Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore s...Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.展开更多
Both sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)are considered as promising candidates in grid-level energy storage devices.Unfortunately,the larger ionic radii of K+and Na+induce poor diffusion kineti...Both sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)are considered as promising candidates in grid-level energy storage devices.Unfortunately,the larger ionic radii of K+and Na+induce poor diffusion kinetics and cycling stability of carbon anode materials.Pore structure regulation is an ideal strategy to promote the diffusion kinetics and cyclic stability of carbon materials by facilitating electrolyte infiltration,increasing the transport channels,and alleviating the volume change.However,traditional pore-forming agent-assisted methods considerably increase the difficulty of synthesis and limit practical applications of porous carbon materials.Herein,porous carbon materials(Ca-PC/Na-PC/K-PC)with different pore structures have been prepared with gluconates as the precursors,and the amorphous structure,abundant micropores,and oxygen-doping active sites endow the Ca-PC anode with excellent potassium and sodium storage performance.For PIBs,the capacitive contribution ratio of Ca-PC is 82%at 5.0 mV s^(-1) due to the introduction of micropores and high oxygen-doping content,while a high reversible capacity of 121.4 mAh g^(-1) can be reached at 5 A g^(-1) after 2000 cycles.For SIBs,stable sodium storage capacity of 101.4 mAh g^(-1) can be achieved at 2 A g^(-1) after 8000 cycles with a very low decay rate of 0.65%for per cycle.This work may provide an avenue for the application of porous carbon materials in the energy storage field.展开更多
The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon diox...The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon dioxide(CO_(2))in the pyrolysis environment of shale reservoirs is the supercritical state.Its unique supercritical fluid properties not only effectively heat organic matter,displace pyrolysis products and change shale pore structure,but also achieve carbon storage to a certain extent.Shale samples were made into powder and three sizes of cores,and nitrogen(N_(2))and supercritical carbon dioxide(ScCO_(2))pyrolysis experiments were performed at different final pyrolysis temperatures.The properties and mineral characteristics of the pyrolysis products were studied based on gas chromatography analysis,Xray diffraction tests,and mass spectrometry analysis.Besides,the pore structure characteristics at different regions of cores before and after pyrolysis were analyzed using N_(2) adsorption tests to clarify the impact of fracturing degree on the pyrolysis effect.The results indicate that the optimal pyrolysis temperature of Longkou shale is about 430℃.Compared with N_(2),the oil yield of ScCO_(2) pyrolysis is higher.The pyrolysis oil obtained by ScCO_(2) extraction has more intermediate fractions and higher relative molecular weight.The ScCO_(2) can effectively improve the pore diameter of shale and its effect is better than that of N_(2).The micropores are produced in shale after pyrolysis,and the macropores only are generated in ScCO_(2) pyrolysis environments with temperatures greater than 430℃.The pore structure has different development characteristics at different pyrolysis temperatures,which are mainly affected by the pressure holding of volatile matter and products blocking.Compared to the surface of the core,the pore development effect inside the core is better.With the decrease in core size,the pore diameter,specific surface area,and pore volume of cores all increase after pyrolysis.展开更多
Tectonism is one of the dominant factors affecting the shale pore structure.However,the control of shale pore structure by tectonic movements is still controversial,which limits the research progress of shale gas accu...Tectonism is one of the dominant factors affecting the shale pore structure.However,the control of shale pore structure by tectonic movements is still controversial,which limits the research progress of shale gas accumulation mechanism in the complex tectonic region of southern China.In this study,34 samples were collected from two exploratory wells located in different tectonic locations.Diverse experiments,e.g.,organic geochemistry,XRD analysis,FE-SEM,low-pressure gas adsorption,and high-pressure mercury intrusion,were conducted to fully characterize the shale reservoir.The TOC,Ro,and mineral composition of the shale samples between the two wells are similar,which reflects that the shale samples of the two wells have proximate pores-generating capacity and pores-supporting capacity.However,the pore characteristics of shale samples from two wells are significantly different.Compared with the stabilized zone shale,the porosity,pore volume,and specific surface area of the deformed zone shale were reduced by 60.61%,64.85%,and 27.81%,respectively.Moreover,the macroscopic and fine pores were reduced by 54.01%and 84.95%,respectively.Fault activity and uplift denudation are not conducive to pore preservation,and the rigid basement of Huangling uplift can promote pore preservation.These three factors are important reasons for controlling the difference in pore structure between two wells shales.We established a conceptual model of shale pores evolution under different tectonic preservation conditions.This study is significant to clarify the scale of shale gas formation and enrichment in complex tectonic regions,and helps in the selection of shale sweet spots.展开更多
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef...Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery.展开更多
Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected por...Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.展开更多
The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spi...The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spinel castables were investigated.The results show that nano CaCO_(3)or M-A-H stimulates rapidly the hydration of CAC and the formation of lamellar C_(4)AcH_(11)or coexistence of C_(2)AH_(8)and C_(4)AcH_(11)at 25℃.The formation of lamellar hydrates can contribute to a more complicated pore structure,especially in the range of 400-2000 nm.Meanwhile,the incorporation of well-distributed CaO or MgO sources from nano CaCO_(3)or M-A-H also regulates the distribution of CA_(6)and spinel(pre-formed and in-situ).Consequently,the optimized microstructure and complicated pore structure can induce the deflection and bridging of cracks,thus facilitating the consumption of fracture energy and enhancing the resistance to thermal stress damage.展开更多
