 64.0% under the illumination of AM1.5G, 100 mW/cm2.展开更多
Biosynthesis and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with different HV (hydrovalerate) content produced by a Bacillus cereus strain were investigated. A large variety of HV ...Biosynthesis and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with different HV (hydrovalerate) content produced by a Bacillus cereus strain were investigated. A large variety of HV contents (up to about 90 mol%) of PHBV could be produced by this strain. Combined nitrogen sources containing both yeast extract and ammonium sulphate were better for cell growth and polyhydroxyalkanoates (PHA) production than either yeast extract or ammonium sulphate alone. Propionic acid is more favorable for the production of HV content than that of valeric acid. Finally, thermal properties of PHBV produced by this strain are found close to the results of other groups.展开更多
In order to enhance the performance of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs), RR-P3HT FETs are prepared by the spin-coating method followed by vacuum placement and anneali...In order to enhance the performance of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs), RR-P3HT FETs are prepared by the spin-coating method followed by vacuum placement and annealing. This paper reports that the crystal structure, the molecule interconnection, the surface morphology, and the charge carrier mobility of RR-P3HT films are affected by vacuum relaxation and annealing. The results reveal that the field-effect mobility of RR-P3HT FETs can reach 4.17×10^-2m^2/(V·s) by vacuum relaxation at room temperature due to an enhanced local self-organization. Furthermore, it reports that an appropriate annealing temperature can facilitate the crystal structure, the orientation and the interconnection of polymer molecules. These results show that the field-effect mobility of device annealed at 150 ℃ for 10 minutes in vacuum at atmosphere and followed by placement for 20 hours in vacuum at room temperature is enhanced dramatically to 9.00×10^-2m^2/(V·s).展开更多
Thin films of poly(3-hexadecyl pyrrole) (P3HDP) nanoparticles have been fabricated by using Langmuir-Blodgett film deposition technique. The structures and morphology of the films were studied by using infrared sp...Thin films of poly(3-hexadecyl pyrrole) (P3HDP) nanoparticles have been fabricated by using Langmuir-Blodgett film deposition technique. The structures and morphology of the films were studied by using infrared spectroscopy, scanning and transmission microscopes. The experimental results demonstrated that the nanoparticles were formed by self-assembling P3HDP at air-water surface. The water contact angles of these films with different deposition layers were measured to be as high as 110°.展开更多
This paper investigates the effects of concentration on the crystalline structure, the morphology, and the charge carrier mobility of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs)...This paper investigates the effects of concentration on the crystalline structure, the morphology, and the charge carrier mobility of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs). The RR-P3HT FETs with RR-P3HT as an active layer with different concentrations of RR-P3HT solution from 0.5 wt% to 2 wt% are prepared. The results indicate that the performance of RR-P3HT FETs improves drastically with the increase of RR-P3HT weight percentages in chloroform solution due to the formation of more microcrystalline lamellae and bigger nanoscale islands. It finds that the field-effect mobility of RR-P3HT FET with 2 wt% can reach 5.78×10^-3 cm^2/Vs which is higher by a factor of 13 than that with 0.5 wt%. Further, an appropriate thermal annealing is adopted to improve the performance of RR-P3HT FETs. The field-effect mobility of RR-P3HT FETs increases drastically to 0.09 cm^2/Vs by thermal annealing at 150 ℃, and the value of on/off current ratio can reach 104.展开更多
A series of model polymerization are carried out via the one-pot externally initiated Kumada catalyst-transfer polycondensation (KCTP) of 2-bromo-5-chloromagne- slum thiophene monomers, and the excess amount of init...A series of model polymerization are carried out via the one-pot externally initiated Kumada catalyst-transfer polycondensation (KCTP) of 2-bromo-5-chloromagne- slum thiophene monomers, and the excess amount of initiators or catalysts are found no need to be isolated during the polycondensation process. Especially, the impacts of the nickel catalyst loading variation on regioregularity (rr), yield, molecular weight (Mn), polydispersity (PDI) and initiation efficiency of poly(3-hexylthiophene) (P3HT) are systematically investigated. The IH NMR, size-exclusion chromatography (SEC), and MALDI-TOF mass spectroscopy results indicated that an excess amount of catalyst does not influence yield, rr, Mn, and PDI of P3HT, nor the initiation efficiency. However, the PDI of the product is broad, and the Mn and rr values decreased in the absence of 1,3-bis (diphenylphosphino)propane (dppp). It can be concluded that the in-situ KCTP polymerization of P3HT is a practical and effective process. These results are especially valuable for the synthesis of all-conjugated block copolymers where macroinitiators are used.展开更多
