The precipitation kinetics of 2519 A aluminum alloy after different cold rolling reductions before aging was investigated by hardness test and differential scanning calorimetry(DSC). The activation energy was calcul...The precipitation kinetics of 2519 A aluminum alloy after different cold rolling reductions before aging was investigated by hardness test and differential scanning calorimetry(DSC). The activation energy was calculated according to DSC curves using single heating rate method. The microstructures of as-rolled and peak-aged alloys were observed by transmission electron microscopy(TEM). The result shows that the age hardenability reduces and the activation energy rises with increasing the reduction from 7% to 40%. Nonuniform dislocations are found in as-rolled alloy and inhomogeneous distribution of θ′ phase is revealed in peak-aged alloy when the reduction is 15%. The inhomogeneous distribution of θ′ phase may be related to the age hardenability reducing and activation energy rising.展开更多
The electrical resistivity of NZ30K-Mg alloy was measured at different heating rates during continuous heating to stud the precipitation kinetics.Two kinds of metastable phases,β" and β',formed during the heating....The electrical resistivity of NZ30K-Mg alloy was measured at different heating rates during continuous heating to stud the precipitation kinetics.Two kinds of metastable phases,β" and β',formed during the heating.Kissinger method and differentia isoconversional method were employed to assess the precipitation kinetic parameters of NZ30K-Mg alloy,activation energy Eα an pre-exponential factor A'α.The fraction of transformation(α) and the precipitation sequence in NZ30K-Mg alloy were determinec Continuous heating transformation(CHT) and isothermal heating transformation(IHT) diagrams were further obtained for guidin the aging of NZ30K-Mg alloy.The analysis shows that the precipitation kinetic parameters of NZ30K-Mg alloy can be obtaine accurately using isoconversional method.展开更多
Thermal analysis is one of the most used techniques for analyzing the behavior of aluminum alloys in order to analyze the precipitation of Guinier-Preston(GP)zones and different phases formed.In the present work,the b...Thermal analysis is one of the most used techniques for analyzing the behavior of aluminum alloys in order to analyze the precipitation of Guinier-Preston(GP)zones and different phases formed.In the present work,the behavior of the Al-5.46wt.%Zn-1.67wt.%Mg alloy was studied.The mechanism and kinetics of precipitation of the GP,the metastable phaseη′and the equilibrium phaseηwere investigated using DSC carried out between room temperature and 480℃at heating rates of 5,10,15 and 20℃/min.The apparent activation energies,calculated by DSC from isothermal calculation method using JMAK model,for GP,η′andηwere 56,79 and 96 kJ/mol,respectively,and those calculated by non-isothermal calculation method using Kissinger methods were 57,82 and 99 kJ/mol,respectively.The values of Avrami parameter,n,from isothermal calculation,during the precipitation of the GP,η′andηwere 1.103,1.9075 and 1.92,respectively,and those calculated by non-isothermal were 0.86,2.30 and 2.24,respectively.The results show that GP zones formation is governed by the migration of Zn and Mg atoms while the precipitation of theη′metastable phase and theηstable phase is governed by both the migration and the diffusion of the solute atoms.展开更多
The morphology of manganese sulfide formed during thin slab continuous casting process in low-carbon steel produced by compact strip production (CSP) technique was investigated. Using transmission electron microscop...The morphology of manganese sulfide formed during thin slab continuous casting process in low-carbon steel produced by compact strip production (CSP) technique was investigated. Using transmission electron microscopy analysis, it was seen that a majority of manganese sulfides precipitated at austenite grain boundaries, the morphologies of which were spherical or close to the spherical shape and the size of MnS precipitates ranged from 30 nm to 100 nm. A mathematical model of the manganese sulfide precipitation in this process was developed based on classical nucleation theory. Under the given conditions, the starting and finishing precipitation temperatures of MnS in the continuous casting thin slab of the studied low-carbon steel are 1 189 ℃ and 1 171 ℃, respectively, and the average diameter of MnS precipitates is about 48 nm within this precipitation temperature range. The influences of chemical components and thermo-mechanical processing conditions on the precipitation behavior of MnS in the same process were also discussed.展开更多