Permeability is a key parameter for coalbed methane development.Although the absolute permeability of coal has been extensively studied,wettability and pore structure properties continue to challenge the microscopic d...Permeability is a key parameter for coalbed methane development.Although the absolute permeability of coal has been extensively studied,wettability and pore structure properties continue to challenge the microscopic description of water-gas flow in coal.For this purpose,we reconstructed the microstructures of low-rank coal using micro-computed tomography(micro-CT)images.Pore geometry and pore-throat parameters are introduced to establish a relationship with absolute permeability.A dual-porosity pore network model is developed to study water-gas displacement under different wetting and pore structure properties.Results show that absolute permeability is significantly affected by pore geometry and can be described using a binary quadratic function of porosity and fractal dimension.Water-gas relative permeability varies significantly and the residual gas saturation is lower;the crossover saturation first decreased and then increased with increasing porosity under hydrophobic conditions.While the water relative permeability is lower and a certain amount of gas is trapped in complex pore-throat networks;the crossover saturation is higher under hydrophilic conditions.Models with large percolating porosity and well-developed pore networks have high displacement efficiency due to low capillary resistance and avoidance of trapping.This work provides a systematic description of absolute permeability and water-gas relative permeability in coal microstructure for enhanced gas recovery.展开更多
Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leachin...Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leaching.The results showed that the pore areas in four kinds of ore samples before leaching were mainly concentrated in 10^(4)–10^(7)μm^(2),whose pore quantities accounted for 96.89%,94.94%,90.48%,and 89.45%,respectively,while the corresponding pore volume only accounted for 30.74%,14.55%,7.58%,and 2.84%of the total pore volume.With the decrease of fractal dimension,the average pore throat length increased,but pore throat quantities,the average pore throat radius and coordination number decreased.Compared with that before leaching,the change degree of pore structure during leaching increased with the fractal dimension decreasing.For example,the reduction rate of the average coordination number of ore samples was 14.36%,21.30%,28.00%,and 32.90%,respectively.Seepage simulation results indicated that seepage paths were uniformly distributed before leaching while the streamline density and seepage velocity increased with the fractal dimension decreasing.Besides,the phenomenon of the streamline interruption gradually reduced during leaching while preferential seepage got more obvious with the decrease of the fractal dimension.展开更多
The pore structure of coal plays a key role in controlling the storage and migration of CH4/N2.The pore structure of coal is an important indicator to measure the gas extraction capability and the gas displacement efe...The pore structure of coal plays a key role in controlling the storage and migration of CH4/N2.The pore structure of coal is an important indicator to measure the gas extraction capability and the gas displacement efect of N2 injection.The deformation characteristic of coal during adsorption–desorption of CH4/N2 is an important factor afecting CH4 pumpability and N2 injectability.The pore structure characteristics of low-permeability coal were obtained by fuid intrusion method and photoelectric radiation technology.The multistage and connectivity of coal pores were analyzed.Subsequently,a simultaneous test experiment of CH4/N2 adsorption–desorption and coal deformation was carried out.The deformation characteristics of coal were clarifed and a coal strain model was constructed.Finally,the applicability of low-permeability coal to N2 injection for CH4 displacement technology was investigated.The results show that the micropores and transition pores of coal samples are relatively developed.The pore morphology of coal is dominated by semi-open pores.The pore structure of coal is highly complex and heterogeneous.Transition pores,mesopores and macropores of coal have good connectivity,while micropores have poor connectivity.Under constant triaxial stress,the adsorption capacity of the coal for CH4 is greater than that for N2,and the deformation capacity of the coal for CH4 adsorption is greater than that for N2 adsorption.The axial strain,circumferential strain,and volumetric strain during the entire process of CH4 and N2 adsorption/desorption in the coal can be divided into three stages.Coal adsorption–desorption deformation has the characteristics of anisotropy and gas-diference.A strain model for the adsorption–desorption of CH4/N2 from coal was established by considering the expansion stress of adsorbed gas on the coal matrix,the compression stress of free gas on the coal matrix,and the expansion stress of free gas on micropore fractures.N2 has good injectability in low-permeability coal seams and has the dual functions of improving coal seam permeability and enhancing gas fow,which can signifcantly improve the efectiveness of low-permeability coal seam gas control and promote the efcient utilization of gas resources.展开更多
In this study,X-ray diffraction,N_(2)adsorption(N_(2)A),and mercury intrusion(MI)experiments were used to investigate the influence of acid treatment on pore structure and fractal characterization of tight sandstones....In this study,X-ray diffraction,N_(2)adsorption(N_(2)A),and mercury intrusion(MI)experiments were used to investigate the influence of acid treatment on pore structure and fractal characterization of tight sandstones.The results showed that acid treatment generated a certain number of ink-bottle pores in fine sandstone,aggravated the ink-bottle effect in the sandy mudstone,and transformed some smaller pores into larger ones.After the acid treatment,both the pore volume in the range of 2–11 nm and 0.271–8μm for the fine sandstone and the entire pore size range for the sandy mudstone significantly increased.The dissolution of sandstone cement causes the fine sandstone particles to fall off and fill the pores;the porosity increased at first but then decreased with acid treatment time.The fractal dimension obtained using the Frenkel-Halsey-Hill model was positively correlated with acid treatment time.However,the total fractal dimensions obtained by MI tests showed different changes with acid treatment time in fine sandstone and sandy mudstone.These results provide good guiding significance for reservoir acidification stimulation.展开更多
Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple ...Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple pyrolysis of biomass always generates inadequate porosity with limited surface area.Moreover,biomass-derived carbon also suffers from poor wettability and single physical adsorption of ions,resulting in limited desalination performance.Herein,pore structure optimization and element co-doping are integrated on banana peels(BP)-derived carbon to construct hierarchically porous and B,N co-doped carbon with large ions-accessible surface area.A unique expansionactivation(EA)strategy is proposed to modulate the porosity and specific surface area of carbon.Furthermore,B,N co-doping could increase the ions-accessible sites with improved hydrophilicity,and promote ions adsorption.Benefitting from the synergistic effect of hierarchical porosity and B,N co-doping,the resultant electrode manifest enhanced CDI performance for NaCl with large desalination capacity(29.5 mg g^(-1)),high salt adsorption rate(6.2 mg g^(-1)min^(-1)),and versatile adsorption ability for other salts.Density functional theory reveals the enhanced deionization mechanism by pore and B,N co-doping.This work proposes a facile EA strategy for pore structure modulation of biomass-derived carbon,and demonstrates great potentials of integrating pore and heteroatoms-doping on constructing high-performance CDI electrode.展开更多
Two different freeze-thaw cycles(FTC)are considered in this study to assess the related impact on gas permeability and micro-pore structure of a mortar.These are the water-freezing/water-thawing(WF-WT)and the air-free...Two different freeze-thaw cycles(FTC)are considered in this study to assess the related impact on gas permeability and micro-pore structure of a mortar.These are the water-freezing/water-thawing(WF-WT)and the air-freezing/air-thawing(AF-AT)cycles.The problem is addressed experimentally through an advanced nuclear magnetic resonance(NMR)technique able to provide meaningful information on the relationships among gas permeability,pore structure,mechanical properties,and the number of cycles.It is shown that the mortar gas permeability increases with the number of FTCs,the increase factor being 20 and 12.83 after 40 cycles for the WF-WT and AF-AT,respectively.The results also confirm that gas permeability hysteresis phenomena occur during the confining pressure loading and unloading process.展开更多
The use of some environmental functional minerals as backfill-modified materials may improve the leaching resistance of cemented uranium tailings backfill created from alkali-activated slag(CUTB),but these materials m...The use of some environmental functional minerals as backfill-modified materials may improve the leaching resistance of cemented uranium tailings backfill created from alkali-activated slag(CUTB),but these materials may participate in the hydration reaction of the cementitious materials,which could have a certain impact on the pore structure of the CUTB,thus affecting its mechanical properties and leaching resistance.In this paper,natural zeolite is selected as the backfill-modified material,and it is added to alkali-activated slag paste(AASP)and CUTB in cementitious material proportions of 4%,8%,12%,and 16%to prepare AASP mixtures and CUTB mixtures containing environmental functional minerals.After the addition of natural zeolite,the porosity of the CUTB generally increases,but when the content is 4%,the porosity decreases to 22.30%.The uniaxial compressive strength(UCS)of the CUTB generally decreases,but the decrease is the smallest when the content is 4%,and the UCS is 12.37 MPa.The addition of natural zeolite mainly reduces the number of fine pores in the CUTB,but the pores with relaxation times T_(2)of greater than 10 ms account for about 10%of the total pores,and there are a certain number of large pores in the CUTB.The main product of alkali-activated slag is calcium(alumino)silicate hydrate(C-(A)-S-H gel).When natural zeolite is added,the hydration products develop towards denser products with a high degree of polymerization and the formation of low polymerization products is reduced.This affects the internal fracture pores of the hydration products and the interface pores of the CUTB,has an irregular effect on the pore characteristics of the CUTB,and influences the UCS.展开更多
According to the capillary theory,an equivalent capillary model of micro-resistivity imaging logging was built.On this basis,the theoretical models of porosity spectrum(Ф_(i)),permeability spectrum(K_(i))and equivale...According to the capillary theory,an equivalent capillary model of micro-resistivity imaging logging was built.On this basis,the theoretical models of porosity spectrum(Ф_(i)),permeability spectrum(K_(i))and equivalent capillary pressure curve(pe)were established to reflect the reservoir heterogeneity.To promote the application of the theoretical models,the Archie's equation was introduced to establish a general model for quantitatively characterizing bi,K,and pei.Compared with the existing models,it is shown that:(1)the existing porosity spectrum model is the same as the general equation of gi;(2)the Ki model can display the permeability spectrum as compared with Purcell's permeability model;(3)the per model is constructed on a theoretical basis and avoids the limitations of existing models that are built only based on the component of porosity spectrum,as compared with the empirical model of capillary pressure curve.The application in the Permian Maokou Formation of Well TsX in the Central Sichuan paleo-uplift shows that the Ф_(i),K_(i),and p_(ci) models can be effectively applied to the identification of reservoir types,calculation of reservoir properties and pore structure parameters,and evaluation of reservoir heterogeneity.展开更多
Pore structure is a crucial factor affecting the physical properties of porous materials,and understanding the mechanisms and laws of these effects is of great significance in the fields of geosciences and petroleum e...Pore structure is a crucial factor affecting the physical properties of porous materials,and understanding the mechanisms and laws of these effects is of great significance in the fields of geosciences and petroleum engineering.However,it remains a challenge to accurately understand and quantify the relationship between pore structures and effective properties.This paper improves a workflow to focus on investigating the effect of pore structure on physical properties.First,a hybrid modeling approach combining process-based and morphology-based methods is proposed to reconstruct 3D models with diverse pore structure types.Then,the characteristics and differences in pore structure in these models are compared.Finally,the varia-tion laws and pore-scale mechanisms of the influence of pore structure on physical properties(permeability and elasticity)are discussed based on the reconstructed models.The relationship models between pore structure parameters and perme-ability/elastic parameters in the grain packing model are established.The effect of pore structure evolution on permeability/elasticity and the microscopic mechanism in three types of morphology-based reconstruction models are explored.The influence degree of pore structure on elastic parameters(bulk modulus,shear modulus,P-wave velocity,and S-wave veloc-ity)is quantified,reaching 29.54%,51.40%,18.94%,and 23.18%,respectively.This work forms a workflow for exploring the relationship between pore structures and petrophysical properties at the microscopic scale,providing more ideas and references for understanding the complex physical properties in porous media.展开更多