Blends of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(butylene succinate-adipate) (PBSA), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHBHHx/PBSA ranging from 80/...Blends of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(butylene succinate-adipate) (PBSA), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHBHHx/PBSA ranging from 80/20 to 20/80 by melt mixing method. Differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), dynamic mechanical thermal analysis (DMA), polarizing optical microscopy (POM) and wide angle X-ray diffractometer (WAXD) were used to study the miscibility and crystallization behavior of PHBHHx/PBSA blends. Experimental results indicate that PHBHHx is immiscible with PBSA as shown by the almost unchanged glass transition temperature and the biphasic melt.展开更多
A novel soluble π-conjugated polymer, poly [(3-acetylpyrrole-2, 5-diyl) p-(N, N-dimethylamino) azobenzylidene] (PAPDMAABE), was synthesized by condensation of 3-acetylpyrrole with 4-aldehyde-4'-dimethylaminoaz...A novel soluble π-conjugated polymer, poly [(3-acetylpyrrole-2, 5-diyl) p-(N, N-dimethylamino) azobenzylidene] (PAPDMAABE), was synthesized by condensation of 3-acetylpyrrole with 4-aldehyde-4'-dimethylaminoazobenzene (ADMAA). The chemical structure of PAPDMAABE was characterized by Fourier transform infrared spectroscopy (FTIR), ^1H-NMR, and UV-Vis-NIR spectra. Transmission electron microscope (TEM) analysis for PAPDMAABE indicates that part of PAPDMAABE is in crystal state, due to the short-range order of the polymer. Thermogravimetric analysis (TGA) curve shows that the polymer has good thermal stability and its decomposition temperature is 248℃. The optical band gap of PAPDMAABE obtained from the optical absorption spectrum is about 1.73 eV. The resonant third-order nonlinear optical property of PAPDMAABE at 532 nm was studied using degenerate four-wave mixing (DFWM) technique. The resonant third-order nonlinear optical susceptibility of the polymer is about 7.48×10^-8 esu.展开更多
An arachidic acid/poly (3, 4-ethylene dioxythiophene) (AA/PEDOT) multilayer Langmuir-Blodgett (LB) film was prepared by a modified LB film method. The theories were utilized to explain the effects between HCl mo...An arachidic acid/poly (3, 4-ethylene dioxythiophene) (AA/PEDOT) multilayer Langmuir-Blodgett (LB) film was prepared by a modified LB film method. The theories were utilized to explain the effects between HCl molecule and LB film. The gas sensitivity mechanism of poly (3, 4-ethylene dioxythiophene) (PEDOT) multilayer film can be explained by the charge transfer between p system of PEDOT and oxidization HCl system. The gas sensitivity of PEDOT LB film deposited interdigital electrode to HCl was tested. The results showed that film thickness, treating temperature, deposition speed had different influence on film gas sensitivity. The AA/PEDOT film deposited device exhibited nonlinear behavior to HCl gas at lower concentration (20-60 ppm) and linear response behavior at higher gas concentration was observed. The time of the compound LB film of the AA/PEDOT responding to the 30 ppm HCl gas is about 20 seconds, which is far quicker than the time of the film to the PEDOTPRESS film(about 80 seconds). It is not higher film press to better film. When the film press attains 45 mNs/m, the sensitivity of the AA/PEDOT film on the contrary descends.展开更多
It has been confirmed that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit can promote peripheral nerve regeneration in rats. However, its efficiency in repair of over 30-mm-long sciatic nerve...It has been confirmed that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit can promote peripheral nerve regeneration in rats. However, its efficiency in repair of over 30-mm-long sciatic nerve defects needs to be assessed. In this study, we used a nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit to bridge a 30-mm-long gap in the rat sciatic nerve. At 4 months after nerve conduit implantation, regenerated nerves were macroscopi- cally observed and histologically assessed. In the nanofibrous graft, the rat sciatic nerve trunk had been reconstructed by restoration of nerve continuity and formation of myelinated nerve fiber. There were Schwann cells and glial cells in the regenerated nerves. Masson's trichrome staining showed that there were no pathological changes in the size and structure of gastrocnemius muscle cells on the operated side of rats. These findings suggest that nanofibrous poly(3-hydroxybutyrate-co-3- hydroxyvalerate) nerve conduit is suitable for repair of long-segment sciatic nerve defects.展开更多
