期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Recent progress on confinement of polysulfides through physical andchemical methods 被引量:9
1
作者 Sheng-Yi Li Wen-Peng Wang +1 位作者 Hui Duan Yu-Guo Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1555-1565,共11页
With high theoretical energy density and the natural abundance of S, lithium-sulfur (Li-S) batteries areconsidered to be the promising next generation high-energy rechargeable energy storage devices. How-ever, issue... With high theoretical energy density and the natural abundance of S, lithium-sulfur (Li-S) batteries areconsidered to be the promising next generation high-energy rechargeable energy storage devices. How-ever, issues including electronical insulation of S, the lithium polysulfides (LiPSs) dissolution and the shortcycle lifespan have prevented Li-S batteries from being practical applied. Feasible settlements of confiningLiPSs to reduce the loss of active substances and improve the cycle stability include wrapping sulfur withcompact layers, designing matrix with porous or hollow structures, adding adsorbents owning stronginteraction with sulfur and inserting polysulfide barriers between cathodes and separators. This reviewcategorizes them into physical and chemical confinements according to the influencing mechanism. Withfurther discussion of their merits and flaws, synergy of the physical and chemical confinement is believedto be the feasible avenue that can guide Li-S batteries to the practical application. 展开更多
关键词 Lithium-sulfur batteries Confinement of potysulfides Physical structure design Chemical bonding Shuttle effect
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部