Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate o...Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm.展开更多
Transient memories,which can physically disappear without leaving traceable remains over a period of normal operation,are attracting increasing attention for potential applications in the fields of data security and g...Transient memories,which can physically disappear without leaving traceable remains over a period of normal operation,are attracting increasing attention for potential applications in the fields of data security and green electronics.Resistive random access memory(RRAM)is a promising candidate for next-generation memory.In this context,biocompatible l-carrageenan(l-car),extracted from natural seaweed,is introduced for the fabrication of RRAM devices(Ag/l-car/Pt).Taking advantage of the complexation processes between the functional groups(C–O–C,C–O–H,et al.)and Ag metal ions,a lower migration barrier of Ag ions and a high-speed switching(22.2 ns for SET operation/26 ns for RESET operation)were achieved,resulting in an ultralow power consumption of 56 fJ.And the prepared Ag/l-car/Pt RRAM devices also revealed the capacities of multilevel storage and flexibility.In addition,thanks to the hydrophilic groups of l-car molecule,the RRAM devices can be rapidly dissolved in deionized(DI)water within 13 minutes,showing excellent transient characteristics.This work demonstrates that l-car based RRAM devices have great potential for applications in secure storage applications,flexible electronics and transient electronics.展开更多
Bio-inspired computer modelling brings solutions fromthe living phenomena or biological systems to engineering domains.To overcome the obstruction problem of large-scale wind power consumption in Northwest China,this ...Bio-inspired computer modelling brings solutions fromthe living phenomena or biological systems to engineering domains.To overcome the obstruction problem of large-scale wind power consumption in Northwest China,this paper constructs a bio-inspired computer model.It is an optimal wind power consumption dispatching model of multi-time scale demand response that takes into account the involved high-energy load.First,the principle of wind power obstruction with the involvement of a high-energy load is examined in this work.In this step,highenergy load model with different regulation characteristics is established.Then,considering the multi-time scale characteristics of high-energy load and other demand-side resources response speed,a multi-time scale model of coordination optimization is built.An improved bio-inspired model incorporating particle swarm optimization is applied to minimize system operation and wind curtailment costs,as well as to find the most optimal energy configurationwithin the system.Lastly,we take an example of regional power grid in Gansu Province for simulation analysis.Results demonstrate that the suggested scheduling strategy can significantly enhance the wind power consumption level and minimize the system’s operational cost.展开更多
Mechanical agitation in baffled vessels with turbines plays a vital role in achieving homogeneous fluid mixing and promoting various transfer operations.Therefore,designing vessels with optimal energy efficiency and f...Mechanical agitation in baffled vessels with turbines plays a vital role in achieving homogeneous fluid mixing and promoting various transfer operations.Therefore,designing vessels with optimal energy efficiency and flow dynamics is essential to enhance operational performance and eliminate flow perturbations.Hence,the present research focuses on a numerical investigation of the impact of inclined slots with different angles installed at the side-wall of a cylindrical vessel equipped with a Rushton turbine.This study explores power consumption and vortex size while considering various rotation directions of the impeller with different rotation speeds.The numerical simulations are conducted for Reynolds numbers ranging from 104 to 105,using the RANS k-εturbulence model to govern the flow inside the stirred vessel,accounting for mass and momentum balances.The results have shown that the installation of slots reduces power consumption and vortex size compared to conventional vessel configu-rations.Moreover,increasing the slot angle from 0 to 32.5°further reduces energy consumption and vortex size,especially with negative rotation speeds.On the other hand,increasing the Reynolds numbers leads to a decrease in power consumption and an increase in vortex size.The present research therefore proposes a design for con-structing Rushton-turbine stirred vessels offering optimal operation,characterized by reduced energy consumption and minimized vortex size.展开更多
The electrically driven large-load-ratio six-legged robot with engineering capability can be widely used in outdoor and planetary exploration.However,due to the particularity of its parallel structure,the effective ut...The electrically driven large-load-ratio six-legged robot with engineering capability can be widely used in outdoor and planetary exploration.However,due to the particularity of its parallel structure,the effective utilization rate of energy is not high,which has become an important obstacle to its practical application.To research the power consumption characteristics of robot mobile system is beneficial to speed up it toward practicability.Based on the configuration and walking modes of robot,the mathematical model of the power consumption of mobile system is set up.In view of the tripod gait is often selected for the six-legged robots,the simplified power consumption model of mobile system under the tripod gait is established by means of reducing the dimension of the robot’s statically indeterminate problem and constructing the equal force distribution.Then,the power consumption of robot mobile system is solved under different working conditions.The variable tendencies of the power consumption of robot mobile system are respectively obtained with changes in the rotational angles of hip joint and knee joint,body height,and span.The articulated rotational zones and the ranges of body height and span are determined under the lowest power consumption.According to the walking experiments of prototype,the variable tendencies of the average power consumption of robot mobile system are respectively acquired with changes in duty ratio,body height,and span.Then,the feasibility and correctness of theory analysis are verified in the power consumption of robot mobile system.The proposed analysis method in this paper can provide a reference on the lower power research of the large-load-ratio multi-legged robots.展开更多