The destruction of concrete building materials in severely cold regions of the north is more severely affected by freeze-thaw cycles,and the relationship between the mechanical properties and pore structure of concret...The destruction of concrete building materials in severely cold regions of the north is more severely affected by freeze-thaw cycles,and the relationship between the mechanical properties and pore structure of concrete with fine aggregate from municipal solid waste(MSW)incineration bottom ash after freeze-thaw cycles is analyzed under the degree of freeze-thaw hazard variation.In this paper,the gray correlation method is used to calculate the correlation between the relative dynamic elastic modulus,compressive strength,and microscopic porosity parameters to speculate on the most important factors affecting their changes.The GM(1,1)model was established based on the compressive strength of the waste incineration ash aggregate concrete,the relative error between the simulated and actual values in the model was less than 5%,and the accuracy of the model was level 1,indicating that the GM(1,1)model can well reflect the change in the compressive strength of the MSW incineration bottom ash aggregate concrete during freeze-thaw cycles.Using the gray correlation method,the correlation between the relative dynamic elastic modulus,compressive strength,air content,specific surface area,pore spacing coefficient,and pore average chord length was calculated,and the pore spacing coefficient and pore average chord length were determined to be highly correlated with each other.This determination can help analyze and infer the deterioration mechanism of concrete subject to freeze-thaw cycles.These results can provide a theoretical basis for guiding the engineering practice of concrete with fine aggregates of household bottom ash in the northern cold region.展开更多
The study of pore structure requires consideration of important factors including pore throat size,pore radius composition,and pore-throat configuration.As the nuclear magnetic resonance(NMR)experimental results conta...The study of pore structure requires consideration of important factors including pore throat size,pore radius composition,and pore-throat configuration.As the nuclear magnetic resonance(NMR)experimental results contain rich information about pore structures and fluid occurrence states,this study investigated the pore structures of the tight sandstone reservoirs of the Shanxi Formation in the Daning-Jixian area,eastern Ordos Basin.Firstly,by making the inverse cumulative curve of the NMR T2 spectrum coincide with the capillary pressure curves which were obtained by the mercury injection capillary pressure(MICP)technique,this study derived a conversion coefficient that can be used to convert the NMR T2 spectrum into the pore throat radius distribution curves based on the NMR experimental results.Subsequently,we determined the pore radius intervals corresponding to irreducible water distribution using the NMR-derived pore radius distribution curves.Finally,the NMR T2 distribution curves based on the fractal theory were analyzed and the relationships between fractal dimensions and parameters,including permeability,porosity,reservoir quality index(RQI),flow zone indicator(FZI),irreducible water saturation,RT35,and RT50,were also discussed.The NMR-derived pore throat radius distribution curves of the study area are mainly unimodal,with some curves showing slightly bimodal distributions.The irreducible water mainly occurs in small pores with a pore radius less than 100 nm.As the permeability decreases,the contribution rate of small pores to the irreducible water gradually increases.The NMR-based fractal dimensions of pores show a two-segment distribution.Small pores have small fractal dimensions and are evenly distributed,while large pores have large fractal dimensions and complex pore structures.The fractal dimension of large pores(Dmax)is poorly correlated with porosity but strongly correlated with FZI,RQI,RT35,and RT50.These results indicate that large pores are the main pore zones that determine the seepage capacity of the reservoirs.Additionally,there is a certain correlation between Dmax and the irreducible water saturation.展开更多
The Ordovician carbonate rocks of the Yingshan formation in the Tarim Basin have a complex pore structure owing to diagenetic and secondary structures. Seismic elastic parameters(e.g., wave velocity) depend on poros...The Ordovician carbonate rocks of the Yingshan formation in the Tarim Basin have a complex pore structure owing to diagenetic and secondary structures. Seismic elastic parameters(e.g., wave velocity) depend on porosity and pore structure. We estimated the average specific surface, average pore-throat radius, pore roundness, and average aspect ratio of carbonate rocks from the Tazhong area. High P-wave velocity samples have small average specific surface, small average pore-throat radius, and large average aspect ratio. Differences in the pore structure of dense carbonate samples lead to fluid-related velocity variability. However, the relation between velocity dispersion and average specific surface, or the average aspect ratio, is not linear. For large or small average specific surface, the pore structure of the rock samples becomes uniform, which weakens squirt fl ow and minimizes the residuals of ultrasonic data and predictions with the Gassmann equation. When rigid dissolved(casting mold) pores coexist with less rigid microcracks, there are significant P-wave velocity differences between measurements and predictions.展开更多
Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional imag...Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.展开更多
基金supported by the National Key Research and Development Program of China (Grant No.2018YFA0702400)the National Natural Science Foundation of China (Grant No.52174050)+1 种基金the Natural Science Foundation of Shandong Province (Grant No.ZR2020ME088)the National Natural Science Foundation of Qingdao (Grant No.23-2-1-227-zyyd-jch)。
文摘Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.
基金The authors are grateful for the financial support provided by the National Natural Science Foundation of China(52362010,52304326,22305055,and 52274297)the Start-up Research Foundation of Hainan University(KYQD(ZR)-23069,20008,23067,and 23073)the specific research fund of the Innovation Platform for Academicians of Hainan Province(YSPTZX202315).
