Superjunction(SJ)is one of the most innovative concepts in the field of power semiconductor devices and is often referred to as a"milestone"in power MOS.Its balanced charge field modulation mechanism breaks ...Superjunction(SJ)is one of the most innovative concepts in the field of power semiconductor devices and is often referred to as a"milestone"in power MOS.Its balanced charge field modulation mechanism breaks through the strong dependency between the doping concentration in the drift region and the breakdown voltage V_(B)in conventional devices.This results in a reduction of the trade-off relationship between specific on-resistance R_(on,sp)and V_(B)from the conventional R_(on,sp)∝V_(B)^(2.5)to R_(on,sp)∝W·V_(B)^(1.32),and even to R_(on,sp)∝W·V_(B)^(1.03).As the exponential term coefficient decreases,R_(on,sp)decreases with the cell width W,exhibiting a development pattern reminiscent of"Moore's Law".This paper provides an overview of the latest research developments in SJ power semiconductor devices.Firstly,it introduces the minimum specific on-resistance R_(on,min)theory of SJ devices,along with its combination with special effects like 3-D depletion and tunneling,discussing the development of R_(on,min)theory in the wide bandgap SJ field.Subsequently,it discusses the latest advancements in silicon-based and wide bandgap SJ power devices.Finally,it introduces the homogenization field(HOF)and high-K voltage-sustaining layers derived from the concept of SJ charge balance.SJ has made significant progress in device performance,reliability,and integration,and in the future,it will continue to evolve through deeper integration with different materials,processes,and packaging technologies,enhancing the overall performance of semiconductor power devices.展开更多
An oscillating buoy wave power device (OD) is a device extracting wave power by an oscillating buoy. Being excited by waves, the buoy heaves up and down to convert wave energy into electricity by means of a mechanical...An oscillating buoy wave power device (OD) is a device extracting wave power by an oscillating buoy. Being excited by waves, the buoy heaves up and down to convert wave energy into electricity by means of a mechanical or hydraulic device. Compared with an Oscillating Water Column (OWC) wave power device, the OD has the same capture width ratio as the OWC does, but much higher secondary conversion efficiency. Moreover, the chamber of the OWC, which is the most expensive and difficult part to be built, is not necessary for the OD, so it is easier to construct an OD. In this paper, a numerical calculation is conducted for an optimal design of the OD firstly, then a model of the device is built and, a model test is carried out in a wave tank. The results show that the total efficiency of the OD is much higher than that of the OWC and that the OD is a promising wave power device.展开更多
Wide band-gap gallium nitride(GaN)device has the advantages of large band-gap,high electron mobility and low dielectric constant.Compared with traditional Si devices,these advantages make it suitable for fast-switchin...Wide band-gap gallium nitride(GaN)device has the advantages of large band-gap,high electron mobility and low dielectric constant.Compared with traditional Si devices,these advantages make it suitable for fast-switching and high-power-density power electronics converters,thus reducing the overall weight,volume and power consumption of power electronic systems.As a review paper,this paper summarizes the characteristics and development of the state-of-art GaN power devices with different structures,analyzes the research status,and forecasts the application prospect of GaN devices.In addition,the problems and challenges of GaN devices were discussed.And thanks to the advantages of GaN devices,both the power density and efficiency of motor drive system are improved,which also have been presented in this paper.展开更多
Effective storage,processing and analyzing of power device condition monitoring data faces enormous challenges.A framework is proposed that can support both MapReduce and Graph for massive monitoring data analysis at ...Effective storage,processing and analyzing of power device condition monitoring data faces enormous challenges.A framework is proposed that can support both MapReduce and Graph for massive monitoring data analysis at the same time based on Aliyun DTplus platform.First,power device condition monitoring data storage based on MaxCompute table and parallel permutation entropy feature extraction based on MaxCompute MapReduce are designed and implemented on DTplus platform.Then,Graph based k-means algorithm is implemented and used for massive condition monitoring data clustering analysis.Finally,performance tests are performed to compare the execution time between serial program and parallel program.Performance is analyzed from CPU cores consumption,memory utilization and parallel granularity.Experimental results show that the designed framework and parallel algorithms can efficiently process massive power device condition monitoring data.展开更多