The power consumption and electric field distribution in a field emission display (FED) panel is optimized with a novel pixel structure. A circuit model is proposed to estimate the total power consumption in an FED ...The power consumption and electric field distribution in a field emission display (FED) panel is optimized with a novel pixel structure. A circuit model is proposed to estimate the total power consumption in an FED panel which is composed of anode energy consumption, energy loss due to the leakage current and the energy dissipated in the parasitic capacitances. Moreover, the parasitic capacitances play a vital part in the power consumption and driving performance. In order to lower the parasitic capacitances, multiple dielectric layers are used as the gate electrode. Due to different etching speeds, a novel pixel structure is formed. As a result, the power consumption of an FED panel is reduced by 28% in a full white picture, and the electron beam performance is also better than that of the conventional structure.展开更多
A coaxial mixer meeting the actual demand of a system with high and variable viscosity is investigated. It has an outer wall-scraping frame and a double inner impeller consisting of a four-pitched-blade turbine and Ru...A coaxial mixer meeting the actual demand of a system with high and variable viscosity is investigated. It has an outer wall-scraping frame and a double inner impeller consisting of a four-pitched-blade turbine and Rushton turbine. The power consumption and flow field characteristics of the coaxial mixer in laminar and transitional flow are simulated numerically, and then the distribution of velocity field, shear rate and mass flow rate are analyzed. The simulation results indicate that the outer frame has little effect on the power consumption of the double inner impeller whether in laminar or transitional flow, whereas the inner combined impeller has a great effect on the power consumption of the outer frame. Compared with the single rotation mode, the power consumption of the outer frame will decrease in co-rotation mode and increase in counter-rotation mode. The velocity, shear rate and mass flow rate are relatively high near the inner impeller in all operating modes, and only under double-shaft agitation will the mixing performance near the free surface be improved.In addition, these distributions in the co-rotation and counter-rotation modes show little difference, but the co-rotation mode is recommended for the advantage of low power consumption.展开更多
The role of baffles in mechanically stirred tanks is to promote the stability of power drawn by the impeller and to avoid the fluid swirling, thus enhancing mixing. The present paper numerically investigates the baffl...The role of baffles in mechanically stirred tanks is to promote the stability of power drawn by the impeller and to avoid the fluid swirling, thus enhancing mixing. The present paper numerically investigates the baffles effects in a vessel stirred by a Rushton turbine. The geometric factor of interest is the baffle inclination which is varying between 25°, 32.5°, 45°, 70° and 90° at different impeller rotational speeds. The impeller rotational direction has also been varied. The vortex size and power consumption were evaluated for each geometrical configuration. It was found that the best configuration is the baffle inclination by = 70° at a negative angular velocity.展开更多
The power consumption of a variable optical attenuator(VOA) array based on a silica planar lightwave circuit was investigated. The thermal field profile of the device was optimized using the finite-element analysis....The power consumption of a variable optical attenuator(VOA) array based on a silica planar lightwave circuit was investigated. The thermal field profile of the device was optimized using the finite-element analysis. The simulation results showed that the power consumption reduces as the depth of the heat-insulating grooves is deeper, the up-cladding is thinner,the down-cladding is thicker, and the width of the cladding ridge is narrower. The materials component and thickness of the electrodes were also optimized to guarantee the driving voltage under 5 V. The power consumption was successfully reduced to as low as 155 mW at an attenuation of 30 dB in the experiment.展开更多
We report on the design and fabrication of λ-7.2μm distributed feedback quantum cascade lasers lot very high temperature cw operation and low electrical power consumption. The cw operation is reported above 90℃. Fo...We report on the design and fabrication of λ-7.2μm distributed feedback quantum cascade lasers lot very high temperature cw operation and low electrical power consumption. The cw operation is reported above 90℃. For a 2-mm-long and 10-μm-wide laser coated with high-reflectivity on the rear facet, more than 170mW of output power is obtained at 20℃ with a threshold power consumption of 2.4 W, corresponding to 30mW with a threshold power consumption of 3.9 W at 90℃. Robust single-mode emission with a side-mode suppression ratio above 25 dB is continuously tunable by the heat sink temperature or injection current.展开更多
Discrete element method(DEM)simulations of particle mixing process in an intensive mixer were conducted to study the influence of structural and process parameters on the mixing performance and power consumption.The D...Discrete element method(DEM)simulations of particle mixing process in an intensive mixer were conducted to study the influence of structural and process parameters on the mixing performance and power consumption.The DEM model was verified by comparing the impeller torque obtained from simulation with that from experiment.Impeller and vessel torque,coordination number(CN)and mixing index(Relative standard deviation)were adopted to qualify the particle dynamics and mixing performance with different parameters.A method based on cubic polynomial fitting was proposed to determine the critical mixing time and critical specific input work during the mixing process.It is found that the mixing performance and energy efficiency increases with the decrease of impeller offset.The mixing performance is improved slightly with the increase of blade number and the impeller with 3 blades has the highest energy efficiency due to its low input torque.Results indicate that the energy efficiency and the mixing performance increase with the decrease of filling level when the height of granular bed is higher than that of blade.展开更多
