期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Posture Detection of Heart Disease Using Multi-Head Attention Vision Hybrid(MHAVH)Model
1
作者 Hina Naz Zuping Zhang +3 位作者 Mohammed Al-Habib Fuad A.Awwad Emad A.A.Ismail Zaid Ali Khan 《Computers, Materials & Continua》 SCIE EI 2024年第5期2673-2696,共24页
Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may ... Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may depend on receiving timely assistance as soon as possible.Thus,minimizing the death ratio can be achieved by early detection of heart attack(HA)symptoms.In the United States alone,an estimated 610,000 people die fromheart attacks each year,accounting for one in every four fatalities.However,by identifying and reporting heart attack symptoms early on,it is possible to reduce damage and save many lives significantly.Our objective is to devise an algorithm aimed at helping individuals,particularly elderly individuals living independently,to safeguard their lives.To address these challenges,we employ deep learning techniques.We have utilized a vision transformer(ViT)to address this problem.However,it has a significant overhead cost due to its memory consumption and computational complexity because of scaling dot-product attention.Also,since transformer performance typically relies on large-scale or adequate data,adapting ViT for smaller datasets is more challenging.In response,we propose a three-in-one steam model,theMulti-Head Attention Vision Hybrid(MHAVH).Thismodel integrates a real-time posture recognition framework to identify chest pain postures indicative of heart attacks using transfer learning techniques,such as ResNet-50 and VGG-16,renowned for their robust feature extraction capabilities.By incorporatingmultiple heads into the vision transformer to generate additional metrics and enhance heart-detection capabilities,we leverage a 2019 posture-based dataset comprising RGB images,a novel creation by the author that marks the first dataset tailored for posture-based heart attack detection.Given the limited online data availability,we segmented this dataset into gender categories(male and female)and conducted testing on both segmented and original datasets.The training accuracy of our model reached an impressive 99.77%.Upon testing,the accuracy for male and female datasets was recorded at 92.87%and 75.47%,respectively.The combined dataset accuracy is 93.96%,showcasing a commendable performance overall.Our proposed approach demonstrates versatility in accommodating small and large datasets,offering promising prospects for real-world applications. 展开更多
关键词 Image analysis posture of heart attack(PHA)detection hybrid features VGG-16 ResNet-50 vision transformer advance multi-head attention layer
下载PDF
Force Sensitive Resistors-Based Real-Time Posture Detection System Using Machine Learning Algorithms
2
作者 Arsal Javaid Areeb Abbas +4 位作者 Jehangir Arshad Mohammad Khalid Imam Rahmani Sohaib Tahir Chauhdary Mujtaba Hussain Jaffery Abdulbasid S.Banga 《Computers, Materials & Continua》 SCIE EI 2023年第11期1795-1814,共20页
To detect the improper sitting posture of a person sitting on a chair,a posture detection system using machine learning classification has been proposed in this work.The addressed problem correlates to the third Susta... To detect the improper sitting posture of a person sitting on a chair,a posture detection system using machine learning classification has been proposed in this work.The addressed problem correlates to the third Sustainable Development Goal(SDG),ensuring healthy lives and promoting well-being for all ages,as specified by the World Health Organization(WHO).An improper sitting position can be fatal if one sits for a long time in the wrong position,and it can be dangerous for ulcers and lower spine discomfort.This novel study includes a practical implementation of a cushion consisting of a grid of 3×3 force-sensitive resistors(FSR)embedded to read the pressure of the person sitting on it.Additionally,the Body Mass Index(BMI)has been included to increase the resilience of the system across individual physical variances and to identify the incorrect postures(backward,front,left,and right-leaning)based on the five machine learning algorithms:ensemble boosted trees,ensemble bagged trees,ensemble subspace K-Nearest Neighbors(KNN),ensemble subspace discriminant,and ensemble RUSBoosted trees.The proposed arrangement is novel as existing works have only provided simulations without practical implementation,whereas we have implemented the proposed design in Simulink.The results validate the proposed sensor placements,and the machine learning(ML)model reaches a maximum accuracy of 99.99%,which considerably outperforms the existing works.The proposed concept is valuable as it makes it easier for people in workplaces or even at individual household levels to work for long periods without suffering from severe harmful effects from poor posture. 展开更多
关键词 posture detection FSR sensor machine learning REAL-TIME KNN
下载PDF
Parallel channel and position attention-guided feature pyramid for pig face posture detection
3
作者 Zhiwei Hu Hongwen Yan Tiantian Lou 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第6期222-234,共13页