文摘Both sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)are considered as promising candidates in grid-level energy storage devices.Unfortunately,the larger ionic radii of K+and Na+induce poor diffusion kinetics and cycling stability of carbon anode materials.Pore structure regulation is an ideal strategy to promote the diffusion kinetics and cyclic stability of carbon materials by facilitating electrolyte infiltration,increasing the transport channels,and alleviating the volume change.However,traditional pore-forming agent-assisted methods considerably increase the difficulty of synthesis and limit practical applications of porous carbon materials.Herein,porous carbon materials(Ca-PC/Na-PC/K-PC)with different pore structures have been prepared with gluconates as the precursors,and the amorphous structure,abundant micropores,and oxygen-doping active sites endow the Ca-PC anode with excellent potassium and sodium storage performance.For PIBs,the capacitive contribution ratio of Ca-PC is 82%at 5.0 mV s^(-1) due to the introduction of micropores and high oxygen-doping content,while a high reversible capacity of 121.4 mAh g^(-1) can be reached at 5 A g^(-1) after 2000 cycles.For SIBs,stable sodium storage capacity of 101.4 mAh g^(-1) can be achieved at 2 A g^(-1) after 8000 cycles with a very low decay rate of 0.65%for per cycle.This work may provide an avenue for the application of porous carbon materials in the energy storage field.
基金supported by the National Natural Science Foundation of China (Nos.U22B6004,51974341)State Key Laboratory of Deep Oil and Gas (No.SKLDOG2024-ZYTS-14)the Fundamental Research Funds for the Central Universities (No.20CX06070A)。
文摘The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon dioxide(CO_(2))in the pyrolysis environment of shale reservoirs is the supercritical state.Its unique supercritical fluid properties not only effectively heat organic matter,displace pyrolysis products and change shale pore structure,but also achieve carbon storage to a certain extent.Shale samples were made into powder and three sizes of cores,and nitrogen(N_(2))and supercritical carbon dioxide(ScCO_(2))pyrolysis experiments were performed at different final pyrolysis temperatures.The properties and mineral characteristics of the pyrolysis products were studied based on gas chromatography analysis,Xray diffraction tests,and mass spectrometry analysis.Besides,the pore structure characteristics at different regions of cores before and after pyrolysis were analyzed using N_(2) adsorption tests to clarify the impact of fracturing degree on the pyrolysis effect.The results indicate that the optimal pyrolysis temperature of Longkou shale is about 430℃.Compared with N_(2),the oil yield of ScCO_(2) pyrolysis is higher.The pyrolysis oil obtained by ScCO_(2) extraction has more intermediate fractions and higher relative molecular weight.The ScCO_(2) can effectively improve the pore diameter of shale and its effect is better than that of N_(2).The micropores are produced in shale after pyrolysis,and the macropores only are generated in ScCO_(2) pyrolysis environments with temperatures greater than 430℃.The pore structure has different development characteristics at different pyrolysis temperatures,which are mainly affected by the pressure holding of volatile matter and products blocking.Compared to the surface of the core,the pore development effect inside the core is better.With the decrease in core size,the pore diameter,specific surface area,and pore volume of cores all increase after pyrolysis.
基金supported by the National Natural Science Foundation of China (42122017,41821002)the Hubei Provincial Natural Science Foundation of China (2020CFB501)+1 种基金the Shandong Provincial Key Research and Development Program (2020ZLYS08)the Independent innovation research program of China University of Petroleum (East China) (21CX06001A)。
文摘Tectonism is one of the dominant factors affecting the shale pore structure.However,the control of shale pore structure by tectonic movements is still controversial,which limits the research progress of shale gas accumulation mechanism in the complex tectonic region of southern China.In this study,34 samples were collected from two exploratory wells located in different tectonic locations.Diverse experiments,e.g.,organic geochemistry,XRD analysis,FE-SEM,low-pressure gas adsorption,and high-pressure mercury intrusion,were conducted to fully characterize the shale reservoir.The TOC,Ro,and mineral composition of the shale samples between the two wells are similar,which reflects that the shale samples of the two wells have proximate pores-generating capacity and pores-supporting capacity.However,the pore characteristics of shale samples from two wells are significantly different.Compared with the stabilized zone shale,the porosity,pore volume,and specific surface area of the deformed zone shale were reduced by 60.61%,64.85%,and 27.81%,respectively.Moreover,the macroscopic and fine pores were reduced by 54.01%and 84.95%,respectively.Fault activity and uplift denudation are not conducive to pore preservation,and the rigid basement of Huangling uplift can promote pore preservation.These three factors are important reasons for controlling the difference in pore structure between two wells shales.We established a conceptual model of shale pores evolution under different tectonic preservation conditions.This study is significant to clarify the scale of shale gas formation and enrichment in complex tectonic regions,and helps in the selection of shale sweet spots.
基金supported by National Natural Science Foundation of China(Grant No.42172159)Science Foundation of China University of Petroleum,Beijing(Grant No.2462023XKBH002).
文摘Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery.
文摘Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.
基金supported financially by the Natural Science Foundation of Qinghai(2022-ZJ-928)the Special Project for Transformation of Scientific and Technological Achievements of Qinghai Province(2023-GX-102).
文摘The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spinel castables were investigated.The results show that nano CaCO_(3)or M-A-H stimulates rapidly the hydration of CAC and the formation of lamellar C_(4)AcH_(11)or coexistence of C_(2)AH_(8)and C_(4)AcH_(11)at 25℃.The formation of lamellar hydrates can contribute to a more complicated pore structure,especially in the range of 400-2000 nm.Meanwhile,the incorporation of well-distributed CaO or MgO sources from nano CaCO_(3)or M-A-H also regulates the distribution of CA_(6)and spinel(pre-formed and in-situ).Consequently,the optimized microstructure and complicated pore structure can induce the deflection and bridging of cracks,thus facilitating the consumption of fracture energy and enhancing the resistance to thermal stress damage.