A test pattern generator (TPG) which can highly reduce the peak power consumption during built-in self-test (BIST) application is proposed. The proposed TPG, called LPpe-TPG, consists of a linear feedback shift re...A test pattern generator (TPG) which can highly reduce the peak power consumption during built-in self-test (BIST) application is proposed. The proposed TPG, called LPpe-TPG, consists of a linear feedback shift register (LFSR) and some control circuits. A procedure is presented firstly to make compare vectors between pseudorandom test patterns by adding some circuits to the original LFSR and secondly to insert some vectors between two successive pseudorandom test patterns according to the ordinal selection of every two bits of the compare vector. Then the changes between any successive test patterns of the test set generated by the LPpe-TPG are not more than twice. This leads to a decrease of the weighted switching activity (WSA) of the circuit under test (CUT) and therefore a reduction of the power consumption. Experimental results based on some ISCAS' 85 benchmark circuits show that the peak power consumption has been reduced by 25.25% to 64.46%. Also, the effectiveness of our approach to reduce the total and average power consumption is kept, without losing stuck-at fault coverage.展开更多
This paper is concerned with the design and application of coaxial mixers with the aid of analysis of interaction between each individual impeller. Two types of coaxial mixers pitched blade turbine(PBT)-helical ribbon...This paper is concerned with the design and application of coaxial mixers with the aid of analysis of interaction between each individual impeller. Two types of coaxial mixers pitched blade turbine(PBT)-helical ribbon(HR)and inner-outer HR operated in laminar regime were studied experimentally and numerically. The interaction implies synergistic and interference effects, which was revealed through the investigation of axial circulation rate, energy dissipation rate and power consumption. The influence factors including rotational speed ratio,rotating mode and impeller configuration were explored systematically. Quantitative analysis of power consumption involves three parameters: rate of variation in power consumption, interactive mode and ratio of power consumption. Analysis indicated that some important properties were embodied in the power curve.These properties are one-way and two-way interactions, critical speed ratio and dominant impeller. Finally, a new suggestion for power estimation was given.展开更多
Internet of things(IoT)is used in various fields such as smart cities,smart home,manufacturing industries,and healthcare.Its application in healthcare has many advantages and disadvantages.One of its most common proto...Internet of things(IoT)is used in various fields such as smart cities,smart home,manufacturing industries,and healthcare.Its application in healthcare has many advantages and disadvantages.One of its most common protocols is Message Queue Telemetry Transport(MQTT).MQTT protocol works as a publisher/subscriber which is suitable for IoT devices with limited power.One of the drawbacks of MQTT is that it is easy to manipulate.The default security provided by MQTT during user authentication,through username and password,does not provide any type of data encryption,to ensure confidentiality or integrity.This paper focuses on the security of IoT healthcare over the MQTT protocol,through the implementation of lightweight generating and key exchange algorithms.The research contribution of this paper is twofold.The first one is to implement a lightweight generating and key exchange algorithm for MQTT protocol,with the key length of 64 bits through OMNET++simulation.The second one is to obtain lower power consumption from some existing algorithms.Moreover,the power consumption through using the proposed algorithm is 0.78%,1.16%,and 1.93% of power for 256 bits,512 bits,and 1024 respectively.On the other hand,the power consumption without using the encryption is 0.25%,0.51%,and 1.03% for the same three payloads length.展开更多
A study of wireless technologies for IoT applications in terms of power consumption has been presented in this paper. The study focuses on the importance of using low power wireless techniques and modules in IoT appli...A study of wireless technologies for IoT applications in terms of power consumption has been presented in this paper. The study focuses on the importance of using low power wireless techniques and modules in IoT applications by introducing a comparative between different low power wireless communication techniques such as ZigBee, Low Power Wi-Fi, 6LowPAN, LPWA and their modules to conserve power and longing the life for the IoT network sensors. The approach of the study is in term of protocol used and the particular module that achieve that protocol. The candidate protocols are classified according to the range of connectivity between sensor nodes. For short ranges connectivity the candidate protocols are ZigBee, 6LoWPAN and low power Wi-Fi. For long connectivity the candidate is LoRaWAN protocol. The results of the study demonstrate that the choice of module for each protocol plays a vital role in battery life due to the difference of power consumption for each module/protocol. So, the evaluation of protocols with each other depends on the module used.展开更多
