Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave pr...Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave propagation in this structure is very complicated, leading to the unfavorable defect localization accuracy. Aiming at this situation, a high precision UGW technique for inspection of local surface defect in power transmission line is proposed. The technique is realized by adopting a novel segmental piezoelectric ring transducer and transducer mounting scheme, combining with the comprehensive characterization of wave propagation and circumferential defect positioning with multiple piezoelectric elements. Firstly, the propagation path of guided waves in the multi-wires of transmission line under the proposed technique condition is investigated experimentally. Next, the wave velocities are calculated by dispersion curves and experiment test respectively, and from comparing of the two results, the guided wave mode propagated in transmission line is confirmed to be F(1,1) mode. Finally, the axial and circumferential positioning of local defective wires in transmission line are both achieved, by using multiple piezoelectric elements to surround the stands and send elastic waves into every single wire. The proposed research can play a role of guiding the development of highly effective UGW method and detecting system for multi-wire transmission line.展开更多
Electrical pollution is a worldwide concern,because it is potentially harmful to human health.Trees not only play a significant role in moderating the climate,but also can be used as shields against electrical polluti...Electrical pollution is a worldwide concern,because it is potentially harmful to human health.Trees not only play a significant role in moderating the climate,but also can be used as shields against electrical pollution.Shielding effects on the electric field strength under transmission lines by two tree species,Populus alba and Larix gmelinii,were examined in this study.The electrical resistivity at different heights of trees was measured using a PiCUS sonic tomograph,which can image the electrical impedance for trees.The electric field strength around the trees was measured with an elf field strength measurement system,HI-3604,and combined with tree resistivity to develop a model for calculating the electric field intensity around trees using the finite element method.In addition,the feasibility of the finite element method was confirmed by comparing the calculated results and experimental data.The results showed that the trees did reduce the electric field strength.The electric field intensity was reduced by 95.6%,and P.alba was better than L.gmelinii at shielding.展开更多
High resistance fault poses an enormous challenge to the existing algorithms of fault detection and fault classification.In this paper,the standard deviation and accumulation method are employed to perform the fault d...High resistance fault poses an enormous challenge to the existing algorithms of fault detection and fault classification.In this paper,the standard deviation and accumulation method are employed to perform the fault detection and classification.It is primarily built in two stages.Firstly,the standard deviations for the measured current’s signals of the local and remote terminals is computed to extract the fault feature.Secondly,the cumulative approach is used to enlarge the fault feature to perform the high resistance fault.The proposed scheme is known as Standard Deviation Index(SDI),and it is obtained for the three phases and zero sequence.The proposed algorithm has been tested through different fault circumstances such as multiple faults locations,fault resistances,and fault inception time.Moreover,far-end faults with high-resistance,faults happened nearby the terminal,faults considering variable loading angle,sudden load change,different sampling frequency,bad signaling and a fault occurred in the presence of series compensation are also discussed.The results show that the proposed scheme performed remarkably well regarding the fault with resistance up to 1.5kΩand can be detected within a millisecond after the fault inception.Additionally,the computational simplicity that characterizes the processes makes it more efficient and suitable for domain applications.展开更多
This paper gives an insight on the effect of transmission line temperature variations, resulting from loading and weather conditions changes, on a power system's steady state and dynamic performance. The impact of dy...This paper gives an insight on the effect of transmission line temperature variations, resulting from loading and weather conditions changes, on a power system's steady state and dynamic performance. The impact of dynamic load models on system stability is also studied. The steady-state and dynamic stability simulation results of a 39 bus system for constant line impedance (the traditional simulation practice) are compared to the results with estimated, but realistic, temperature varied line impedances using PSLF (positive sequence load flow) software. The modulated line impedances will affect the thermal loading levels and voltage profiles of buses under steady state response, while the dynamic results will show improved damping in electro-mechanical oscillations at generator buses.展开更多