基金the National Natural Science Foundation of China(Nos.51934004,51974176)the Natural Science Foundation for Distinguished Young Scholars of Shandong Province(No.ZR2020JQ22)+1 种基金the Youth Science and Technology Innovation of Shandong Province(No.2019KJH006)the Special Funds for Taishan Scholar Project(No.TS20190935).
文摘Permeability is a key parameter for coalbed methane development.Although the absolute permeability of coal has been extensively studied,wettability and pore structure properties continue to challenge the microscopic description of water-gas flow in coal.For this purpose,we reconstructed the microstructures of low-rank coal using micro-computed tomography(micro-CT)images.Pore geometry and pore-throat parameters are introduced to establish a relationship with absolute permeability.A dual-porosity pore network model is developed to study water-gas displacement under different wetting and pore structure properties.Results show that absolute permeability is significantly affected by pore geometry and can be described using a binary quadratic function of porosity and fractal dimension.Water-gas relative permeability varies significantly and the residual gas saturation is lower;the crossover saturation first decreased and then increased with increasing porosity under hydrophobic conditions.While the water relative permeability is lower and a certain amount of gas is trapped in complex pore-throat networks;the crossover saturation is higher under hydrophilic conditions.Models with large percolating porosity and well-developed pore networks have high displacement efficiency due to low capillary resistance and avoidance of trapping.This work provides a systematic description of absolute permeability and water-gas relative permeability in coal microstructure for enhanced gas recovery.
基金the National Natural Science Foundation of China(Nos.52174258,92162109,52222405 and 52004184).
文摘Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leaching.The results showed that the pore areas in four kinds of ore samples before leaching were mainly concentrated in 10^(4)–10^(7)μm^(2),whose pore quantities accounted for 96.89%,94.94%,90.48%,and 89.45%,respectively,while the corresponding pore volume only accounted for 30.74%,14.55%,7.58%,and 2.84%of the total pore volume.With the decrease of fractal dimension,the average pore throat length increased,but pore throat quantities,the average pore throat radius and coordination number decreased.Compared with that before leaching,the change degree of pore structure during leaching increased with the fractal dimension decreasing.For example,the reduction rate of the average coordination number of ore samples was 14.36%,21.30%,28.00%,and 32.90%,respectively.Seepage simulation results indicated that seepage paths were uniformly distributed before leaching while the streamline density and seepage velocity increased with the fractal dimension decreasing.Besides,the phenomenon of the streamline interruption gradually reduced during leaching while preferential seepage got more obvious with the decrease of the fractal dimension.
基金supported by the Natural Science Foundation of China(51874236 and 52174207)Shaanxi Provincial Department of Science and Technology(2020JC-48 and 2022TD-02)China Postdoctoral Science Foundation(2021M693879).
文摘The pore structure of coal plays a key role in controlling the storage and migration of CH4/N2.The pore structure of coal is an important indicator to measure the gas extraction capability and the gas displacement efect of N2 injection.The deformation characteristic of coal during adsorption–desorption of CH4/N2 is an important factor afecting CH4 pumpability and N2 injectability.The pore structure characteristics of low-permeability coal were obtained by fuid intrusion method and photoelectric radiation technology.The multistage and connectivity of coal pores were analyzed.Subsequently,a simultaneous test experiment of CH4/N2 adsorption–desorption and coal deformation was carried out.The deformation characteristics of coal were clarifed and a coal strain model was constructed.Finally,the applicability of low-permeability coal to N2 injection for CH4 displacement technology was investigated.The results show that the micropores and transition pores of coal samples are relatively developed.The pore morphology of coal is dominated by semi-open pores.The pore structure of coal is highly complex and heterogeneous.Transition pores,mesopores and macropores of coal have good connectivity,while micropores have poor connectivity.Under constant triaxial stress,the adsorption capacity of the coal for CH4 is greater than that for N2,and the deformation capacity of the coal for CH4 adsorption is greater than that for N2 adsorption.The axial strain,circumferential strain,and volumetric strain during the entire process of CH4 and N2 adsorption/desorption in the coal can be divided into three stages.Coal adsorption–desorption deformation has the characteristics of anisotropy and gas-diference.A strain model for the adsorption–desorption of CH4/N2 from coal was established by considering the expansion stress of adsorbed gas on the coal matrix,the compression stress of free gas on the coal matrix,and the expansion stress of free gas on micropore fractures.N2 has good injectability in low-permeability coal seams and has the dual functions of improving coal seam permeability and enhancing gas fow,which can signifcantly improve the efectiveness of low-permeability coal seam gas control and promote the efcient utilization of gas resources.
基金supported by the National Natural Science Foundation of China(51674049,52074044,and 51874053)the Scientific Research Foundation of Hunan Provincial Education Department,China(22B0854)。
文摘In this study,X-ray diffraction,N_(2)adsorption(N_(2)A),and mercury intrusion(MI)experiments were used to investigate the influence of acid treatment on pore structure and fractal characterization of tight sandstones.The results showed that acid treatment generated a certain number of ink-bottle pores in fine sandstone,aggravated the ink-bottle effect in the sandy mudstone,and transformed some smaller pores into larger ones.After the acid treatment,both the pore volume in the range of 2–11 nm and 0.271–8μm for the fine sandstone and the entire pore size range for the sandy mudstone significantly increased.The dissolution of sandstone cement causes the fine sandstone particles to fall off and fill the pores;the porosity increased at first but then decreased with acid treatment time.The fractal dimension obtained using the Frenkel-Halsey-Hill model was positively correlated with acid treatment time.However,the total fractal dimensions obtained by MI tests showed different changes with acid treatment time in fine sandstone and sandy mudstone.These results provide good guiding significance for reservoir acidification stimulation.