This paper describes the unique structure of an intelligent air-cushion system of a hybrid electrical air-cushion track vehicle working on swamp terrain. Fuzzy expert system (FES) is used in this study to control th...This paper describes the unique structure of an intelligent air-cushion system of a hybrid electrical air-cushion track vehicle working on swamp terrain. Fuzzy expert system (FES) is used in this study to control the swamp tracked vehicle's intelligent air cushion system while it operates in the swamp peat. The system will be effective to control the intelligent air-cushion system with total power consumption (PC), cushion clearance height (CCH) and cushion pressure (CP). Ultrasonic displacement sensor, pull-in solenoid electromagnetic switch, pressure sensor, micro controller and battery pH sensor will be incorporated with the FES to investigate experimentally the PC, CCH and CP. In this study, we provide illustration how FES might play an important role in the prediction of power consumption of the vehicle's intelligent air-cushion system. The mean relative error of actual and predicted values from the FES model on total power consumption is found as 10.63 %, which is found to be alomst equal to the acceptable limits of 10%. The goodness of fit of the prediction values from the FES model on PC is found as 0.97.展开更多
A new method of prefetching data blocks from the NVCache to the page cache in main memory and cascading prefetching n-blocks from a hard disk to the NVCache together was proposed to reduce the spin-up frequency of a h...A new method of prefetching data blocks from the NVCache to the page cache in main memory and cascading prefetching n-blocks from a hard disk to the NVCache together was proposed to reduce the spin-up frequency of a hybrid hard disk drive and thus enhance I/O performance.The proposed method consists of three steps:1) Analyzing the pattern of read requests in block units;2) Determining the number of blocks prefetched to the NVCache;3) Replacing blocks in the NVCache according to the block replacement policy.The proposed method can reduce the latency time of a hybrid hard disk and optimize the power consumption of an IPTV set-top box.Experimental results show that the proposed method provides better average response time compared to an existing adaptive multistream prefetching(AMP) method by 25.17%.It also reduces by 20.83% the average power consumption over that of the existing external caching in energy saving storage system(EXCES) method.展开更多
Adaptation is one of the key capabilities of cognitive radio, which focuses on how to adjust the radio parameters to optimize the system performance based on the knowledge of the radio environment and its capability a...Adaptation is one of the key capabilities of cognitive radio, which focuses on how to adjust the radio parameters to optimize the system performance based on the knowledge of the radio environment and its capability and characteristics. In this paper, we consider the cognitive radio adaptation problem for power consumption minimization. The problem is formulated as a constrained power consumption minimization problem, and the biogeography-based optimization (BBO) is introduced to solve this optimization problem. A novel habitat suitability index (HSI) evaluation mechanism is proposed, in which both the power consumption minimization objective and the quality of services (QoS) constraints are taken into account. The results show that under different QoS requirement settings corresponding to different types of services, the algorithm can minimize power consumption while still maintaining the QoS requirements. Comparison with particle swarm optimization (PSO) and cat swarm optimization (CSO) reveals that BBO works better, especially at the early stage of the search, which means that the BBO is a better choice for real-time applications.展开更多
The electrical parameters and power consumption in electromagnetic casting of aluminum ingots were calculated and discussed in detail. Moreover, the induced heat was calculated with the eddy current within the liquid ...The electrical parameters and power consumption in electromagnetic casting of aluminum ingots were calculated and discussed in detail. Moreover, the induced heat was calculated with the eddy current within the liquid column. It is found that the calculated values agree with the measured results. Once the inductor current was given, the magnetic flux density in electromagnetic casting could be calculated and the electromagnetic pressure could be obtained. The key to the EMC is the balance between the electromagnetic pressure and the metallostatic pressure. As the liquid column, controlled by the casting speed and pouring speed through a magnetic sensor, is kept away from the inductor, a gap forms linear relationship between the inductor and ingot. The bigger the current is, the smaller the ingot size is.[展开更多
A matrix encoding scheme for the steelmaking continuous casting( SCC) production scheduling( SCCPS) problem and the corresponding decoding method are proposed. Based on it,a cross entropy( CE) method is adopted and an...A matrix encoding scheme for the steelmaking continuous casting( SCC) production scheduling( SCCPS) problem and the corresponding decoding method are proposed. Based on it,a cross entropy( CE) method is adopted and an improved cross entropy( ICE) algorithm is proposed to solve the SCCPS problem to minimize total power consumption. To describe the distribution of the solution space of the CE method,a probability model is built and used to generate individuals by sampling and a probability updating mechanism is introduced to trace the promising samples. For the ICE algorithm,some samples are generated by the heuristic rules for the shortest makespan due to the relation between the makespan and the total power consumption,which can reduce the search space greatly. The optimal sample in each iteration is retained through a retention mechanism to ensure that the historical optimal sample is not lost so as to improve the efficiency and global convergence. A local search procedure is carried out on a part of better samples so as to improve the local exploitation capability of the ICE algorithm and get a better result. The parameter setting is investigated by the Taguchi method of design-of-experiment. A number of simulation experiments are implemented to validate the effectiveness of the ICE algorithm in solving the SCCPS problem and also the superiority of the ICE algorithm is verified through the comparison with the standard cross entropy( SCE) algorithm.展开更多
基金financial support of the National Natural Science Foundation of China(21776122).