The surface conductivity of poly [ 2-methoxy-5-(3'-methyl) butoxy]-p-phenylene vinylene (PMOMBOPV) films doped with FeCl3 and H2SO4 by chemical method and implanted by N^+ ions was studied and the comparison of ...The surface conductivity of poly [ 2-methoxy-5-(3'-methyl) butoxy]-p-phenylene vinylene (PMOMBOPV) films doped with FeCl3 and H2SO4 by chemical method and implanted by N^+ ions was studied and the comparison of environmental stability of conductive behavior was also investigated. The energy and dose of N^+ ions were in the rang 15~35 keV and 3. 8×10^15~9. 6×10^16 ions/cm^2, respectively. The conductivity of PMOMBOPV film was enhanced remarkably with the increases of the energy and dose of N^+ ions. For example, the conductivity of PMOMBOPV film was 3. 2×10^-2S/cm when ion implantation was performed with an energy of 35 keV at a dose of 9. 6 × 10^14 ions/cm^2 , which was almost seven orders of magnitude higher than that of film unimplanted. The environmental stability of conductive behavior for ionimplanted film was much better than that of chemical doped films. Moreover, the conductive activation energy of ion-implanted films was measured to be about 0.17 eV.展开更多
Platinum (Pt) implants coated with poly (3, 4-ethylenedioxythiophene)/carbon nanotube (PEDOT/CNT) composite films were implanted into the brain of rats, and the brain response was evaluated 6 weeks after the imp...Platinum (Pt) implants coated with poly (3, 4-ethylenedioxythiophene)/carbon nanotube (PEDOT/CNT) composite films were implanted into the brain of rats, and the brain response was evaluated 6 weeks after the implantation. The surface morphology of Pt implants with and without the PEDOT/CNT coating was studied using scanning electron microscopy (SEM). After 6 weeks post-implantation, the expression of laminin (vascular endothelial marker) and neuronal nuclei (NeuN, neuronal marker) were evaluated by immnohistochemistry. It is revealed that the obvious improvements of the surface density of blood vessels and neurons aound the Pt implants with the coating, which were evidenced by laminin and NeuN staining in the zone within the distance of 150 μm to the implant interface. These results suggest the PEDOT/CNT composite films can improve the biocompatibility of the Pt electrodes while it is implanted in brain.展开更多
A composite material was fabricated by applying a biodegradable drug delivery coating,consisting of poly(3-hydroxyburyrate-co-3-hydroxyvalerate)(PHBV) and icariin,to an anodic oxidized titanium plate.The coating w...A composite material was fabricated by applying a biodegradable drug delivery coating,consisting of poly(3-hydroxyburyrate-co-3-hydroxyvalerate)(PHBV) and icariin,to an anodic oxidized titanium plate.The coating was prepared by evaporating chloroform solution containing PHBV and icariin on the titanium plate under vacuum condition.Icariin/PHBV coated titanium plates significantly enhance the proliferation of MG-63 cells compared with the PHBV coated and anodic oxidized ones.Increased icariin contained in the coating displays an elevated influence on cell proliferation.The results show that icariin gradually releases from the coating to cells mainly through the phospholipid-based cellular membrane instead of the culture medium.The overall results suggest that the novel icariin/PHBV coating can be used to enhance the bioactivity of titanium based orthopedic implants.展开更多
BACKGROUND: Bacteria endogenously residing within the plant tissues have attracted significant attention for production of biopolyester, polyhydroxyalkanoates (PHAs). Bacillus cereus RCL 02 (MCC 3436), a leaf end...BACKGROUND: Bacteria endogenously residing within the plant tissues have attracted significant attention for production of biopolyester, polyhydroxyalkanoates (PHAs). Bacillus cereus RCL 02 (MCC 3436), a leaf endophyte of oleaginous plant Ricinus communis L. accumulates 81% poly(3-hydroxybutyrate) [P(3HB)] of its cell dry biomass when grown in mineral salts (MS) medium. METHODS: The copolymer production efficiency of B. cereus RCL 02 was evaluated in valeric acid supplemented MS medium under biphasic cultivation condition. The copolymer so produced has been compared with the P(3HB) isolated from RCL 02 in terms of thermal, mechanical and chemical properties. RESULTS: Valeric acid supplementation as co-substrate in the medium has led to the production of copolymer of 3- hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) [P(3HB-co-3HV)] with 14.6 mol% 3HV. The identity of the polymers has been confirmed by X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopic studies. Thermogravimetric analysis (TGA) revealed that P(3HB) and P(3HB-co-3HV) films degraded at 278.66℃ and 273.49℃, respectively. The P(3HB-co-3HV) showed lower melting temperature (165.03℃) compared to P (3HB) (170.74℃) according to differential scanning calorimetry (DSC). Incorporation of 3HV monomers decreased the tensile strength (21.52 MPa), tensile modulus (0.93 GPa), storage modulus (E') (0.99 GPa) and increased % elongation at break (12.2%) of the copolyester. However, P(3HB) showed better barrier properties with lower water vapor transmission rate (WVTR) of 0.55 g-mil/100 in2/24 h. CONCLUSION: These findings emphasized exploration of endophytic bacterial strain (RCL 02) to produce biodegradable polyesters which might have significant potential for industrial application.展开更多