On the basis of the thermodynamic calculation of precipitation and considering the effect of strain on the precipitation behavior and chemical composition (Si and Mn), the kinetics of precipitation from austenite ha...On the basis of the thermodynamic calculation of precipitation and considering the effect of strain on the precipitation behavior and chemical composition (Si and Mn), the kinetics of precipitation from austenite has been investigated for different temperatures and strains. Nucleation theory and the solubility product of niobium, carbon, and nitrogen in austenite have been used to derive equations for the start time of precipitation as a function of temperature and composition. The value of n in Avrami equation was determined using the available experimental data from the published reports, which indicated that n is a constant independent of temperature and the end time of precipitation is a function of n and the start time of precipitation. The values of the start time and end time of precipitation predicted by the new model are compared with the experimental values and a good agreement was obtained between both.展开更多
The precipitation behavior of Cr2 N during isothermal aging in the temperature range from 700 ℃ to 950 ℃ in Fe-18Cr-12Mn-0.48N (in mass percent) high nitrogen austenitic stainless steel, including morphology and c...The precipitation behavior of Cr2 N during isothermal aging in the temperature range from 700 ℃ to 950 ℃ in Fe-18Cr-12Mn-0.48N (in mass percent) high nitrogen austenitic stainless steel, including morphology and content of precipitate, was investigated using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The isothermal precipitation kinetics curve of Cr2 N and the corresponding precipitation activation energy were obtained. The results show that Cr2N phase precipitates in a cellular way and its morphology is transformed from initial granular precipitates to lamellar ones in the cell with increasing aging time. The nose temperature of Cr2 N precipitation is about 800 ℃, with a corresponding incubation period of 30 min, and the ceiling temperature of Cr2N precipitation is 950℃. The diffusionactivation energy of Cr2 N precipitation is 296 kJ/mol.展开更多
A universal numerical model based on the particle size distribution(PSD)approach has been developed for the simulation of precipitation kinetics in multicomponent alloys during isothermal ageing.Nucleation was impleme...A universal numerical model based on the particle size distribution(PSD)approach has been developed for the simulation of precipitation kinetics in multicomponent alloys during isothermal ageing.Nucleation was implemented utilizing the classical nucleation theory(CNT).Growth and coarsening were modeled by a single growth kinetics equation,which is constructed based on the interfacial diffusion flux balance and the capillarity effect.Only partial off-diagonal terms in the diffusion matrix(diffusion of individual components in the matrix)were taken into account in the calculations to minimize the computational cost while coupling with CALPHAD to extract thermodynamics equilibrium around the interface.A new feature of the model is the incorporation of a more realistic spatial site distribution via a Voronoi construction in the characteristic cell,for the purpose of modifying the diffusion distance.Computational predictions of the precipitate dimensions and the precipitation kinetics were compared with the atom probe tomography(APT)measurements on ternary Ni-Al-Cr alloys isothermally aged at 873 K.It is found that the temporal evolution of the dimensions and composition of the precipitates is well captured,as is the dependence on changes in the alloy composition.The new modification with Voronoi construction demonstrates that the overall precipitation kinetics depends on the density and the spatial site distribution of precipitates.The ability to handle sophisticated alloy chemistries by quantitative equations,the compositional sensitivity of microstructural characteristics emerging from the simulation results,and the ability to visualize the spatial distribution of precipitates make the work very promising for multicomponent alloy design and optimization.展开更多
Based on thermodynamics and kinetics, precipitation behavior of microalloyed steels was analyzed. Deformation greatly promotes isothermal carbonitride precipitation and makes C-curve shift leftwards. The position and ...Based on thermodynamics and kinetics, precipitation behavior of microalloyed steels was analyzed. Deformation greatly promotes isothermal carbonitride precipitation and makes C-curve shift leftwards. The position and shape of C-curve also depend on the content of Nb and N. C-curve shifts leftwards a little when N content increases and the nose temperature is raised with increasing Nb content. Deformation shortened precipitation start time during continuous cooling, raised precipitation start temperature, accelerated precipitation kinetics of carbonitrides. With decreasing the finishing temperature and coiling temperature, the precipitates volume fraction increases and strength increment is raised during hot rolling. The simulated results are in agreement with experiment results.展开更多