文摘Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm.
基金supported financially by the National Key Research and Development Program of China(Grant No.2023YFB4402301)the National Science Fund for Distinguished Young Scholars(Grant No.52025022)+3 种基金the National Natural Science Foundation of China(Grant Nos.U19A2091,62004016,51732003,52072065,11974072,52372137,and 52272140)the“111”Project(Grant No.B13013)the Fundamental Research Funds for the Central Universities(Grant Nos.2412022QD036 and 2412023YQ004)the funding from Jilin Province(Grant Nos.20210201062GX,20220502002GH,20230402072GH,20230101017JC,and 20210509045RQ)。
文摘Transient memories,which can physically disappear without leaving traceable remains over a period of normal operation,are attracting increasing attention for potential applications in the fields of data security and green electronics.Resistive random access memory(RRAM)is a promising candidate for next-generation memory.In this context,biocompatible l-carrageenan(l-car),extracted from natural seaweed,is introduced for the fabrication of RRAM devices(Ag/l-car/Pt).Taking advantage of the complexation processes between the functional groups(C–O–C,C–O–H,et al.)and Ag metal ions,a lower migration barrier of Ag ions and a high-speed switching(22.2 ns for SET operation/26 ns for RESET operation)were achieved,resulting in an ultralow power consumption of 56 fJ.And the prepared Ag/l-car/Pt RRAM devices also revealed the capacities of multilevel storage and flexibility.In addition,thanks to the hydrophilic groups of l-car molecule,the RRAM devices can be rapidly dissolved in deionized(DI)water within 13 minutes,showing excellent transient characteristics.This work demonstrates that l-car based RRAM devices have great potential for applications in secure storage applications,flexible electronics and transient electronics.
基金supported by the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(No.22IRTSTHN016)the Hubei Natural Science Foundation(No.2021CFB156)the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(KAKENHI)(No.JP21K17737).
文摘Bio-inspired computer modelling brings solutions fromthe living phenomena or biological systems to engineering domains.To overcome the obstruction problem of large-scale wind power consumption in Northwest China,this paper constructs a bio-inspired computer model.It is an optimal wind power consumption dispatching model of multi-time scale demand response that takes into account the involved high-energy load.First,the principle of wind power obstruction with the involvement of a high-energy load is examined in this work.In this step,highenergy load model with different regulation characteristics is established.Then,considering the multi-time scale characteristics of high-energy load and other demand-side resources response speed,a multi-time scale model of coordination optimization is built.An improved bio-inspired model incorporating particle swarm optimization is applied to minimize system operation and wind curtailment costs,as well as to find the most optimal energy configurationwithin the system.Lastly,we take an example of regional power grid in Gansu Province for simulation analysis.Results demonstrate that the suggested scheduling strategy can significantly enhance the wind power consumption level and minimize the system’s operational cost.
文摘Mechanical agitation in baffled vessels with turbines plays a vital role in achieving homogeneous fluid mixing and promoting various transfer operations.Therefore,designing vessels with optimal energy efficiency and flow dynamics is essential to enhance operational performance and eliminate flow perturbations.Hence,the present research focuses on a numerical investigation of the impact of inclined slots with different angles installed at the side-wall of a cylindrical vessel equipped with a Rushton turbine.This study explores power consumption and vortex size while considering various rotation directions of the impeller with different rotation speeds.The numerical simulations are conducted for Reynolds numbers ranging from 104 to 105,using the RANS k-εturbulence model to govern the flow inside the stirred vessel,accounting for mass and momentum balances.The results have shown that the installation of slots reduces power consumption and vortex size compared to conventional vessel configu-rations.Moreover,increasing the slot angle from 0 to 32.5°further reduces energy consumption and vortex size,especially with negative rotation speeds.On the other hand,increasing the Reynolds numbers leads to a decrease in power consumption and an increase in vortex size.The present research therefore proposes a design for con-structing Rushton-turbine stirred vessels offering optimal operation,characterized by reduced energy consumption and minimized vortex size.