MIMO technique can provide higher information throughput and transmission reliability for the PLC system.However,the MIMO-PLC system based on three-conductor cable has a high correlation among its sub-channels.Spatial...MIMO technique can provide higher information throughput and transmission reliability for the PLC system.However,the MIMO-PLC system based on three-conductor cable has a high correlation among its sub-channels.Spatial multiplexing technology will be affected by the spatial correlation between MIMO-PLC sub-channels.To reduce the system bit error rate caused by MIMO-PLC correlation among sub-channels,this paper proposed a phase rotation precoding scheme for the 2×2 closed-loop MIMO-PLC system.According to the channel transfer function of high correlation MIMO-PLC system,the phase rotation precoding matrix F is calculated,and the transmission signal matrix S is modulated with the F,the code distance at the receiving point with smallest code distance is increased by phase rotation.Simulation results show that the scheme can effectively reduce the bit error rate of the 2×2 MIMO-PLC system based on ML detection,and significantly improve the system performance.展开更多
We present a novel transient fault detection and classification approach in power transmission lines based on graph convolutional neural network.Compared with the existing techniques,the proposed approach considers ex...We present a novel transient fault detection and classification approach in power transmission lines based on graph convolutional neural network.Compared with the existing techniques,the proposed approach considers explicit spatial information in sampling sequences as prior knowledge and it has stronger feature extraction ability.On this basis,a framework for transient fault detection and classification is created.Graph structure is generated to provide topology information to the task.Our approach takes the adjacency matrix of topology graph and the bus voltage signals during a sampling period after transient faults as inputs,and outputs the predicted classification results rapidly.Furthermore,the proposed approach is tested in various situations and its generalization ability is verified by experimental results.The results show that the proposed approach can detect and classify transient faults more effectively than the existing techniques,and it is practical for online transmission line protection for its rapidness,high robustness and generalization ability.展开更多
Image method is used in this paper to calculate the value of magnetic field near high-voltage transmission lines and electric railways. Areas in which the magnetic field is less than 0.002 Gauss are given and the magn...Image method is used in this paper to calculate the value of magnetic field near high-voltage transmission lines and electric railways. Areas in which the magnetic field is less than 0.002 Gauss are given and the magnetic pollution of high-voltage power transmission lines and electric railways is discussed展开更多
Short circuit and ground failures that are quite common in power transmission lines are investigated. These failures are designed considering a system that is supplied by this wind system, and analyses are interpreted...Short circuit and ground failures that are quite common in power transmission lines are investigated. These failures are designed considering a system that is supplied by this wind system, and analyses are interpreted. In the study, a system is set up and it is fed by the wind turbine. Furthermore, the mathematical model of wind turbine and generator is prepared and the results obtained from the simulation are evaluated. The short circuit and ground fault analyzes were performed separately for each of the three phases. ATP (alternative transient program)-EMTP (electromagnetic transients program) program is used in the analysis and the results obtained were found to be quite compatible.展开更多
In this paper, a new carbon fiber based cathode — a low-outgassing-rate carbon fiber array cathode — is investigated experimentally, and the experimental results are compared with those of a polymer velvet cathode. ...In this paper, a new carbon fiber based cathode — a low-outgassing-rate carbon fiber array cathode — is investigated experimentally, and the experimental results are compared with those of a polymer velvet cathode. The carbon fiber array cathode is constructed by inserting bunches of carbon fibers into the cylindrical surface of the cathode. In experiment, the diode base pressure is maintained at 1×10^(-2) Pa–2×10^(-2) Pa, and the diode is driven by a compact pulsed power system which can provide a diode voltage of about 100 kV and pulse duration of about 30 ns at a repetition rate of tens of Hz.Real-time pressure data are measured by a magnetron gauge. Under the similar conditions, the experimental results show that the outgassing rate of the carbon fiber array cathode is an order smaller than that of the velvet cathode and that this carbon fiber array cathode has better shot-to-shot stability than the velvet cathode. Hence, this carbon fiber array cathode is demonstrated to be a promising cathode for the radial diode, which can be used in magnetically insulated transmission line oscillator(MILO) and relativistic magnetron(RM).展开更多