Background: A major shortcoming in tissue engineered blood vessels (TEBVs) is the lack of healthy and easily attainable smooth muscle cells (SMCs). Smooth muscle progenitor cells (SPCs), especially from periphe...Background: A major shortcoming in tissue engineered blood vessels (TEBVs) is the lack of healthy and easily attainable smooth muscle cells (SMCs). Smooth muscle progenitor cells (SPCs), especially from peripheral blood, may offer an alternative cell source for tissue engineering involving a less invasive harvesting technique. Methods: SPCs were isolated from 5-ml fresh rat peripheral blood by density-gradient centrifugation and cultured for 3 weeks in endothelial growth medium-2-MV (EGM-2-MV) medium containing platelet-derived growth factoroBB (PDGF BB). Before seeded on the synthesized scaffold, SPC-derived smooth muscle outgrowth cell (SOC) phenotypes were assessed by immuno-fluorescent staining, Western blot analysis, and reverse transcription polymerase chain reaction (RT-PCR). The cells were seeded onto the silk fibroin-modified poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (SF-PHBHHx) scaflblds by 6× 10^4 cells/cm^2 and cultured under the static condition for 3 weeks. The growth and proliferation of the seeded cells on the scaffold were analyzed by 3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide (MTT) assay, scanning electron microscope (SEM), and 4,6-diamidino-2-phenylindole (DAPI) staining. Results: SOCs displayed specific "hill and valley" morphology, expressed the specific markers of the SMC lineage: smooth muscle (SM) a-actin, calponin and smooth muscle myosin heavy chain (SM MHC) at protein and messenger ribonucleic acid (mRNA) levels. RT-PCR results demonstrate that SOCs also expressed smooth muscle protein 22a (SM22a, a contractile protein, and extracellular matrix components elastin and matrix Gla protein (MGP), as well as vascular endothelial growth factor (VEGF). After seeded on the SF-PHBHHx scaffold, the cells showed excellent metabolic activity and proliferation. Conclusion: SPCs isolated from peripheral blood can be differentiated the SMCs in vitro and have an impressive growth potential in the biodegradable synthesized scaffold. Thus, SPCs may be a promising cell sointo urce for constructing TEBVs.展开更多
Our previous studies have histomorphologically confirmed that nanofibrous poly(3-hydroxybutyrate- co-3-hydroxyvalerate) conduit can be used to repair 30-mm-long sciatic nerve defects. However, the repair effects on ...Our previous studies have histomorphologically confirmed that nanofibrous poly(3-hydroxybutyrate- co-3-hydroxyvalerate) conduit can be used to repair 30-mm-long sciatic nerve defects. However, the repair effects on rat behaviors remain poorly understood. In this study, we used nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit and autologous sciatic nerve to bridge 30-ram-long rat sciatic nerve gaps. Within 4 months after surgery, rat sciatic nerve functional re- covery was evaluated per month by behavioral analyses, including toe out angle, toe spread anal- ysis, walking track analysis, extensor postural thrust, swimming test, open-field analysis and no- ciceptive function. Results showed that rat sciatic nerve functional recovery was similar after nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit and autologous nerve grafting. These findings suggest that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit is suitable in use for repair of long-segment sciatic nerve defects.展开更多
Formaldehyde(HCHO),a colorless and pungent-smelling gas,is confirmed be a huge threat to human health.The detection of formaldehyde is necessary and important.The Poly(3-hexythiophene)(P3HT)/ZnO organic-inorganic comp...Formaldehyde(HCHO),a colorless and pungent-smelling gas,is confirmed be a huge threat to human health.The detection of formaldehyde is necessary and important.The Poly(3-hexythiophene)(P3HT)/ZnO organic-inorganic composite thin film was fabricated and used as the sensitive layer of organic thin film transistors(OTFT) by spray-deposited method to detect HCHO at room temperature.The process parameters such as P3HT/ZnO weight ratios and airbrushed masses were optimized.The results showed that P3HT/ZnO OTFT exhibited good sensing response to HCHO.Airbrushed mass of 1ml was the optimal mass,and the 1:1 and 1:5 weight ratios of P3HT/ZnO exhibited better sensing properties compared with others.OTFT gas sensors based on P3HT/ZnO composite film provides a novel promising approach to the detection of HCHO.展开更多
基金ACKNOWLEDGMENT This work was supported by the Key Science Foundation of Education Ministry of China and the Anhui Science Foundation.
文摘The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybuty- rate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed.
文摘Photochemical reactions of poly(3-butoxythiophene-2,5-diyl) with chloroform under irradiation with light were studied. The reactions were separately carried out under air, oxygen, and nitrogen. The obtained results showed that this reaction belongs to the pseudo-first-order reaction with a rate constant kobs of 1.4×10?5 s?1 at room temperature. The presence or absence of air, oxygen, and nitrogen did not have obvious effects on the reaction rate under irradiation with light.