基金National Natural Science Foundation of China(Grant No.51505335)Industry University Cooperation Collaborative Education Project of the Department of Higher Education of the Ministry of Education of China(Grant No.202102517001)Doctor Startup Projects of TUTE of China(Grant No.KYQD1806)。
文摘The electrically driven large-load-ratio six-legged robot with engineering capability can be widely used in outdoor and planetary exploration.However,due to the particularity of its parallel structure,the effective utilization rate of energy is not high,which has become an important obstacle to its practical application.To research the power consumption characteristics of robot mobile system is beneficial to speed up it toward practicability.Based on the configuration and walking modes of robot,the mathematical model of the power consumption of mobile system is set up.In view of the tripod gait is often selected for the six-legged robots,the simplified power consumption model of mobile system under the tripod gait is established by means of reducing the dimension of the robot’s statically indeterminate problem and constructing the equal force distribution.Then,the power consumption of robot mobile system is solved under different working conditions.The variable tendencies of the power consumption of robot mobile system are respectively obtained with changes in the rotational angles of hip joint and knee joint,body height,and span.The articulated rotational zones and the ranges of body height and span are determined under the lowest power consumption.According to the walking experiments of prototype,the variable tendencies of the average power consumption of robot mobile system are respectively acquired with changes in duty ratio,body height,and span.Then,the feasibility and correctness of theory analysis are verified in the power consumption of robot mobile system.The proposed analysis method in this paper can provide a reference on the lower power research of the large-load-ratio multi-legged robots.
基金The National Basic Research Program of China (973Program) (No.2003CB314702).
文摘The power consumption and electric field distribution in a field emission display (FED) panel is optimized with a novel pixel structure. A circuit model is proposed to estimate the total power consumption in an FED panel which is composed of anode energy consumption, energy loss due to the leakage current and the energy dissipated in the parasitic capacitances. Moreover, the parasitic capacitances play a vital part in the power consumption and driving performance. In order to lower the parasitic capacitances, multiple dielectric layers are used as the gate electrode. Due to different etching speeds, a novel pixel structure is formed. As a result, the power consumption of an FED panel is reduced by 28% in a full white picture, and the electron beam performance is also better than that of the conventional structure.
基金Supported by the Fundamental Research Funds for the Central Universities(2012QNA4018)the National Natural Science foundation of China(21206144)the Program for Zhejiang Leading Team of S&T Innovation(2011R50005)
文摘A coaxial mixer meeting the actual demand of a system with high and variable viscosity is investigated. It has an outer wall-scraping frame and a double inner impeller consisting of a four-pitched-blade turbine and Rushton turbine. The power consumption and flow field characteristics of the coaxial mixer in laminar and transitional flow are simulated numerically, and then the distribution of velocity field, shear rate and mass flow rate are analyzed. The simulation results indicate that the outer frame has little effect on the power consumption of the double inner impeller whether in laminar or transitional flow, whereas the inner combined impeller has a great effect on the power consumption of the outer frame. Compared with the single rotation mode, the power consumption of the outer frame will decrease in co-rotation mode and increase in counter-rotation mode. The velocity, shear rate and mass flow rate are relatively high near the inner impeller in all operating modes, and only under double-shaft agitation will the mixing performance near the free surface be improved.In addition, these distributions in the co-rotation and counter-rotation modes show little difference, but the co-rotation mode is recommended for the advantage of low power consumption.
文摘The role of baffles in mechanically stirred tanks is to promote the stability of power drawn by the impeller and to avoid the fluid swirling, thus enhancing mixing. The present paper numerically investigates the baffles effects in a vessel stirred by a Rushton turbine. The geometric factor of interest is the baffle inclination which is varying between 25°, 32.5°, 45°, 70° and 90° at different impeller rotational speeds. The impeller rotational direction has also been varied. The vortex size and power consumption were evaluated for each geometrical configuration. It was found that the best configuration is the baffle inclination by = 70° at a negative angular velocity.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA016902)the National Nature Science Foundation of China(Grant Nos.61435013,61405188,and 61627820)
文摘The power consumption of a variable optical attenuator(VOA) array based on a silica planar lightwave circuit was investigated. The thermal field profile of the device was optimized using the finite-element analysis. The simulation results showed that the power consumption reduces as the depth of the heat-insulating grooves is deeper, the up-cladding is thinner,the down-cladding is thicker, and the width of the cladding ridge is narrower. The materials component and thickness of the electrodes were also optimized to guarantee the driving voltage under 5 V. The power consumption was successfully reduced to as low as 155 mW at an attenuation of 30 dB in the experiment.
基金Supported by the National Basic Research Program of China under Grant No 2013CB632801the National Key Research and Development Program under Grant No 2016YFB0402303+2 种基金the National Natural Science Foundation of China under Grant Nos61435014,61627822,61574136 and 61306058the Key Projects of Chinese Academy of Sciences under Grant No ZDRW-XH-2016-4the Beijing Natural Science Foundation under Grant No 4162060
文摘We report on the design and fabrication of λ-7.2μm distributed feedback quantum cascade lasers lot very high temperature cw operation and low electrical power consumption. The cw operation is reported above 90℃. For a 2-mm-long and 10-μm-wide laser coated with high-reflectivity on the rear facet, more than 170mW of output power is obtained at 20℃ with a threshold power consumption of 2.4 W, corresponding to 30mW with a threshold power consumption of 3.9 W at 90℃. Robust single-mode emission with a side-mode suppression ratio above 25 dB is continuously tunable by the heat sink temperature or injection current.