The area of the pig’s face contains rich biological information,such as eyes,nose,and ear.The high-precision detection of pig face postures is crucial to the identification of pigs,and it can also provide fundamental... The area of the pig’s face contains rich biological information,such as eyes,nose,and ear.The high-precision detection of pig face postures is crucial to the identification of pigs,and it can also provide fundamental archival information for the study of abnormal behavioral characteristics and regularities.In this study,a series of attention blocks were embedded in Feature Pyramid Network(FPN)for automatic detection of the pig face posture in group-breeding environments.Firstly,the Channel Attention Block(CAB)and Position Attention Block(PAB)were proposed to capture the channel dependencies and the pixel-level long-range relationships,respectively.Secondly,a variety of attention modules are proposed to effectively combine the two kinds of attention information,specifically including Parallel Channel Position(PCP),Cascade Position Channel(CPC),and Cascade Channel Position(CCP),which fuse the channel and position attention information in both parallel or cascade ways.Finally,the verification experiments on three task networks with two backbone networks were conducted for different attention blocks or modules.A total of 45 pigs in 8 pigpens were used as the research objects.Experimental results show that attention-based models perform better.Especially,with Faster Region Convolutional Neural Network(Faster R-CNN)as the task network and ResNet101 as the backbone network,after the introduction of the PCP module,the Average Precision(AP)indicators of the face poses of Downward with head-on face(D-O),Downward with lateral face(D-L),Level with head-on face(L-O),Level with lateral face(L-L),Upward with head-on face(U-O),and Upward with lateral face(U-L)achieve 91.55%,90.36%,90.10%,90.05%,85.96%,and 87.92%,respectively.Ablation experiments show that the PAB attention block is not as effective as the CAB attention block,and the parallel combination method is better than the cascade manner.Taking Faster R-CNN as the task network and ResNet101 as the backbone network,the heatmap visualization of different layers of FPN before and after adding PCP shows that,compared with the non-PCP module,the PCP module can more easily aggregate denser and richer contextual information,this,in turn,enhances long-range dependencies to improve feature representation.At the same time,the model based on PCP attention can effectively detect the pig face posture of different ages,different scenes,and different light intensities,which can help lay the foundation for subsequent individual identification and behavior analysis of pigs. 展开更多
关键词 objection detection attention mechanism feature pyramid network face posture detection PIG
原文传递
Research on Facial Fatigue Detection of Drivers with Multi-feature Fusion 被引量:1
4
作者 YE Yuxuan ZHOU Xianchun +2 位作者 WANG Wenyan YANG Chuanbin ZOU Qingyu 《Instrumentation》 2023年第1期23-31,共9页
In order to solve the shortcomings of current fatigue detection methods such as low accuracy or poor real-time performance,a fatigue detection method based on multi-feature fusion is proposed.Firstly,the HOG face dete... In order to solve the shortcomings of current fatigue detection methods such as low accuracy or poor real-time performance,a fatigue detection method based on multi-feature fusion is proposed.Firstly,the HOG face detection algorithm and KCF target tracking algorithm are integrated and deformable convolutional neural network is introduced to identify the state of extracted eyes and mouth,fast track the detected faces and extract continuous and stable target faces for more efficient extraction.Then the head pose algorithm is introduced to detect the driver’s head in real time and obtain the driver’s head state information.Finally,a multi-feature fusion fatigue detection method is proposed based on the state of the eyes,mouth and head.According to the experimental results,the proposed method can detect the driver’s fatigue state in real time with high accuracy and good robustness compared with the current fatigue detection algorithms. 展开更多
关键词 HOG Face posture detection Deformable Convolution Multi-feature Fusion Fatigue detection
下载PDF
Image sequence-based risk behavior detection of power operation inspection personnel
5
作者 Changyu Cai Jianglong Nie +3 位作者 Wenhao Mo Zhouqiang He Yuanpeng Tan Zhao Chen 《Global Energy Interconnection》 EI CAS CSCD 2022年第6期618-626,共9页
A novel image sequence-based risk behavior detection method to achieve high-precision risk behavior detection for power maintenance personnel is proposed in this paper.In this method,the original image sequence data i... A novel image sequence-based risk behavior detection method to achieve high-precision risk behavior detection for power maintenance personnel is proposed in this paper.In this method,the original image sequence data is first separated from the foreground and background.Then,the free anchor frame detection method is used in the foreground image to detect the personnel and correct their direction.Finally,human posture nodes are extracted from each frame of the image sequence,which are then used to identify the abnormal behavior of the human.Simulation experiment results demonstrate that the proposed algorithm has significant advantages in terms of the accuracy of human posture node detection and risk behavior identification. 展开更多
关键词 Human posture node detection Risk behavior detection Image sequence Anchor-free detection Power maintenance personnel
下载PDF
Multifunctional Sitting Posture Detector Based on Face Tracking
6
作者 Zhaoning Jin Jiahan Wei +1 位作者 Zhiyan Yu Yang Zhou 《国际计算机前沿大会会议论文集》 EI 2023年第2期116-129,共14页
To reduce the vision problems caused by improper sitting posture,the research group used Raspberry Pi as the main controller for a multifunctional sitting posture detector with functions such as sitting posture detect... To reduce the vision problems caused by improper sitting posture,the research group used Raspberry Pi as the main controller for a multifunctional sitting posture detector with functions such as sitting posture detection,face positioning,cloud monitoring,etc.UUsing tech-nologies or algorithms such as machine vision and convolutional neural networks,our design can realize the user’s sitting posture error detec-tion,such as left,right,low head position,or forward body position with alarming,so that the user can maintain the appropriate sitting posture. 展开更多
关键词 sitting posture detection face tracking Raspberry Pi machine vision convolutional neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部