Differential scanning calorimetry (DSC) has been used extensively to study different solid state reactions. The signals measured in DSC are associated with the growth and dissolution of different precipitates during...Differential scanning calorimetry (DSC) has been used extensively to study different solid state reactions. The signals measured in DSC are associated with the growth and dissolution of different precipitates during a specific heat cycle. The time-temperature dependence of heat cycles and the corresponding heat flow evolution measured in the sample by DSC provide valuable experimental information about the phase evolution and the precipitation kinetics in the material. The thermo-kinetic computer simulation was used to predict the DSC signals of samples taken from 6xxx and 2xxx alloys. In the model, the evolution of different metastable and stable phases and the role and influence of excess quenched-in vacancies in the early stage of precipitation were taken into account. Transmission electron microscopy (TEM) and high-resolution TEM were used to verify the existence of precipitates, their size and number density at specific points of the DSC curves.展开更多
Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparative...Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP.展开更多
Kinetic behaviors of niobium and titanium carbide precipitates in iron are simulated with cluster dynamics.The simulations,carried out in austenite and ferrite for niobium carbides,and in austenite for titanium carbid...Kinetic behaviors of niobium and titanium carbide precipitates in iron are simulated with cluster dynamics.The simulations,carried out in austenite and ferrite for niobium carbides,and in austenite for titanium carbide,are analyzed for dependences on temperature,solute concentration,and initial cluster distribution.The results are presented for different temperatures and solute concentrations,compared to experimental data available.They show little impact of initial cluster distribution beyond a certain relaxation time and that highly dilute alloys with monomers only present a significantly different behavior from denser alloys or ones with different initial cluster distributions.展开更多
The forming behaviour of AW-7075-T6sheet was studied across a range of shock heat treatment(SHT)temperatures of200?480°C.After SHT,formability of the samples was investigated by tension and deep drawing tests at ...The forming behaviour of AW-7075-T6sheet was studied across a range of shock heat treatment(SHT)temperatures of200?480°C.After SHT,formability of the samples was investigated by tension and deep drawing tests at room temperature.Differential scanning calorimetry(DSC)was used to study the precipitation states of the AW-7075sheet in the as-received and shockheat treated conditions.Formability was started to improve with increasing shock heat treatment temperature from300°C onwards.Strain hardening resulted from the dissolution ofη′precipitates and the coarsening of remaining precipitates were found to contributeto the increase in formability at room temperature.Re-precipitation and coarsening of the precipitates were responsible for thepost-paint baking strength of SHT samples.展开更多
The precipitation kinetics of AlN and MnS in low carbon aluminium-killed steel was calculated.Transmission electron microscopy(TEM),energy disperse spectroscopy(EDS) and phase analyses have been used to investigat...The precipitation kinetics of AlN and MnS in low carbon aluminium-killed steel was calculated.Transmission electron microscopy(TEM),energy disperse spectroscopy(EDS) and phase analyses have been used to investigate the morphology,compositions and particle size distribution of AlN and MnS precipitates in three positions of the coil.The particles of AlN and MnS precipitates in the ferrite region after coiling and distributes along and adjacent to the ferrite grain boundaries.The shapes of AlN are plate-like,the precipitates size is about 10 to 60 nm;the shapes of MnS are spherical,the precipitates size is about 200 to 600 nm.The precipitation behavior of AlN is sensitive to the isothermal temperature and holding time,the precipitation quantity and particle size distribution of AlN in different positions of coil are unequal展开更多
A 27.6Cr-3.6Mo-2Ni alloy was solution treated and then aged for a long time to study the effect of grain size on precipitation behaviour by using X-ray diffraction, scanning electron microscopy and transmission electr...A 27.6Cr-3.6Mo-2Ni alloy was solution treated and then aged for a long time to study the effect of grain size on precipitation behaviour by using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The experimental results demonstrated that the average grain size increased from 46.3 ± 6.2 to 101.8 ± 13.5 μm and the grain boundary length per unit area decreased from 3.3 × 10^(4) to 1.7 × 10^(4) m/m^(2) with an increasing annealing temperature from 1100 to 1200 ℃. After ageing at 800 ℃, the σ-phase,χ-phase and Laves phase were observed. As the ageing time increased, the σ-phase notably increased, while the χ-phase and Laves phase gradually decreased before finally vanishing after ageing for 400 h. The σ-phase precipitation kinetics curves consisted of two parts, and the grain size had a significant effect on the first stage of the precipitation curves due to the abundance of nucleation sites in the specimens with finer grains. The Laves phase was transformed from Nb(C,N) particles by Nb diffusion. As the ageing time increased, the ferrite phase decreased due to the transformation of the ferrite phase to the σ-phase, and then C was expelled into the untransformed ferrite grains. Moreover, new Nb(C,N) particles were formed by Nb diffusion from the Laves phase, resulting in the absence of the Laves phase.展开更多