Interconnections in microelectronic packaging are not only the physical carrier to realize the function of electronic circuits,but also the weak spots in reliability tests.Most of failures in power devices are caused ...Interconnections in microelectronic packaging are not only the physical carrier to realize the function of electronic circuits,but also the weak spots in reliability tests.Most of failures in power devices are caused by the malfunction of interconnections,including failure of bonding wire as well as cracks of solder layer.In fact,the interconnection failure of power devices is the result of a combination of factors such as electricity,temperature,and force.It is significant to investigate the failure mechanisms of various factors for the failure analysis of interconnections in power devices.This paper reviews the main failure modes of bonding wire and solder layer in the interconnection structure of power devices,and its failure mechanism.Then the reliability test method and failure analysis techniques of interconnection in power device are introduced.These methods are of great significance to the reliability analysis and life prediction of power devices.展开更多
In this review,the application of light ion irradiation is discussed for tailoring novel functional materials and for improving the performance in SiC or Si based electrical power devices.The deep traps and electronic...In this review,the application of light ion irradiation is discussed for tailoring novel functional materials and for improving the performance in SiC or Si based electrical power devices.The deep traps and electronic disorder produced by light ion irradiation can modify the electrical,magnetic,and optical properties of films(e.g.,dilute ferromagnetic semiconductors and topological materials).Additionally,benefiting from the high reproducibility,precise manipulation of functional depth and density of defects,as well as the flexible patternability,the helium or proton ion irradiation has been successfully employed in improving the dynamic performance of SiC and Si based PiN diode power devices by reducing their majority carrier lifetime,although the static performance is sacrificed due to deep level traps.Such a trade-off has been regarded as the key point to compromise the static and dynamic performances of power devices.As a result,herein the light ion irradiation is highlighted in both exploring new physics and optimizing the performance in functional materials and electrical devices.展开更多
Wind energy (WE) has become immensely popular for distributed generation (DG). This case presents the monitoring, modeling, control, and analysis of the two-level three-phase WE based DG system where the electric ...Wind energy (WE) has become immensely popular for distributed generation (DG). This case presents the monitoring, modeling, control, and analysis of the two-level three-phase WE based DG system where the electric grid interfacing custom power device (CPD) is controlled to perform the smart exchanging of electric power as per the Indian grid code. WE is connected to DC link of CPD for the grid integration purpose. The CPD based distributed static compensator, i.e. the distributed static synchronous compensator (DSTATCOM), is utilized for injecting the wind power to the point of common coupling (PCC) and also acts against the reactive power demand. The novel indirect current control scheme of DSTATCOM regulates the power import and export between the WE and the electric grid system. It also acts as a compensator and performs both the key features simultaneously. Hence, the penetration of additional generated WE power to the grid is increased by 20% to 25%. The burden of reactive power compensation from grid is reduced by DSTATCOM. The modeling and simulation are done in MATLAB. The results are validated and verified.展开更多
There is currently great optimism within the electronics community that gallium oxide(Ga_(2)O_(3)) ultra-wide bandgap semiconductors have unprecedented prospects for eventually revolutionizing a rich variety of power ...There is currently great optimism within the electronics community that gallium oxide(Ga_(2)O_(3)) ultra-wide bandgap semiconductors have unprecedented prospects for eventually revolutionizing a rich variety of power electronic applications. Specially, benefiting from its ultra-high bandgap of around 4.8 eV, it is expected that the emerging Ga_(2)O_(3) technology would offer an exciting platform to deliver massively enhanced device performance for power electronics and even completely new applications.展开更多