文摘This work explores the use of poly(3- hexylthiophene) (P3HT) modified carbon nanotubes (CNTs@P3HT) for the cathodes of hole transporter free, mesoscopic perovskite (CH3NH3PbI3) solar cells (PSCs), simultaneously achieving high-performance, high stability and low-cost PSCs. Here the thin P3HT modifier acts as an electron blocker to inhibit electron transfer into CNTs and a hydrophobic polymer binder to tightly cross-link the CNTs together to compact the carbon electrode film and greatly stabilize the solar cell. On the other hand, the presence of CNTs greatly improve the conductivity of P3HT. By optimizing the concentration of the P3HT modifier (2 mg/mL), we have improved the power conversion efficiencies (PCEs) of CNTs@P3HT based PSCs up to 13.43% with an average efficiency of 12.54%, which is much higher than the pure CNTs based PSCs (best PCE 10.59%) and the sandwich-type P3HT/CNTs based PSCs (best PCE 9.50%). In addition, the hysteresis of the CNTs@P3HT based PSCs is remarkably reduced due to the intimate interface between the perovskite and CNTs@P3HT electrodes. Degradation of the CNTs@ P3HT based PSCs is also strongly retarded as compared to cells employing the pure CNTs electrode when exposed to the ambient condition of 20%- 40% humidity.
基金This work was supported by the National Natural Science Foundation of China (Nos. 20821120293 and 50933003) and Chinese Academy of Sciences.
文摘Effect of the device fabrication conditions on photovoltaic performance of the polymer solar cells based on poly(3-hexylthiophene) (P3HT) as donor and indene-C70 bisadduct (IC70BA) as acceptor was studied systematically. The device fabrication conditions we studied include pre-thermal annealing temperature, active layer thickness, and the P3HT : IC70BA weight ratios. For devices with a 188-nm-thick active layer of P3HT : ICToBA (1 : 1, w ' w) blend film and pre-thermal annealing at 150 ℃C for 10 rain, maximum power conversion efficiency (PCE) reached 5.82% with Voc of 0.81 V, Isc of 11.37 mA/cm2, and FF of 64.0% under the illumination of AM1.5G, 100 mW/cm2.
基金This work was financially supported by the Hong Kong Polytechnic University (Grant YD37)the Research Grant Council of the Hong Kong Special Administration Region, China (Nos. Polyu5272/01M, Polyu5257/02M, Polyu5403/03M)
文摘Biosynthesis and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with different HV (hydrovalerate) content produced by a Bacillus cereus strain were investigated. A large variety of HV contents (up to about 90 mol%) of PHBV could be produced by this strain. Combined nitrogen sources containing both yeast extract and ammonium sulphate were better for cell growth and polyhydroxyalkanoates (PHA) production than either yeast extract or ammonium sulphate alone. Propionic acid is more favorable for the production of HV content than that of valeric acid. Finally, thermal properties of PHBV produced by this strain are found close to the results of other groups.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10774013 and 10804006)the National High Technology Research and Development Program of China (Grant No 2006AA03Z0412)+4 种基金the Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070004024)the Research Fund for the Youth Scholars of the Doctoral Program of Higher Education (Grant No 20070004031)the Beijing NOVA program (Grant No 2007A024)the the 111 of China (Grant No B08002)the research grants from the Academy of Sciences for the Developing World
文摘In order to enhance the performance of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs), RR-P3HT FETs are prepared by the spin-coating method followed by vacuum placement and annealing. This paper reports that the crystal structure, the molecule interconnection, the surface morphology, and the charge carrier mobility of RR-P3HT films are affected by vacuum relaxation and annealing. The results reveal that the field-effect mobility of RR-P3HT FETs can reach 4.17×10^-2m^2/(V·s) by vacuum relaxation at room temperature due to an enhanced local self-organization. Furthermore, it reports that an appropriate annealing temperature can facilitate the crystal structure, the orientation and the interconnection of polymer molecules. These results show that the field-effect mobility of device annealed at 150 ℃ for 10 minutes in vacuum at atmosphere and followed by placement for 20 hours in vacuum at room temperature is enhanced dramatically to 9.00×10^-2m^2/(V·s).
基金This work was supported by the National Natural Science Foundation of China (Nos. 50225311, 20374034, 50133010) and 973 Project (No. 2003CB615700).
文摘Thin films of poly(3-hexadecyl pyrrole) (P3HDP) nanoparticles have been fabricated by using Langmuir-Blodgett film deposition technique. The structures and morphology of the films were studied by using infrared spectroscopy, scanning and transmission microscopes. The experimental results demonstrated that the nanoparticles were formed by self-assembling P3HDP at air-water surface. The water contact angles of these films with different deposition layers were measured to be as high as 110°.