In this paper,the evolutions of microstructure and mechanical properties of Cu-l.9Be-0.3Ni-0.15Co alloy were studied.The alloys in the condition of the solution treated(soft state) and 37% cold rolled(hard state) ...In this paper,the evolutions of microstructure and mechanical properties of Cu-l.9Be-0.3Ni-0.15Co alloy were studied.The alloys in the condition of the solution treated(soft state) and 37% cold rolled(hard state) were aged at 320 ℃for different time,respectively.The mechanical properties,electrical conductivity and microstructure of the alloy aged for different time were analyzed.Additionally,the precipitation kinetics of Cu-1.9Be-0.3Ni-0.15Co alloys was investigated.X-ray diffraction and transmission electron microscopy results reveal that both continuous precipitation and discontinuous precipitation existed in the hard-state Cu-l.9Be-0.3Ni-0.15Co alloy during the whole aging process;the sequence of continuous precipitation is G.P.zone →γ″→γ′→γ.Furthermore,the precipitation transformation mechanism of softstate alloy is homogeneous nucleation,while hard-state alloy shows the heterogeneous nucleation(interface nucleation)with the nucleation rate of both states decaying rapidly to zero during aging at 320 ℃.展开更多
The service performance of heat resistance steels is largely determined by the precipitation kinetics.The nucleation-growth-coarsening behaviors of precipitates in G115 martensitic heat resistance steel during long-te...The service performance of heat resistance steels is largely determined by the precipitation kinetics.The nucleation-growth-coarsening behaviors of precipitates in G115 martensitic heat resistance steel during long-term aging at 650℃ have been systemically investigated.The microstructural characteristics,precipitate morphology and alloying element distribution were studied by scanning electron microscopy,transmission electron microscopy and scanning transmission electron microscopy.The lognormal distribution fitting combined with the multiple regression analysis was adopted to evaluate the precipitate size distributions.Laves phase has longer incubation time,and its coarsening rate is almost one order of magnitude higher in comparison with that of M_(23)C_(6) carbide.Furthermore,the nucleation rate,number density,average radius,and volume fraction of two precipitates are simulated based on the classical nucleation theory and the modified Langer-Schwartz model.The precipitation behavior of Laves phase can be well explained with the Fe-W system as the interfacial energy takes 0.10 J/m^(2).In contrast,the simulation results of M_(23)C_(6) carbide in the Fe-Cr-C system are significantly overestimated,which results from the inhibitory effect of boron on coarsening.展开更多
The strain induced effect on the precipitation kinetics of a high strength low alloy (HSLA) steel microalloyed with Nb-V was investigated.The stress relaxation method was employed to determine the dependence of the pr...The strain induced effect on the precipitation kinetics of a high strength low alloy (HSLA) steel microalloyed with Nb-V was investigated.The stress relaxation method was employed to determine the dependence of the precipitation-time-temperature curves (PTT) on previous strain.Relaxation tests were performed over a temperature range of 850 to 1150 oC at a constant strain rate of 0.1 s-1 at three deformation levels,namely 5,15 and 25 pct.Field emission scanning electron microscopy (FESEM) was used to study the progress of precipitation on samples obtained by interrupted relaxation test at different times.Results display the acceleration kinetics at increasing strain.Theoretical models are discussed and compared with the present experimental results.展开更多