基金We gratefully acknowledge financial supports from the National Natural Science Foundation of China(No.52202371,51905125,52102364)the Natural Science Foundation of Shandong Province(No.ZR2020QE066)+2 种基金Opening Project of State Key Laboratory of Advanced Technology for Float Glass(No.2020KF08)SDUT&Zibo City Integration Development Project(No.2021SNPT0045)the fellowship of China Postdoctoral Science Foundation(No.2020M672081).
文摘Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple pyrolysis of biomass always generates inadequate porosity with limited surface area.Moreover,biomass-derived carbon also suffers from poor wettability and single physical adsorption of ions,resulting in limited desalination performance.Herein,pore structure optimization and element co-doping are integrated on banana peels(BP)-derived carbon to construct hierarchically porous and B,N co-doped carbon with large ions-accessible surface area.A unique expansionactivation(EA)strategy is proposed to modulate the porosity and specific surface area of carbon.Furthermore,B,N co-doping could increase the ions-accessible sites with improved hydrophilicity,and promote ions adsorption.Benefitting from the synergistic effect of hierarchical porosity and B,N co-doping,the resultant electrode manifest enhanced CDI performance for NaCl with large desalination capacity(29.5 mg g^(-1)),high salt adsorption rate(6.2 mg g^(-1)min^(-1)),and versatile adsorption ability for other salts.Density functional theory reveals the enhanced deionization mechanism by pore and B,N co-doping.This work proposes a facile EA strategy for pore structure modulation of biomass-derived carbon,and demonstrates great potentials of integrating pore and heteroatoms-doping on constructing high-performance CDI electrode.
基金supported by the National Natural Science Foundation of China(Grant No.51709097).
文摘Two different freeze-thaw cycles(FTC)are considered in this study to assess the related impact on gas permeability and micro-pore structure of a mortar.These are the water-freezing/water-thawing(WF-WT)and the air-freezing/air-thawing(AF-AT)cycles.The problem is addressed experimentally through an advanced nuclear magnetic resonance(NMR)technique able to provide meaningful information on the relationships among gas permeability,pore structure,mechanical properties,and the number of cycles.It is shown that the mortar gas permeability increases with the number of FTCs,the increase factor being 20 and 12.83 after 40 cycles for the WF-WT and AF-AT,respectively.The results also confirm that gas permeability hysteresis phenomena occur during the confining pressure loading and unloading process.
基金funded by the National Natural Science Foundation of China(No.51904154)Natural Science Foundation of Hunan Province(No.2020JJ5491).
文摘The use of some environmental functional minerals as backfill-modified materials may improve the leaching resistance of cemented uranium tailings backfill created from alkali-activated slag(CUTB),but these materials may participate in the hydration reaction of the cementitious materials,which could have a certain impact on the pore structure of the CUTB,thus affecting its mechanical properties and leaching resistance.In this paper,natural zeolite is selected as the backfill-modified material,and it is added to alkali-activated slag paste(AASP)and CUTB in cementitious material proportions of 4%,8%,12%,and 16%to prepare AASP mixtures and CUTB mixtures containing environmental functional minerals.After the addition of natural zeolite,the porosity of the CUTB generally increases,but when the content is 4%,the porosity decreases to 22.30%.The uniaxial compressive strength(UCS)of the CUTB generally decreases,but the decrease is the smallest when the content is 4%,and the UCS is 12.37 MPa.The addition of natural zeolite mainly reduces the number of fine pores in the CUTB,but the pores with relaxation times T_(2)of greater than 10 ms account for about 10%of the total pores,and there are a certain number of large pores in the CUTB.The main product of alkali-activated slag is calcium(alumino)silicate hydrate(C-(A)-S-H gel).When natural zeolite is added,the hydration products develop towards denser products with a high degree of polymerization and the formation of low polymerization products is reduced.This affects the internal fracture pores of the hydration products and the interface pores of the CUTB,has an irregular effect on the pore characteristics of the CUTB,and influences the UCS.
基金Supported by the National Natural Science Foundation of China(U2003102,41974117)China National Science and Technology Major Project(2016ZX05052001).
文摘According to the capillary theory,an equivalent capillary model of micro-resistivity imaging logging was built.On this basis,the theoretical models of porosity spectrum(Ф_(i)),permeability spectrum(K_(i))and equivalent capillary pressure curve(pe)were established to reflect the reservoir heterogeneity.To promote the application of the theoretical models,the Archie's equation was introduced to establish a general model for quantitatively characterizing bi,K,and pei.Compared with the existing models,it is shown that:(1)the existing porosity spectrum model is the same as the general equation of gi;(2)the Ki model can display the permeability spectrum as compared with Purcell's permeability model;(3)the per model is constructed on a theoretical basis and avoids the limitations of existing models that are built only based on the component of porosity spectrum,as compared with the empirical model of capillary pressure curve.The application in the Permian Maokou Formation of Well TsX in the Central Sichuan paleo-uplift shows that the Ф_(i),K_(i),and p_(ci) models can be effectively applied to the identification of reservoir types,calculation of reservoir properties and pore structure parameters,and evaluation of reservoir heterogeneity.
基金supported by the National Natural Science Foundation of China(42004086,42172159)the Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province(YSK2023007).