基金Supported by National Natural Science Foundation of China(Grant No51605229)Natural Science Foundation of Higher Education Institutions of Jiangsu Province,China(Grant No.16KJB460016)+1 种基金the“333”Project of Jiangsu Province,China(Grant No.BRA2015310)China Postdoctora Science Foundation(Grant No.2016M601844)
文摘Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave propagation in this structure is very complicated, leading to the unfavorable defect localization accuracy. Aiming at this situation, a high precision UGW technique for inspection of local surface defect in power transmission line is proposed. The technique is realized by adopting a novel segmental piezoelectric ring transducer and transducer mounting scheme, combining with the comprehensive characterization of wave propagation and circumferential defect positioning with multiple piezoelectric elements. Firstly, the propagation path of guided waves in the multi-wires of transmission line under the proposed technique condition is investigated experimentally. Next, the wave velocities are calculated by dispersion curves and experiment test respectively, and from comparing of the two results, the guided wave mode propagated in transmission line is confirmed to be F(1,1) mode. Finally, the axial and circumferential positioning of local defective wires in transmission line are both achieved, by using multiple piezoelectric elements to surround the stands and send elastic waves into every single wire. The proposed research can play a role of guiding the development of highly effective UGW method and detecting system for multi-wire transmission line.
基金financially supported by the National Key Research and Development Program(2017YFD0600101)the Central University Basic Research and Operating Expenses of Special Funding(2572016CB04)the Harbin Application Technology Research and Development Projects(2016RQQXJ134)
文摘Electrical pollution is a worldwide concern,because it is potentially harmful to human health.Trees not only play a significant role in moderating the climate,but also can be used as shields against electrical pollution.Shielding effects on the electric field strength under transmission lines by two tree species,Populus alba and Larix gmelinii,were examined in this study.The electrical resistivity at different heights of trees was measured using a PiCUS sonic tomograph,which can image the electrical impedance for trees.The electric field strength around the trees was measured with an elf field strength measurement system,HI-3604,and combined with tree resistivity to develop a model for calculating the electric field intensity around trees using the finite element method.In addition,the feasibility of the finite element method was confirmed by comparing the calculated results and experimental data.The results showed that the trees did reduce the electric field strength.The electric field intensity was reduced by 95.6%,and P.alba was better than L.gmelinii at shielding.
基金This work is supported by National Natural Science Foundation of China(51777173,51525702).
文摘High resistance fault poses an enormous challenge to the existing algorithms of fault detection and fault classification.In this paper,the standard deviation and accumulation method are employed to perform the fault detection and classification.It is primarily built in two stages.Firstly,the standard deviations for the measured current’s signals of the local and remote terminals is computed to extract the fault feature.Secondly,the cumulative approach is used to enlarge the fault feature to perform the high resistance fault.The proposed scheme is known as Standard Deviation Index(SDI),and it is obtained for the three phases and zero sequence.The proposed algorithm has been tested through different fault circumstances such as multiple faults locations,fault resistances,and fault inception time.Moreover,far-end faults with high-resistance,faults happened nearby the terminal,faults considering variable loading angle,sudden load change,different sampling frequency,bad signaling and a fault occurred in the presence of series compensation are also discussed.The results show that the proposed scheme performed remarkably well regarding the fault with resistance up to 1.5kΩand can be detected within a millisecond after the fault inception.Additionally,the computational simplicity that characterizes the processes makes it more efficient and suitable for domain applications.
文摘This paper gives an insight on the effect of transmission line temperature variations, resulting from loading and weather conditions changes, on a power system's steady state and dynamic performance. The impact of dynamic load models on system stability is also studied. The steady-state and dynamic stability simulation results of a 39 bus system for constant line impedance (the traditional simulation practice) are compared to the results with estimated, but realistic, temperature varied line impedances using PSLF (positive sequence load flow) software. The modulated line impedances will affect the thermal loading levels and voltage profiles of buses under steady state response, while the dynamic results will show improved damping in electro-mechanical oscillations at generator buses.