To study the influence of aging heat treatments on the microstructure of single crystal superalloys with high content of refractory elements and optimal the aging heat treatment regimes, a single crystal superalloy co...To study the influence of aging heat treatments on the microstructure of single crystal superalloys with high content of refractory elements and optimal the aging heat treatment regimes, a single crystal superalloy containing 22 wt% refractory elements was investigated.Results show that for the experimental alloy, even the homogenization-solution heat treatment for 25 h cannot homogenize the alloying elements completely. During primary aging heat treatment, γ' phase grows larger and turns to regular cubes. Higher aging temperature induces larger γ' cubes. For specimens with primary aging heat treated at 1120 ℃,γ' morphology does not change apparently during secondary aging heat treatment. For specimens with primary aging heat treatment at 1150 ℃,γ'phase in interdendrite grows obviously comparing with that in dendrites. By analyzing the precipitating kinetics of γ'phase, it is found that owning to the dendrite segregation and different aging heat treatment temperatures, γ' phase at different regions grows under the control of different factors at different aging heat treatment stages. The two controlling factors that are driving forces of phase transformation and element diffusion rate induce obviously different growth rates of γ' phase. As a result, the γ'-precipitating behaviors are variable based on different solute concentrations and aging temperatures. For advanced single crystal superalloys that are supposed to be used at relatively high temperatures, the final γ' size after aging heat treatment is suggested to be close to the crossing point of diffusion controlling curve and driving force controlling curve corresponding to the serving temperature. And then,high-temperature properties can be improved.展开更多
The precipitation kinetics of secondary phases in two austeno-ferritic lean duplex stainless steels(lean DSS)were examined after aging the materials at 800 ℃.Owing to the instability of ferrite,all DSS are known to...The precipitation kinetics of secondary phases in two austeno-ferritic lean duplex stainless steels(lean DSS)were examined after aging the materials at 800 ℃.Owing to the instability of ferrite,all DSS are known to be sensitive to solid-state phase transformations in the critical temperature range 600-1,000 ℃ and different secondary phases may form,depending on composition and microstructure.The performed thermodynamic simulations revealed the proneness to the precipitation of such phases also have been done in lean DSS,but only information on the equilibrium microstructures were achieved.Therefore,the materials were aged at various times,in order to verify the simulations and determine the precipitation kinetics.The occurred structural modifications were observed and quantified by scanning electron microscope and X-ray diffraction measurements,determining phase type,composition and volumetric fraction.At 800 ℃,grade 2101 was found to be only affected by Cr_2N nitrides precipitation,whereas a significant amount of σ-phase was found to form in LDX 2404 for treatment longer than 1 h,almost totally replacing ferrite after 50 h.Up to now,the intermetallic σ-phase has been observed only in the high alloyed DSS,and the unexpected precipitation in grade 2404 highlighted that the increased content of molybdenum in this steel might be considered as determinant for the formation.展开更多
The quench sensitivity of Al-Cu-Mg alloy was investigated at different thicknesses of the thick plate.The quenching process was simulated via finite element analysis(FEA);time-temperature-property(TTP)curves and time-...The quench sensitivity of Al-Cu-Mg alloy was investigated at different thicknesses of the thick plate.The quenching process was simulated via finite element analysis(FEA);time-temperature-property(TTP)curves and time-temperature-transformation(TTT)curves were obtained through hardness test and differential scanning calorimetry(DSC)test;and the microstructural observation was carried out by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Experimental results exhibit that the quench cooling rate decreases dramatically from the surface to the center of the plate,and the inhomogeneous quenching causes the difference in microstructure.With the decrease in quench cooling rate,constituent particles are coarsening gradually;the quantity of T-phase(Al_(20)Cu_(2)Mn_(3))increases and the S-phase(Al_(2)Cu Mg)decreases.According to the precipitation kinetics analysis,the decrease in S-phase is caused by the increase in precipitate activation energy.So that the center of the plate shows the highest quenching sensitivity,which is consistent with the analysis of time-temperature-property curves and time-temperature-transformation curves.展开更多
基金Project(2012CB619500)supported by the National Basic Research Program of China
文摘The precipitation kinetics of 2519 A aluminum alloy after different cold rolling reductions before aging was investigated by hardness test and differential scanning calorimetry(DSC). The activation energy was calculated according to DSC curves using single heating rate method. The microstructures of as-rolled and peak-aged alloys were observed by transmission electron microscopy(TEM). The result shows that the age hardenability reduces and the activation energy rises with increasing the reduction from 7% to 40%. Nonuniform dislocations are found in as-rolled alloy and inhomogeneous distribution of θ′ phase is revealed in peak-aged alloy when the reduction is 15%. The inhomogeneous distribution of θ′ phase may be related to the age hardenability reducing and activation energy rising.