As the large-scale development of wind farms(WFs)progresses,the connection ofWFs to the regional power grid is evolving from the conventional receiving power grid to the sending power grid with a high proportion of wi...As the large-scale development of wind farms(WFs)progresses,the connection ofWFs to the regional power grid is evolving from the conventional receiving power grid to the sending power grid with a high proportion of wind power(WP).Due to the randomness of WP output,higher requirements are put forward for the voltage stability of each node of the regional power grid,and various reactive power compensation devices(RPCDs)need to be rationally configured to meet the stable operation requirements of the system.This paper proposes an optimal configuration method for multi-type RPCDs in regional power grids with a high proportion of WP.The RPCDs are located according to the proposed static voltage stability index(VSI)and dynamicVSI based on dynamic voltage drop area,and the optimal configuration model of RPCDs is constructed with the lowest construction cost as the objective function to determine the installed capacity of various RPCDs.Finally,the corresponding regional power grid model for intensive access to WFs is constructed on the simulation platform to verify the effectiveness of the proposed method.展开更多
This paper presents the study and application of the electronic device anti-interference techniques underhigh voltage and/or heavy current electro-magnetic circumstance in power system.[
Novel high-voltage, high-side and low-side power devices, whose control circuits are referred to as the tub, are proposed and investigated to reduce chip area and improve the reliability of high-voltage integrated cir...Novel high-voltage, high-side and low-side power devices, whose control circuits are referred to as the tub, are proposed and investigated to reduce chip area and improve the reliability of high-voltage integrated circuits. By using the tub circuit to control a branch circuit consisting of a PMOS and a resistor, a pulse signal is generated to control the low-side n-LDMOS after being processed by a low-voltage circuit. Thus, the high-voltage level-shifting circuit is not needed any more, and the parasitic effect of the conventional level-shifting circuit is eliminated. Moreover, the specific on-resistance of the proposed low-side device is reduced by more than 14.3% compared with the conventional one. In the meantime, integrated low-voltage power supplies for the low-voltage circuit and the tub circuit are also proposed. Simulations are performed with MEDICI and SPICE, and the results show that the expectant functions are achieved well.展开更多
To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is car...To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is carried out in the towing tank. Free decay is conducted to obtain attenuation characteristics of the VAFTCEPGD, and characteristics of mooring forces and motion response, floating condition, especially the lateral displacement of the VAFTCEPGD are obtained from the towing in still water. Tension response of the #1 mooring line and vibration characteristics of the VAFTCEPGD in regular waves as well as in level 4 irregular wave sea state with the current velocity of 0.6 m/s. The results can be reference for theoretical study and engineering applications related to VAFTCEPGD.展开更多
Energy shortages and environmental pollution are becoming increasingly severe globally. The exploitation and utilization of renewable energy have become an effective way to alleviate these problems. To improve power p...Energy shortages and environmental pollution are becoming increasingly severe globally. The exploitation and utilization of renewable energy have become an effective way to alleviate these problems. To improve power production capacity, power output quality, and cost effectiveness, comprehensive marine energy utilization has become an inevitable trend in marine energy development. Based on a semi-submersible wind-tidal combined power generation device,a three-dimensional frequency domain potential flow theory is used to study the hydrodynamic performance of such a device. For this study, the RAOs and hydrodynamic coefficients of the floating carrier platform to the regular wave were obtained. The influence of the tidal turbine on the platform in terms of frequency domain was considered as added mass and damping. The direct load of the tidal turbine was obtained by CFX.FORTRAN software was used for the second development of adaptive query workload aware software, which can include the external force. The motion response of the platform to the irregular wave and the tension of the mooring line were calculated under the limiting condition(one mooring line breakage). The results showed that the motion response of the carrier to the surge and sway direction is more intense, but the swing amplitude is within the acceptable range. Even in the worst case scenario, the balance position of the platform was still in the positioning range, which met the requirements of the working sea area. The safety factor of the mooring line tension also complied with the requirements of the design specification. Therefore, it was found that the hydrodynamic performance and motion responses of a semi-submersible wind-tidal combined power generation device can meet the power generation requirements under all design conditions, and the device presents a reliable power generation system.展开更多
Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships amon...Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.展开更多