基金the National Natural Science Foundation of China[51475403],and the financial support to the author is gratefully acknowledged.References。
文摘Discrete element method(DEM)simulations of particle mixing process in an intensive mixer were conducted to study the influence of structural and process parameters on the mixing performance and power consumption.The DEM model was verified by comparing the impeller torque obtained from simulation with that from experiment.Impeller and vessel torque,coordination number(CN)and mixing index(Relative standard deviation)were adopted to qualify the particle dynamics and mixing performance with different parameters.A method based on cubic polynomial fitting was proposed to determine the critical mixing time and critical specific input work during the mixing process.It is found that the mixing performance and energy efficiency increases with the decrease of impeller offset.The mixing performance is improved slightly with the increase of blade number and the impeller with 3 blades has the highest energy efficiency due to its low input torque.Results indicate that the energy efficiency and the mixing performance increase with the decrease of filling level when the height of granular bed is higher than that of blade.
文摘A test pattern generator (TPG) which can highly reduce the peak power consumption during built-in self-test (BIST) application is proposed. The proposed TPG, called LPpe-TPG, consists of a linear feedback shift register (LFSR) and some control circuits. A procedure is presented firstly to make compare vectors between pseudorandom test patterns by adding some circuits to the original LFSR and secondly to insert some vectors between two successive pseudorandom test patterns according to the ordinal selection of every two bits of the compare vector. Then the changes between any successive test patterns of the test set generated by the LPpe-TPG are not more than twice. This leads to a decrease of the weighted switching activity (WSA) of the circuit under test (CUT) and therefore a reduction of the power consumption. Experimental results based on some ISCAS' 85 benchmark circuits show that the peak power consumption has been reduced by 25.25% to 64.46%. Also, the effectiveness of our approach to reduce the total and average power consumption is kept, without losing stuck-at fault coverage.
基金Supported by the Shanghai Institute of Technology(10120K146098)Shanghai Municipal Education Commission(1021ZK151009017)
文摘This paper is concerned with the design and application of coaxial mixers with the aid of analysis of interaction between each individual impeller. Two types of coaxial mixers pitched blade turbine(PBT)-helical ribbon(HR)and inner-outer HR operated in laminar regime were studied experimentally and numerically. The interaction implies synergistic and interference effects, which was revealed through the investigation of axial circulation rate, energy dissipation rate and power consumption. The influence factors including rotational speed ratio,rotating mode and impeller configuration were explored systematically. Quantitative analysis of power consumption involves three parameters: rate of variation in power consumption, interactive mode and ratio of power consumption. Analysis indicated that some important properties were embodied in the power curve.These properties are one-way and two-way interactions, critical speed ratio and dominant impeller. Finally, a new suggestion for power estimation was given.
文摘Internet of things(IoT)is used in various fields such as smart cities,smart home,manufacturing industries,and healthcare.Its application in healthcare has many advantages and disadvantages.One of its most common protocols is Message Queue Telemetry Transport(MQTT).MQTT protocol works as a publisher/subscriber which is suitable for IoT devices with limited power.One of the drawbacks of MQTT is that it is easy to manipulate.The default security provided by MQTT during user authentication,through username and password,does not provide any type of data encryption,to ensure confidentiality or integrity.This paper focuses on the security of IoT healthcare over the MQTT protocol,through the implementation of lightweight generating and key exchange algorithms.The research contribution of this paper is twofold.The first one is to implement a lightweight generating and key exchange algorithm for MQTT protocol,with the key length of 64 bits through OMNET++simulation.The second one is to obtain lower power consumption from some existing algorithms.Moreover,the power consumption through using the proposed algorithm is 0.78%,1.16%,and 1.93% of power for 256 bits,512 bits,and 1024 respectively.On the other hand,the power consumption without using the encryption is 0.25%,0.51%,and 1.03% for the same three payloads length.
文摘A study of wireless technologies for IoT applications in terms of power consumption has been presented in this paper. The study focuses on the importance of using low power wireless techniques and modules in IoT applications by introducing a comparative between different low power wireless communication techniques such as ZigBee, Low Power Wi-Fi, 6LowPAN, LPWA and their modules to conserve power and longing the life for the IoT network sensors. The approach of the study is in term of protocol used and the particular module that achieve that protocol. The candidate protocols are classified according to the range of connectivity between sensor nodes. For short ranges connectivity the candidate protocols are ZigBee, 6LoWPAN and low power Wi-Fi. For long connectivity the candidate is LoRaWAN protocol. The results of the study demonstrate that the choice of module for each protocol plays a vital role in battery life due to the difference of power consumption for each module/protocol. So, the evaluation of protocols with each other depends on the module used.