基金Project (2011ZX04014-052,2012ZX04012011) supported by CNC Machine Tools and Basic Manufacturing Equipment Technology Comments
文摘The electrical resistivity of NZ30K-Mg alloy was measured at different heating rates during continuous heating to stud the precipitation kinetics.Two kinds of metastable phases,β" and β',formed during the heating.Kissinger method and differentia isoconversional method were employed to assess the precipitation kinetic parameters of NZ30K-Mg alloy,activation energy Eα an pre-exponential factor A'α.The fraction of transformation(α) and the precipitation sequence in NZ30K-Mg alloy were determinec Continuous heating transformation(CHT) and isothermal heating transformation(IHT) diagrams were further obtained for guidin the aging of NZ30K-Mg alloy.The analysis shows that the precipitation kinetic parameters of NZ30K-Mg alloy can be obtaine accurately using isoconversional method.
文摘Thermal analysis is one of the most used techniques for analyzing the behavior of aluminum alloys in order to analyze the precipitation of Guinier-Preston(GP)zones and different phases formed.In the present work,the behavior of the Al-5.46wt.%Zn-1.67wt.%Mg alloy was studied.The mechanism and kinetics of precipitation of the GP,the metastable phaseη′and the equilibrium phaseηwere investigated using DSC carried out between room temperature and 480℃at heating rates of 5,10,15 and 20℃/min.The apparent activation energies,calculated by DSC from isothermal calculation method using JMAK model,for GP,η′andηwere 56,79 and 96 kJ/mol,respectively,and those calculated by non-isothermal calculation method using Kissinger methods were 57,82 and 99 kJ/mol,respectively.The values of Avrami parameter,n,from isothermal calculation,during the precipitation of the GP,η′andηwere 1.103,1.9075 and 1.92,respectively,and those calculated by non-isothermal were 0.86,2.30 and 2.24,respectively.The results show that GP zones formation is governed by the migration of Zn and Mg atoms while the precipitation of theη′metastable phase and theηstable phase is governed by both the migration and the diffusion of the solute atoms.
基金Item Sponsored by National Natural Science Foundation of China (50334010) and Fokying Tung Education Foundation (104017)
文摘The morphology of manganese sulfide formed during thin slab continuous casting process in low-carbon steel produced by compact strip production (CSP) technique was investigated. Using transmission electron microscopy analysis, it was seen that a majority of manganese sulfides precipitated at austenite grain boundaries, the morphologies of which were spherical or close to the spherical shape and the size of MnS precipitates ranged from 30 nm to 100 nm. A mathematical model of the manganese sulfide precipitation in this process was developed based on classical nucleation theory. Under the given conditions, the starting and finishing precipitation temperatures of MnS in the continuous casting thin slab of the studied low-carbon steel are 1 189 ℃ and 1 171 ℃, respectively, and the average diameter of MnS precipitates is about 48 nm within this precipitation temperature range. The influences of chemical components and thermo-mechanical processing conditions on the precipitation behavior of MnS in the same process were also discussed.