The high dynamic power requirements present in modern railway transportation systems raise research challenges for an optimal operation of railway electrification. This paper presents a Monte Carlo analysis on the app...The high dynamic power requirements present in modern railway transportation systems raise research challenges for an optimal operation of railway electrification. This paper presents a Monte Carlo analysis on the application of a power transfer device installed in the neutral zone and exchanging active power between two sections. The main analyzed parameters are the active power balance in the two neighbor traction power substations and the system power losses. A simulation framework is presented to comprise the desired analysis and a universe of randomly distributed scenarios are tested to evaluate the effectiveness of the power transfer device system. The results show that the density of trains and the relative branch length of a traction power substation should be considered in the evaluation phase of the best place to install a power transfer device, towards the reduction of the operational power losses, while maintaining the two substations balanced in terms of active power.展开更多
Research on high voltage(HV)silicon carbide(SiC)power semiconductor devices has attracted much attention in recent years.This paper overviews the development and status of HV SiC devices.Meanwhile,benefits of HV SiC d...Research on high voltage(HV)silicon carbide(SiC)power semiconductor devices has attracted much attention in recent years.This paper overviews the development and status of HV SiC devices.Meanwhile,benefits of HV SiC devices are presented.The technologies and challenges for HV SiC device application in converter design are discussed.The state-of-the-art applications of HV SiC devices are also reviewed.展开更多
Various ocean energy technologies have been developed that harness several kinds of renewable energy resources of the ocean. However, these technologies suffer from problems such as high construction and maintenance c...Various ocean energy technologies have been developed that harness several kinds of renewable energy resources of the ocean. However, these technologies suffer from problems such as high construction and maintenance costs, restrictive installation requirements and damage by extraordinary weather conditions. In this paper, we propose a lightweight and FPGD (flexible power generation device) that overcomes these problems. The FPGD essentially consists of piezoelectric films and silicon rubber. Because the FPGD is small and flexible, it is anticipated to efficiently convert fluid energy into electrical energy even when the fluid energy is low. We perform several experiments to confirm the effectiveness of the FPGD and we discuss the results.展开更多
The paper describes the application of an ANN based approach to the identification of the parameters relevant to the steady state behavior of composite power electronic device models of circuit simulation software. ...The paper describes the application of an ANN based approach to the identification of the parameters relevant to the steady state behavior of composite power electronic device models of circuit simulation software. The identification of model parameters of IGBT in PSPICE using BP neural network is illustrated.展开更多
As the power electronics technology is widely used in the power system, it may also bring the DC component to the transformer operation, resulting in DC bias and may cause great harm to the transformer. In this articl...As the power electronics technology is widely used in the power system, it may also bring the DC component to the transformer operation, resulting in DC bias and may cause great harm to the transformer. In this article, the device to protect transformer from DC magnetic bias is designed. On the basis of load DC current, a magnetic bias protection device is developed by combination of current sensor, electric information collection circuit, signal filtering circuit, signal modulating circuits, fault feature judging circuit, automatic range tracking circuit, intelligent logic synthesis unit and implementation output circuit. By operating in temperature-rise test equipment in the high power electronic lab, the device is proved with reliability, high sensitivity and worthy of promotion and application.展开更多
The growth, fabrication, and characterization of 0. 2μm gate-length AlGaN/GaN HEMTs, with a high mobility GaN thin layer as a channel,grown on (0001) sapphire substrates by MOCVD,are described. The unintentionally ...The growth, fabrication, and characterization of 0. 2μm gate-length AlGaN/GaN HEMTs, with a high mobility GaN thin layer as a channel,grown on (0001) sapphire substrates by MOCVD,are described. The unintentionally doped 2.5μm thick GaN epilayers grown with the same conditions as the GaN channel have a room temperature electron mobility of 741cmz^2(V· s) at an electron concentration of 1.52 × 10^16 cm^-3. The resistivity of the thick GaN buffer layer is greater than 10^8Ω· cm at room temperature. The 50mm HEMT wafers grown on sapphire substrates show an average sheet resistance of 440.9Ω□ with uniformity better than 96%. Devices of 0.2μm× 40μm gate periphery exhibit a maximum extrinsic transconductance of 250mS/mm and a current gain cutoff frequency of 77GHz. The AlGaN/GaN HEMTs with 0.8mm gate width display a total output power of 1.78W (2.23W/mm) and a linear gain of 13.3dB at 8GHz. The power devices also show a saturated current density as high as 1.07A/mm at a gate bias of 0.5V.展开更多