文摘This paper describes the unique structure of an intelligent air-cushion system of a hybrid electrical air-cushion track vehicle working on swamp terrain. Fuzzy expert system (FES) is used in this study to control the swamp tracked vehicle's intelligent air cushion system while it operates in the swamp peat. The system will be effective to control the intelligent air-cushion system with total power consumption (PC), cushion clearance height (CCH) and cushion pressure (CP). Ultrasonic displacement sensor, pull-in solenoid electromagnetic switch, pressure sensor, micro controller and battery pH sensor will be incorporated with the FES to investigate experimentally the PC, CCH and CP. In this study, we provide illustration how FES might play an important role in the prediction of power consumption of the vehicle's intelligent air-cushion system. The mean relative error of actual and predicted values from the FES model on total power consumption is found as 10.63 %, which is found to be alomst equal to the acceptable limits of 10%. The goodness of fit of the prediction values from the FES model on PC is found as 0.97.
基金supported in part by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0004114)in part by the Ministry of Knowledge Economy (MKE) and Korea Institute for Advancement in Technology (KIAT) through the Workforce Development Program in Strategic Technology in part by the MKE (The Ministry of Knowledge Economy), Korea, under the CITRC (Convergence Information Technology Research Center) support program (NIPA-2012-C6150-1201-0001) supervised by the NIPA (National IT Industry Promotion Agency)
文摘A new method of prefetching data blocks from the NVCache to the page cache in main memory and cascading prefetching n-blocks from a hard disk to the NVCache together was proposed to reduce the spin-up frequency of a hybrid hard disk drive and thus enhance I/O performance.The proposed method consists of three steps:1) Analyzing the pattern of read requests in block units;2) Determining the number of blocks prefetched to the NVCache;3) Replacing blocks in the NVCache according to the block replacement policy.The proposed method can reduce the latency time of a hybrid hard disk and optimize the power consumption of an IPTV set-top box.Experimental results show that the proposed method provides better average response time compared to an existing adaptive multistream prefetching(AMP) method by 25.17%.It also reduces by 20.83% the average power consumption over that of the existing external caching in energy saving storage system(EXCES) method.
基金Project supported by the National Natural Science Foundation of China(Grant No.61501356)the Fundamental Research Funds of the Ministry of Education,China(Grant No.JB160101)the Postdoctoral Fund of Shaanxi Province,China
文摘Adaptation is one of the key capabilities of cognitive radio, which focuses on how to adjust the radio parameters to optimize the system performance based on the knowledge of the radio environment and its capability and characteristics. In this paper, we consider the cognitive radio adaptation problem for power consumption minimization. The problem is formulated as a constrained power consumption minimization problem, and the biogeography-based optimization (BBO) is introduced to solve this optimization problem. A novel habitat suitability index (HSI) evaluation mechanism is proposed, in which both the power consumption minimization objective and the quality of services (QoS) constraints are taken into account. The results show that under different QoS requirement settings corresponding to different types of services, the algorithm can minimize power consumption while still maintaining the QoS requirements. Comparison with particle swarm optimization (PSO) and cat swarm optimization (CSO) reveals that BBO works better, especially at the early stage of the search, which means that the BBO is a better choice for real-time applications.
文摘The electrical parameters and power consumption in electromagnetic casting of aluminum ingots were calculated and discussed in detail. Moreover, the induced heat was calculated with the eddy current within the liquid column. It is found that the calculated values agree with the measured results. Once the inductor current was given, the magnetic flux density in electromagnetic casting could be calculated and the electromagnetic pressure could be obtained. The key to the EMC is the balance between the electromagnetic pressure and the metallostatic pressure. As the liquid column, controlled by the casting speed and pouring speed through a magnetic sensor, is kept away from the inductor, a gap forms linear relationship between the inductor and ingot. The bigger the current is, the smaller the ingot size is.[
基金Key Project of Shandong Provincial Natural Science Foundation,China(No.ZR2010FZ001)National High-Tech Research and Development Program of China(863 Program)(No.2007AA04Z157)
文摘A matrix encoding scheme for the steelmaking continuous casting( SCC) production scheduling( SCCPS) problem and the corresponding decoding method are proposed. Based on it,a cross entropy( CE) method is adopted and an improved cross entropy( ICE) algorithm is proposed to solve the SCCPS problem to minimize total power consumption. To describe the distribution of the solution space of the CE method,a probability model is built and used to generate individuals by sampling and a probability updating mechanism is introduced to trace the promising samples. For the ICE algorithm,some samples are generated by the heuristic rules for the shortest makespan due to the relation between the makespan and the total power consumption,which can reduce the search space greatly. The optimal sample in each iteration is retained through a retention mechanism to ensure that the historical optimal sample is not lost so as to improve the efficiency and global convergence. A local search procedure is carried out on a part of better samples so as to improve the local exploitation capability of the ICE algorithm and get a better result. The parameter setting is investigated by the Taguchi method of design-of-experiment. A number of simulation experiments are implemented to validate the effectiveness of the ICE algorithm in solving the SCCPS problem and also the superiority of the ICE algorithm is verified through the comparison with the standard cross entropy( SCE) algorithm.