基金supported by the National Natural Science Foundation of China (Grant Nos 10774013,10804006)the National High Technology Research and Development Program of China (Grant No 2006AA03Z0412)+3 种基金the Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070004024)The Research Fund for the Youth Scholars of the Doctoral Program of Higher Education (Grant No 20070004031)the Beijing NOVA Program (Grant No 2007A024)the 111 Project(Grant No B08002)
文摘This paper investigates the effects of concentration on the crystalline structure, the morphology, and the charge carrier mobility of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs). The RR-P3HT FETs with RR-P3HT as an active layer with different concentrations of RR-P3HT solution from 0.5 wt% to 2 wt% are prepared. The results indicate that the performance of RR-P3HT FETs improves drastically with the increase of RR-P3HT weight percentages in chloroform solution due to the formation of more microcrystalline lamellae and bigger nanoscale islands. It finds that the field-effect mobility of RR-P3HT FET with 2 wt% can reach 5.78×10^-3 cm^2/Vs which is higher by a factor of 13 than that with 0.5 wt%. Further, an appropriate thermal annealing is adopted to improve the performance of RR-P3HT FETs. The field-effect mobility of RR-P3HT FETs increases drastically to 0.09 cm^2/Vs by thermal annealing at 150 ℃, and the value of on/off current ratio can reach 104.
文摘A series of model polymerization are carried out via the one-pot externally initiated Kumada catalyst-transfer polycondensation (KCTP) of 2-bromo-5-chloromagne- slum thiophene monomers, and the excess amount of initiators or catalysts are found no need to be isolated during the polycondensation process. Especially, the impacts of the nickel catalyst loading variation on regioregularity (rr), yield, molecular weight (Mn), polydispersity (PDI) and initiation efficiency of poly(3-hexylthiophene) (P3HT) are systematically investigated. The IH NMR, size-exclusion chromatography (SEC), and MALDI-TOF mass spectroscopy results indicated that an excess amount of catalyst does not influence yield, rr, Mn, and PDI of P3HT, nor the initiation efficiency. However, the PDI of the product is broad, and the Mn and rr values decreased in the absence of 1,3-bis (diphenylphosphino)propane (dppp). It can be concluded that the in-situ KCTP polymerization of P3HT is a practical and effective process. These results are especially valuable for the synthesis of all-conjugated block copolymers where macroinitiators are used.
基金The National Natural Science Foundation of China (No. 20374032) and Tianjin Science and Technology Key Project (No. 05YFSZSF02200)
文摘Blends of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(butylene succinate-adipate) (PBSA), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHBHHx/PBSA ranging from 80/20 to 20/80 by melt mixing method. Differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), dynamic mechanical thermal analysis (DMA), polarizing optical microscopy (POM) and wide angle X-ray diffractometer (WAXD) were used to study the miscibility and crystallization behavior of PHBHHx/PBSA blends. Experimental results indicate that PHBHHx is immiscible with PBSA as shown by the almost unchanged glass transition temperature and the biphasic melt.
基金the National Natural Science Foundation of China for financial support of this work(No.60277002).
文摘A novel soluble π-conjugated polymer, poly [(3-acetylpyrrole-2, 5-diyl) p-(N, N-dimethylamino) azobenzylidene] (PAPDMAABE), was synthesized by condensation of 3-acetylpyrrole with 4-aldehyde-4'-dimethylaminoazobenzene (ADMAA). The chemical structure of PAPDMAABE was characterized by Fourier transform infrared spectroscopy (FTIR), ^1H-NMR, and UV-Vis-NIR spectra. Transmission electron microscope (TEM) analysis for PAPDMAABE indicates that part of PAPDMAABE is in crystal state, due to the short-range order of the polymer. Thermogravimetric analysis (TGA) curve shows that the polymer has good thermal stability and its decomposition temperature is 248℃. The optical band gap of PAPDMAABE obtained from the optical absorption spectrum is about 1.73 eV. The resonant third-order nonlinear optical property of PAPDMAABE at 532 nm was studied using degenerate four-wave mixing (DFWM) technique. The resonant third-order nonlinear optical susceptibility of the polymer is about 7.48×10^-8 esu.
基金Funded by the National Natural Science Foundation of China (No.60372002)
文摘An arachidic acid/poly (3, 4-ethylene dioxythiophene) (AA/PEDOT) multilayer Langmuir-Blodgett (LB) film was prepared by a modified LB film method. The theories were utilized to explain the effects between HCl molecule and LB film. The gas sensitivity mechanism of poly (3, 4-ethylene dioxythiophene) (PEDOT) multilayer film can be explained by the charge transfer between p system of PEDOT and oxidization HCl system. The gas sensitivity of PEDOT LB film deposited interdigital electrode to HCl was tested. The results showed that film thickness, treating temperature, deposition speed had different influence on film gas sensitivity. The AA/PEDOT film deposited device exhibited nonlinear behavior to HCl gas at lower concentration (20-60 ppm) and linear response behavior at higher gas concentration was observed. The time of the compound LB film of the AA/PEDOT responding to the 30 ppm HCl gas is about 20 seconds, which is far quicker than the time of the film to the PEDOTPRESS film(about 80 seconds). It is not higher film press to better film. When the film press attains 45 mNs/m, the sensitivity of the AA/PEDOT film on the contrary descends.