文摘Superjunction(SJ)is one of the most innovative concepts in the field of power semiconductor devices and is often referred to as a"milestone"in power MOS.Its balanced charge field modulation mechanism breaks through the strong dependency between the doping concentration in the drift region and the breakdown voltage V_(B)in conventional devices.This results in a reduction of the trade-off relationship between specific on-resistance R_(on,sp)and V_(B)from the conventional R_(on,sp)∝V_(B)^(2.5)to R_(on,sp)∝W·V_(B)^(1.32),and even to R_(on,sp)∝W·V_(B)^(1.03).As the exponential term coefficient decreases,R_(on,sp)decreases with the cell width W,exhibiting a development pattern reminiscent of"Moore's Law".This paper provides an overview of the latest research developments in SJ power semiconductor devices.Firstly,it introduces the minimum specific on-resistance R_(on,min)theory of SJ devices,along with its combination with special effects like 3-D depletion and tunneling,discussing the development of R_(on,min)theory in the wide bandgap SJ field.Subsequently,it discusses the latest advancements in silicon-based and wide bandgap SJ power devices.Finally,it introduces the homogenization field(HOF)and high-K voltage-sustaining layers derived from the concept of SJ charge balance.SJ has made significant progress in device performance,reliability,and integration,and in the future,it will continue to evolve through deeper integration with different materials,processes,and packaging technologies,enhancing the overall performance of semiconductor power devices.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.59979025),the High Tech Research and Development(863)Program(Grant No.2001AA516010)and the Science&Technology Program of Guangdong(C32004)
文摘An oscillating buoy wave power device (OD) is a device extracting wave power by an oscillating buoy. Being excited by waves, the buoy heaves up and down to convert wave energy into electricity by means of a mechanical or hydraulic device. Compared with an Oscillating Water Column (OWC) wave power device, the OD has the same capture width ratio as the OWC does, but much higher secondary conversion efficiency. Moreover, the chamber of the OWC, which is the most expensive and difficult part to be built, is not necessary for the OD, so it is easier to construct an OD. In this paper, a numerical calculation is conducted for an optimal design of the OD firstly, then a model of the device is built and, a model test is carried out in a wave tank. The results show that the total efficiency of the OD is much higher than that of the OWC and that the OD is a promising wave power device.
基金This work was supported in part by the National Natural Science Foundation of China under Project 51877006,and in part by the Aeronautical Science Foundation of China 20162851016。
文摘Wide band-gap gallium nitride(GaN)device has the advantages of large band-gap,high electron mobility and low dielectric constant.Compared with traditional Si devices,these advantages make it suitable for fast-switching and high-power-density power electronics converters,thus reducing the overall weight,volume and power consumption of power electronic systems.As a review paper,this paper summarizes the characteristics and development of the state-of-art GaN power devices with different structures,analyzes the research status,and forecasts the application prospect of GaN devices.In addition,the problems and challenges of GaN devices were discussed.And thanks to the advantages of GaN devices,both the power density and efficiency of motor drive system are improved,which also have been presented in this paper.
基金This work has been supported by.Central University Research Fund(No.2016MS116,No.2016MS117,No.2018MS074)the National Natural Science Foundation(51677072).
文摘Effective storage,processing and analyzing of power device condition monitoring data faces enormous challenges.A framework is proposed that can support both MapReduce and Graph for massive monitoring data analysis at the same time based on Aliyun DTplus platform.First,power device condition monitoring data storage based on MaxCompute table and parallel permutation entropy feature extraction based on MaxCompute MapReduce are designed and implemented on DTplus platform.Then,Graph based k-means algorithm is implemented and used for massive condition monitoring data clustering analysis.Finally,performance tests are performed to compare the execution time between serial program and parallel program.Performance is analyzed from CPU cores consumption,memory utilization and parallel granularity.Experimental results show that the designed framework and parallel algorithms can efficiently process massive power device condition monitoring data.