基金supported by the National Natural Science Foundation of China (No.62001166)supported by the Natural Science Foundation of Hebei Province of China (E2019502186,F2019201362)supported by the Fundamental Research Funds for the Central Universities (2021MS073)。
文摘MIMO technique can provide higher information throughput and transmission reliability for the PLC system.However,the MIMO-PLC system based on three-conductor cable has a high correlation among its sub-channels.Spatial multiplexing technology will be affected by the spatial correlation between MIMO-PLC sub-channels.To reduce the system bit error rate caused by MIMO-PLC correlation among sub-channels,this paper proposed a phase rotation precoding scheme for the 2×2 closed-loop MIMO-PLC system.According to the channel transfer function of high correlation MIMO-PLC system,the phase rotation precoding matrix F is calculated,and the transmission signal matrix S is modulated with the F,the code distance at the receiving point with smallest code distance is increased by phase rotation.Simulation results show that the scheme can effectively reduce the bit error rate of the 2×2 MIMO-PLC system based on ML detection,and significantly improve the system performance.
基金This work was supported by the National Key Research and Development Program of China under Grant 2018YFF0214704.
文摘We present a novel transient fault detection and classification approach in power transmission lines based on graph convolutional neural network.Compared with the existing techniques,the proposed approach considers explicit spatial information in sampling sequences as prior knowledge and it has stronger feature extraction ability.On this basis,a framework for transient fault detection and classification is created.Graph structure is generated to provide topology information to the task.Our approach takes the adjacency matrix of topology graph and the bus voltage signals during a sampling period after transient faults as inputs,and outputs the predicted classification results rapidly.Furthermore,the proposed approach is tested in various situations and its generalization ability is verified by experimental results.The results show that the proposed approach can detect and classify transient faults more effectively than the existing techniques,and it is practical for online transmission line protection for its rapidness,high robustness and generalization ability.
文摘Image method is used in this paper to calculate the value of magnetic field near high-voltage transmission lines and electric railways. Areas in which the magnetic field is less than 0.002 Gauss are given and the magnetic pollution of high-voltage power transmission lines and electric railways is discussed
文摘Short circuit and ground failures that are quite common in power transmission lines are investigated. These failures are designed considering a system that is supplied by this wind system, and analyses are interpreted. In the study, a system is set up and it is fed by the wind turbine. Furthermore, the mathematical model of wind turbine and generator is prepared and the results obtained from the simulation are evaluated. The short circuit and ground fault analyzes were performed separately for each of the three phases. ATP (alternative transient program)-EMTP (electromagnetic transients program) program is used in the analysis and the results obtained were found to be quite compatible.
基金Project supported by the National Natural Science Foundation of China(Grant No.61671457)
文摘In this paper, a new carbon fiber based cathode — a low-outgassing-rate carbon fiber array cathode — is investigated experimentally, and the experimental results are compared with those of a polymer velvet cathode. The carbon fiber array cathode is constructed by inserting bunches of carbon fibers into the cylindrical surface of the cathode. In experiment, the diode base pressure is maintained at 1×10^(-2) Pa–2×10^(-2) Pa, and the diode is driven by a compact pulsed power system which can provide a diode voltage of about 100 kV and pulse duration of about 30 ns at a repetition rate of tens of Hz.Real-time pressure data are measured by a magnetron gauge. Under the similar conditions, the experimental results show that the outgassing rate of the carbon fiber array cathode is an order smaller than that of the velvet cathode and that this carbon fiber array cathode has better shot-to-shot stability than the velvet cathode. Hence, this carbon fiber array cathode is demonstrated to be a promising cathode for the radial diode, which can be used in magnetically insulated transmission line oscillator(MILO) and relativistic magnetron(RM).