基金supported by Tonekabon Branch, Islamic Azad University, Tonekabon, Iran,No. 73/442453
文摘It has been confirmed that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit can promote peripheral nerve regeneration in rats. However, its efficiency in repair of over 30-mm-long sciatic nerve defects needs to be assessed. In this study, we used a nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit to bridge a 30-mm-long gap in the rat sciatic nerve. At 4 months after nerve conduit implantation, regenerated nerves were macroscopi- cally observed and histologically assessed. In the nanofibrous graft, the rat sciatic nerve trunk had been reconstructed by restoration of nerve continuity and formation of myelinated nerve fiber. There were Schwann cells and glial cells in the regenerated nerves. Masson's trichrome staining showed that there were no pathological changes in the size and structure of gastrocnemius muscle cells on the operated side of rats. These findings suggest that nanofibrous poly(3-hydroxybutyrate-co-3- hydroxyvalerate) nerve conduit is suitable for repair of long-segment sciatic nerve defects.
基金National Natural Science Foundation of China (60277002) Scientific Research Foundation of Xi’an JiaotongUniversity
文摘The surface conductivity of poly [ 2-methoxy-5-(3'-methyl) butoxy]-p-phenylene vinylene (PMOMBOPV) films doped with FeCl3 and H2SO4 by chemical method and implanted by N^+ ions was studied and the comparison of environmental stability of conductive behavior was also investigated. The energy and dose of N^+ ions were in the rang 15~35 keV and 3. 8×10^15~9. 6×10^16 ions/cm^2, respectively. The conductivity of PMOMBOPV film was enhanced remarkably with the increases of the energy and dose of N^+ ions. For example, the conductivity of PMOMBOPV film was 3. 2×10^-2S/cm when ion implantation was performed with an energy of 35 keV at a dose of 9. 6 × 10^14 ions/cm^2 , which was almost seven orders of magnitude higher than that of film unimplanted. The environmental stability of conductive behavior for ionimplanted film was much better than that of chemical doped films. Moreover, the conductive activation energy of ion-implanted films was measured to be about 0.17 eV.
基金Funded by the High Tech Research and Development ("863") Program of China (2006AA02Z4E6)the National Natural Science Foundation of China (Nos. 21073136, 81271364)
文摘Platinum (Pt) implants coated with poly (3, 4-ethylenedioxythiophene)/carbon nanotube (PEDOT/CNT) composite films were implanted into the brain of rats, and the brain response was evaluated 6 weeks after the implantation. The surface morphology of Pt implants with and without the PEDOT/CNT coating was studied using scanning electron microscopy (SEM). After 6 weeks post-implantation, the expression of laminin (vascular endothelial marker) and neuronal nuclei (NeuN, neuronal marker) were evaluated by immnohistochemistry. It is revealed that the obvious improvements of the surface density of blood vessels and neurons aound the Pt implants with the coating, which were evidenced by laminin and NeuN staining in the zone within the distance of 150 μm to the implant interface. These results suggest the PEDOT/CNT composite films can improve the biocompatibility of the Pt electrodes while it is implanted in brain.
基金Project (2010DFA32270) supported by International Science & Technology Cooperation Program of ChinaProject (2010) supported by Scientific Research Foundation for the Returned Oversea Scholars of Ministry of Education of China
文摘A composite material was fabricated by applying a biodegradable drug delivery coating,consisting of poly(3-hydroxyburyrate-co-3-hydroxyvalerate)(PHBV) and icariin,to an anodic oxidized titanium plate.The coating was prepared by evaporating chloroform solution containing PHBV and icariin on the titanium plate under vacuum condition.Icariin/PHBV coated titanium plates significantly enhance the proliferation of MG-63 cells compared with the PHBV coated and anodic oxidized ones.Increased icariin contained in the coating displays an elevated influence on cell proliferation.The results show that icariin gradually releases from the coating to cells mainly through the phospholipid-based cellular membrane instead of the culture medium.The overall results suggest that the novel icariin/PHBV coating can be used to enhance the bioactivity of titanium based orthopedic implants.