基金supported by the National Natural Science Foundation of China(Grant No.61904127 and 62004144)Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515010651)+2 种基金Fundamental Research Funds for the Central Universities(Grant No.202401002,203134004,20212VA100 and 2021VB006)Hubei Provincial Natural Science Foundation of China(Grant No.2020CFA032)National Key R&D Program of China(Grant No.2019YFB1704600)。
文摘Interconnections in microelectronic packaging are not only the physical carrier to realize the function of electronic circuits,but also the weak spots in reliability tests.Most of failures in power devices are caused by the malfunction of interconnections,including failure of bonding wire as well as cracks of solder layer.In fact,the interconnection failure of power devices is the result of a combination of factors such as electricity,temperature,and force.It is significant to investigate the failure mechanisms of various factors for the failure analysis of interconnections in power devices.This paper reviews the main failure modes of bonding wire and solder layer in the interconnection structure of power devices,and its failure mechanism.Then the reliability test method and failure analysis techniques of interconnection in power device are introduced.These methods are of great significance to the reliability analysis and life prediction of power devices.
基金This work was supported by Key-Area Research and Development Program of Guangdong Province(No.2019B 010132001)This work was also partially funded by Guangdong Basic and Applied Basic Research Foundation(2020A1515110891).
文摘In this review,the application of light ion irradiation is discussed for tailoring novel functional materials and for improving the performance in SiC or Si based electrical power devices.The deep traps and electronic disorder produced by light ion irradiation can modify the electrical,magnetic,and optical properties of films(e.g.,dilute ferromagnetic semiconductors and topological materials).Additionally,benefiting from the high reproducibility,precise manipulation of functional depth and density of defects,as well as the flexible patternability,the helium or proton ion irradiation has been successfully employed in improving the dynamic performance of SiC and Si based PiN diode power devices by reducing their majority carrier lifetime,although the static performance is sacrificed due to deep level traps.Such a trade-off has been regarded as the key point to compromise the static and dynamic performances of power devices.As a result,herein the light ion irradiation is highlighted in both exploring new physics and optimizing the performance in functional materials and electrical devices.
文摘Wind energy (WE) has become immensely popular for distributed generation (DG). This case presents the monitoring, modeling, control, and analysis of the two-level three-phase WE based DG system where the electric grid interfacing custom power device (CPD) is controlled to perform the smart exchanging of electric power as per the Indian grid code. WE is connected to DC link of CPD for the grid integration purpose. The CPD based distributed static compensator, i.e. the distributed static synchronous compensator (DSTATCOM), is utilized for injecting the wind power to the point of common coupling (PCC) and also acts against the reactive power demand. The novel indirect current control scheme of DSTATCOM regulates the power import and export between the WE and the electric grid system. It also acts as a compensator and performs both the key features simultaneously. Hence, the penetration of additional generated WE power to the grid is increased by 20% to 25%. The burden of reactive power compensation from grid is reduced by DSTATCOM. The modeling and simulation are done in MATLAB. The results are validated and verified.
文摘There is currently great optimism within the electronics community that gallium oxide(Ga_(2)O_(3)) ultra-wide bandgap semiconductors have unprecedented prospects for eventually revolutionizing a rich variety of power electronic applications. Specially, benefiting from its ultra-high bandgap of around 4.8 eV, it is expected that the emerging Ga_(2)O_(3) technology would offer an exciting platform to deliver massively enhanced device performance for power electronics and even completely new applications.
基金supported by the Science and Technology Project of State Grid Corporation Headquarters(No.5100-202323008A-1-1-ZN).
文摘As the large-scale development of wind farms(WFs)progresses,the connection ofWFs to the regional power grid is evolving from the conventional receiving power grid to the sending power grid with a high proportion of wind power(WP).Due to the randomness of WP output,higher requirements are put forward for the voltage stability of each node of the regional power grid,and various reactive power compensation devices(RPCDs)need to be rationally configured to meet the stable operation requirements of the system.This paper proposes an optimal configuration method for multi-type RPCDs in regional power grids with a high proportion of WP.The RPCDs are located according to the proposed static voltage stability index(VSI)and dynamicVSI based on dynamic voltage drop area,and the optimal configuration model of RPCDs is constructed with the lowest construction cost as the objective function to determine the installed capacity of various RPCDs.Finally,the corresponding regional power grid model for intensive access to WFs is constructed on the simulation platform to verify the effectiveness of the proposed method.