文摘Pore structure is a crucial factor affecting the physical properties of porous materials,and understanding the mechanisms and laws of these effects is of great significance in the fields of geosciences and petroleum engineering.However,it remains a challenge to accurately understand and quantify the relationship between pore structures and effective properties.This paper improves a workflow to focus on investigating the effect of pore structure on physical properties.First,a hybrid modeling approach combining process-based and morphology-based methods is proposed to reconstruct 3D models with diverse pore structure types.Then,the characteristics and differences in pore structure in these models are compared.Finally,the varia-tion laws and pore-scale mechanisms of the influence of pore structure on physical properties(permeability and elasticity)are discussed based on the reconstructed models.The relationship models between pore structure parameters and perme-ability/elastic parameters in the grain packing model are established.The effect of pore structure evolution on permeability/elasticity and the microscopic mechanism in three types of morphology-based reconstruction models are explored.The influence degree of pore structure on elastic parameters(bulk modulus,shear modulus,P-wave velocity,and S-wave veloc-ity)is quantified,reaching 29.54%,51.40%,18.94%,and 23.18%,respectively.This work forms a workflow for exploring the relationship between pore structures and petrophysical properties at the microscopic scale,providing more ideas and references for understanding the complex physical properties in porous media.
基金supported by the National Natural Science Foundation of China Project 51868058,52068058Inner Mongolia Natural Science Foundation 2018MS05011Inner Mongolia“Grassland Talent”CYYC5039.
文摘The destruction of concrete building materials in severely cold regions of the north is more severely affected by freeze-thaw cycles,and the relationship between the mechanical properties and pore structure of concrete with fine aggregate from municipal solid waste(MSW)incineration bottom ash after freeze-thaw cycles is analyzed under the degree of freeze-thaw hazard variation.In this paper,the gray correlation method is used to calculate the correlation between the relative dynamic elastic modulus,compressive strength,and microscopic porosity parameters to speculate on the most important factors affecting their changes.The GM(1,1)model was established based on the compressive strength of the waste incineration ash aggregate concrete,the relative error between the simulated and actual values in the model was less than 5%,and the accuracy of the model was level 1,indicating that the GM(1,1)model can well reflect the change in the compressive strength of the MSW incineration bottom ash aggregate concrete during freeze-thaw cycles.Using the gray correlation method,the correlation between the relative dynamic elastic modulus,compressive strength,air content,specific surface area,pore spacing coefficient,and pore average chord length was calculated,and the pore spacing coefficient and pore average chord length were determined to be highly correlated with each other.This determination can help analyze and infer the deterioration mechanism of concrete subject to freeze-thaw cycles.These results can provide a theoretical basis for guiding the engineering practice of concrete with fine aggregates of household bottom ash in the northern cold region.
基金supported by the National Natural Science Foundation of China(41702132).
文摘The study of pore structure requires consideration of important factors including pore throat size,pore radius composition,and pore-throat configuration.As the nuclear magnetic resonance(NMR)experimental results contain rich information about pore structures and fluid occurrence states,this study investigated the pore structures of the tight sandstone reservoirs of the Shanxi Formation in the Daning-Jixian area,eastern Ordos Basin.Firstly,by making the inverse cumulative curve of the NMR T2 spectrum coincide with the capillary pressure curves which were obtained by the mercury injection capillary pressure(MICP)technique,this study derived a conversion coefficient that can be used to convert the NMR T2 spectrum into the pore throat radius distribution curves based on the NMR experimental results.Subsequently,we determined the pore radius intervals corresponding to irreducible water distribution using the NMR-derived pore radius distribution curves.Finally,the NMR T2 distribution curves based on the fractal theory were analyzed and the relationships between fractal dimensions and parameters,including permeability,porosity,reservoir quality index(RQI),flow zone indicator(FZI),irreducible water saturation,RT35,and RT50,were also discussed.The NMR-derived pore throat radius distribution curves of the study area are mainly unimodal,with some curves showing slightly bimodal distributions.The irreducible water mainly occurs in small pores with a pore radius less than 100 nm.As the permeability decreases,the contribution rate of small pores to the irreducible water gradually increases.The NMR-based fractal dimensions of pores show a two-segment distribution.Small pores have small fractal dimensions and are evenly distributed,while large pores have large fractal dimensions and complex pore structures.The fractal dimension of large pores(Dmax)is poorly correlated with porosity but strongly correlated with FZI,RQI,RT35,and RT50.These results indicate that large pores are the main pore zones that determine the seepage capacity of the reservoirs.Additionally,there is a certain correlation between Dmax and the irreducible water saturation.
基金supported by the Natural Science Foundation of China(No.41274138)
文摘The Ordovician carbonate rocks of the Yingshan formation in the Tarim Basin have a complex pore structure owing to diagenetic and secondary structures. Seismic elastic parameters(e.g., wave velocity) depend on porosity and pore structure. We estimated the average specific surface, average pore-throat radius, pore roundness, and average aspect ratio of carbonate rocks from the Tazhong area. High P-wave velocity samples have small average specific surface, small average pore-throat radius, and large average aspect ratio. Differences in the pore structure of dense carbonate samples lead to fluid-related velocity variability. However, the relation between velocity dispersion and average specific surface, or the average aspect ratio, is not linear. For large or small average specific surface, the pore structure of the rock samples becomes uniform, which weakens squirt fl ow and minimizes the residuals of ultrasonic data and predictions with the Gassmann equation. When rigid dissolved(casting mold) pores coexist with less rigid microcracks, there are significant P-wave velocity differences between measurements and predictions.
基金Projects(50934002,51074013,51304076,51104100)supported by the National Natural Science Foundation of ChinaProject(IRT0950)supported by the Program for Changjiang Scholars Innovative Research Team in Universities,ChinaProject(2012M510007)supported by China Postdoctoral Science Foundation
文摘Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.