文摘BACKGROUND: Bacteria endogenously residing within the plant tissues have attracted significant attention for production of biopolyester, polyhydroxyalkanoates (PHAs). Bacillus cereus RCL 02 (MCC 3436), a leaf endophyte of oleaginous plant Ricinus communis L. accumulates 81% poly(3-hydroxybutyrate) [P(3HB)] of its cell dry biomass when grown in mineral salts (MS) medium. METHODS: The copolymer production efficiency of B. cereus RCL 02 was evaluated in valeric acid supplemented MS medium under biphasic cultivation condition. The copolymer so produced has been compared with the P(3HB) isolated from RCL 02 in terms of thermal, mechanical and chemical properties. RESULTS: Valeric acid supplementation as co-substrate in the medium has led to the production of copolymer of 3- hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) [P(3HB-co-3HV)] with 14.6 mol% 3HV. The identity of the polymers has been confirmed by X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopic studies. Thermogravimetric analysis (TGA) revealed that P(3HB) and P(3HB-co-3HV) films degraded at 278.66℃ and 273.49℃, respectively. The P(3HB-co-3HV) showed lower melting temperature (165.03℃) compared to P (3HB) (170.74℃) according to differential scanning calorimetry (DSC). Incorporation of 3HV monomers decreased the tensile strength (21.52 MPa), tensile modulus (0.93 GPa), storage modulus (E') (0.99 GPa) and increased % elongation at break (12.2%) of the copolyester. However, P(3HB) showed better barrier properties with lower water vapor transmission rate (WVTR) of 0.55 g-mil/100 in2/24 h. CONCLUSION: These findings emphasized exploration of endophytic bacterial strain (RCL 02) to produce biodegradable polyesters which might have significant potential for industrial application.
基金supported by Shanghai Science Committee Fund for Key Research Project (No. 04JC14012)Fudan University Med-X Fund, China
文摘Background: A major shortcoming in tissue engineered blood vessels (TEBVs) is the lack of healthy and easily attainable smooth muscle cells (SMCs). Smooth muscle progenitor cells (SPCs), especially from peripheral blood, may offer an alternative cell source for tissue engineering involving a less invasive harvesting technique. Methods: SPCs were isolated from 5-ml fresh rat peripheral blood by density-gradient centrifugation and cultured for 3 weeks in endothelial growth medium-2-MV (EGM-2-MV) medium containing platelet-derived growth factoroBB (PDGF BB). Before seeded on the synthesized scaffold, SPC-derived smooth muscle outgrowth cell (SOC) phenotypes were assessed by immuno-fluorescent staining, Western blot analysis, and reverse transcription polymerase chain reaction (RT-PCR). The cells were seeded onto the silk fibroin-modified poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (SF-PHBHHx) scaflblds by 6× 10^4 cells/cm^2 and cultured under the static condition for 3 weeks. The growth and proliferation of the seeded cells on the scaffold were analyzed by 3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide (MTT) assay, scanning electron microscope (SEM), and 4,6-diamidino-2-phenylindole (DAPI) staining. Results: SOCs displayed specific "hill and valley" morphology, expressed the specific markers of the SMC lineage: smooth muscle (SM) a-actin, calponin and smooth muscle myosin heavy chain (SM MHC) at protein and messenger ribonucleic acid (mRNA) levels. RT-PCR results demonstrate that SOCs also expressed smooth muscle protein 22a (SM22a, a contractile protein, and extracellular matrix components elastin and matrix Gla protein (MGP), as well as vascular endothelial growth factor (VEGF). After seeded on the SF-PHBHHx scaffold, the cells showed excellent metabolic activity and proliferation. Conclusion: SPCs isolated from peripheral blood can be differentiated the SMCs in vitro and have an impressive growth potential in the biodegradable synthesized scaffold. Thus, SPCs may be a promising cell sointo urce for constructing TEBVs.
基金supported by Tonekabon Branch,Islamic Azad University,Tonekabon,Iran,No.73/442453
文摘Our previous studies have histomorphologically confirmed that nanofibrous poly(3-hydroxybutyrate- co-3-hydroxyvalerate) conduit can be used to repair 30-mm-long sciatic nerve defects. However, the repair effects on rat behaviors remain poorly understood. In this study, we used nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit and autologous sciatic nerve to bridge 30-ram-long rat sciatic nerve gaps. Within 4 months after surgery, rat sciatic nerve functional re- covery was evaluated per month by behavioral analyses, including toe out angle, toe spread anal- ysis, walking track analysis, extensor postural thrust, swimming test, open-field analysis and no- ciceptive function. Results showed that rat sciatic nerve functional recovery was similar after nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit and autologous nerve grafting. These findings suggest that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit is suitable in use for repair of long-segment sciatic nerve defects.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61176066,61101031)
文摘Formaldehyde(HCHO),a colorless and pungent-smelling gas,is confirmed be a huge threat to human health.The detection of formaldehyde is necessary and important.The Poly(3-hexythiophene)(P3HT)/ZnO organic-inorganic composite thin film was fabricated and used as the sensitive layer of organic thin film transistors(OTFT) by spray-deposited method to detect HCHO at room temperature.The process parameters such as P3HT/ZnO weight ratios and airbrushed masses were optimized.The results showed that P3HT/ZnO OTFT exhibited good sensing response to HCHO.Airbrushed mass of 1ml was the optimal mass,and the 1:1 and 1:5 weight ratios of P3HT/ZnO exhibited better sensing properties compared with others.OTFT gas sensors based on P3HT/ZnO composite film provides a novel promising approach to the detection of HCHO.