文摘This paper presents the study and application of the electronic device anti-interference techniques underhigh voltage and/or heavy current electro-magnetic circumstance in power system.[
基金supported by the 2011 Ph.D.Programs Foundation of the Ministry of Education of China(No.20110185110003)
文摘Novel high-voltage, high-side and low-side power devices, whose control circuits are referred to as the tub, are proposed and investigated to reduce chip area and improve the reliability of high-voltage integrated circuits. By using the tub circuit to control a branch circuit consisting of a PMOS and a resistor, a pulse signal is generated to control the low-side n-LDMOS after being processed by a low-voltage circuit. Thus, the high-voltage level-shifting circuit is not needed any more, and the parasitic effect of the conventional level-shifting circuit is eliminated. Moreover, the specific on-resistance of the proposed low-side device is reduced by more than 14.3% compared with the conventional one. In the meantime, integrated low-voltage power supplies for the low-voltage circuit and the tub circuit are also proposed. Simulations are performed with MEDICI and SPICE, and the results show that the expectant functions are achieved well.
基金supported by the National Natural Science Foundation of China(Grant Nos.51309068,51309069,51579055 and 11572094)the Special Funded of Innovational Talents of Science and Technology in Harbin(Grant No.RC2014QN001008)+1 种基金the China Postdoctoral Science Foundation(Grant Nos.2014M561334 and 2015T80330)the Heilongjiang Postdoctoral Science Foundation(Grant No.LBH-Z14060)
文摘To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is carried out in the towing tank. Free decay is conducted to obtain attenuation characteristics of the VAFTCEPGD, and characteristics of mooring forces and motion response, floating condition, especially the lateral displacement of the VAFTCEPGD are obtained from the towing in still water. Tension response of the #1 mooring line and vibration characteristics of the VAFTCEPGD in regular waves as well as in level 4 irregular wave sea state with the current velocity of 0.6 m/s. The results can be reference for theoretical study and engineering applications related to VAFTCEPGD.
基金financially supported by the National Natural Science Foundation of China(Nos.5177906251579055)+1 种基金the Fundamental Research Funds for the Central Universities of China(No.HEUCFP201714)Shenzhen Special Fund for the future industries(No.JCYJ20160331163751413)
文摘Energy shortages and environmental pollution are becoming increasingly severe globally. The exploitation and utilization of renewable energy have become an effective way to alleviate these problems. To improve power production capacity, power output quality, and cost effectiveness, comprehensive marine energy utilization has become an inevitable trend in marine energy development. Based on a semi-submersible wind-tidal combined power generation device,a three-dimensional frequency domain potential flow theory is used to study the hydrodynamic performance of such a device. For this study, the RAOs and hydrodynamic coefficients of the floating carrier platform to the regular wave were obtained. The influence of the tidal turbine on the platform in terms of frequency domain was considered as added mass and damping. The direct load of the tidal turbine was obtained by CFX.FORTRAN software was used for the second development of adaptive query workload aware software, which can include the external force. The motion response of the platform to the irregular wave and the tension of the mooring line were calculated under the limiting condition(one mooring line breakage). The results showed that the motion response of the carrier to the surge and sway direction is more intense, but the swing amplitude is within the acceptable range. Even in the worst case scenario, the balance position of the platform was still in the positioning range, which met the requirements of the working sea area. The safety factor of the mooring line tension also complied with the requirements of the design specification. Therefore, it was found that the hydrodynamic performance and motion responses of a semi-submersible wind-tidal combined power generation device can meet the power generation requirements under all design conditions, and the device presents a reliable power generation system.
文摘Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.
基金funded by FCT (Fun- dacāo Ciência e Tecnologia) under grant PD/BD/128051/2016the Shift2Rail In2Stempo project (grant 777515)+3 种基金partially supported by FCT R&D Unit SYSTEC—POCI-01-0145-FEDER-006933SYSTEC funded by FEDER funds through COMPETE2020by national funds through the FCT/MECco-funded by FEDER, in the scope of the PT2020 Partnership Agreement。
文摘The high dynamic power requirements present in modern railway transportation systems raise research challenges for an optimal operation of railway electrification. This paper presents a Monte Carlo analysis on the application of a power transfer device installed in the neutral zone and exchanging active power between two sections. The main analyzed parameters are the active power balance in the two neighbor traction power substations and the system power losses. A simulation framework is presented to comprise the desired analysis and a universe of randomly distributed scenarios are tested to evaluate the effectiveness of the power transfer device system. The results show that the density of trains and the relative branch length of a traction power substation should be considered in the evaluation phase of the best place to install a power transfer device, towards the reduction of the operational power losses, while maintaining the two substations balanced in terms of active power.
基金This work made use of the Engineering Research Center Shared Facilities supported by the Engineering Research Center Program of the National Science Foundation and DOE under ARPA-E and Power America Program and the CURENT Industry Partnership Program.
文摘Research on high voltage(HV)silicon carbide(SiC)power semiconductor devices has attracted much attention in recent years.This paper overviews the development and status of HV SiC devices.Meanwhile,benefits of HV SiC devices are presented.The technologies and challenges for HV SiC device application in converter design are discussed.The state-of-the-art applications of HV SiC devices are also reviewed.
文摘Various ocean energy technologies have been developed that harness several kinds of renewable energy resources of the ocean. However, these technologies suffer from problems such as high construction and maintenance costs, restrictive installation requirements and damage by extraordinary weather conditions. In this paper, we propose a lightweight and FPGD (flexible power generation device) that overcomes these problems. The FPGD essentially consists of piezoelectric films and silicon rubber. Because the FPGD is small and flexible, it is anticipated to efficiently convert fluid energy into electrical energy even when the fluid energy is low. We perform several experiments to confirm the effectiveness of the FPGD and we discuss the results.
文摘The paper describes the application of an ANN based approach to the identification of the parameters relevant to the steady state behavior of composite power electronic device models of circuit simulation software. The identification of model parameters of IGBT in PSPICE using BP neural network is illustrated.
文摘As the power electronics technology is widely used in the power system, it may also bring the DC component to the transformer operation, resulting in DC bias and may cause great harm to the transformer. In this article, the device to protect transformer from DC magnetic bias is designed. On the basis of load DC current, a magnetic bias protection device is developed by combination of current sensor, electric information collection circuit, signal filtering circuit, signal modulating circuits, fault feature judging circuit, automatic range tracking circuit, intelligent logic synthesis unit and implementation output circuit. By operating in temperature-rise test equipment in the high power electronic lab, the device is proved with reliability, high sensitivity and worthy of promotion and application.
文摘The growth, fabrication, and characterization of 0. 2μm gate-length AlGaN/GaN HEMTs, with a high mobility GaN thin layer as a channel,grown on (0001) sapphire substrates by MOCVD,are described. The unintentionally doped 2.5μm thick GaN epilayers grown with the same conditions as the GaN channel have a room temperature electron mobility of 741cmz^2(V· s) at an electron concentration of 1.52 × 10^16 cm^-3. The resistivity of the thick GaN buffer layer is greater than 10^8Ω· cm at room temperature. The 50mm HEMT wafers grown on sapphire substrates show an average sheet resistance of 440.9Ω□ with uniformity better than 96%. Devices of 0.2μm× 40μm gate periphery exhibit a maximum extrinsic transconductance of 250mS/mm and a current gain cutoff frequency of 77GHz. The AlGaN/GaN HEMTs with 0.8mm gate width display a total output power of 1.78W (2.23W/mm) and a linear gain of 13.3dB at 8GHz. The power devices also show a saturated current density as high as 1.07A/mm at a gate bias of 0.5V.