基金This work was supported by the National Natural Science Foundation of China (No. 50334010 and No. 50474086).
文摘On the basis of the thermodynamic calculation of precipitation and considering the effect of strain on the precipitation behavior and chemical composition (Si and Mn), the kinetics of precipitation from austenite has been investigated for different temperatures and strains. Nucleation theory and the solubility product of niobium, carbon, and nitrogen in austenite have been used to derive equations for the start time of precipitation as a function of temperature and composition. The value of n in Avrami equation was determined using the available experimental data from the published reports, which indicated that n is a constant independent of temperature and the end time of precipitation is a function of n and the start time of precipitation. The values of the start time and end time of precipitation predicted by the new model are compared with the experimental values and a good agreement was obtained between both.
基金Item Sponsored by National Basic Research Programof China(2004CB619103)National Natural Science Foundation of China(50534010)
文摘The precipitation behavior of Cr2 N during isothermal aging in the temperature range from 700 ℃ to 950 ℃ in Fe-18Cr-12Mn-0.48N (in mass percent) high nitrogen austenitic stainless steel, including morphology and content of precipitate, was investigated using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The isothermal precipitation kinetics curve of Cr2 N and the corresponding precipitation activation energy were obtained. The results show that Cr2N phase precipitates in a cellular way and its morphology is transformed from initial granular precipitates to lamellar ones in the cell with increasing aging time. The nose temperature of Cr2 N precipitation is about 800 ℃, with a corresponding incubation period of 30 min, and the ceiling temperature of Cr2N precipitation is 950℃. The diffusionactivation energy of Cr2 N precipitation is 296 kJ/mol.
基金financially supported by the National Natural Science Foundation of China(No.51871221)the National Key R&D Program of China(No.2020YFA0714900)the National Science and Technology Major Project(J2019-VI-0023-0139 and J2019-VII-0004-0144)。
文摘A universal numerical model based on the particle size distribution(PSD)approach has been developed for the simulation of precipitation kinetics in multicomponent alloys during isothermal ageing.Nucleation was implemented utilizing the classical nucleation theory(CNT).Growth and coarsening were modeled by a single growth kinetics equation,which is constructed based on the interfacial diffusion flux balance and the capillarity effect.Only partial off-diagonal terms in the diffusion matrix(diffusion of individual components in the matrix)were taken into account in the calculations to minimize the computational cost while coupling with CALPHAD to extract thermodynamics equilibrium around the interface.A new feature of the model is the incorporation of a more realistic spatial site distribution via a Voronoi construction in the characteristic cell,for the purpose of modifying the diffusion distance.Computational predictions of the precipitate dimensions and the precipitation kinetics were compared with the atom probe tomography(APT)measurements on ternary Ni-Al-Cr alloys isothermally aged at 873 K.It is found that the temporal evolution of the dimensions and composition of the precipitates is well captured,as is the dependence on changes in the alloy composition.The new modification with Voronoi construction demonstrates that the overall precipitation kinetics depends on the density and the spatial site distribution of precipitates.The ability to handle sophisticated alloy chemistries by quantitative equations,the compositional sensitivity of microstructural characteristics emerging from the simulation results,and the ability to visualize the spatial distribution of precipitates make the work very promising for multicomponent alloy design and optimization.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.50334010,50504007 and 50474086)the Ph.D.Startup Foundation of liaoning Province(2003hp1009).
文摘Based on thermodynamics and kinetics, precipitation behavior of microalloyed steels was analyzed. Deformation greatly promotes isothermal carbonitride precipitation and makes C-curve shift leftwards. The position and shape of C-curve also depend on the content of Nb and N. C-curve shifts leftwards a little when N content increases and the nose temperature is raised with increasing Nb content. Deformation shortened precipitation start time during continuous cooling, raised precipitation start temperature, accelerated precipitation kinetics of carbonitrides. With decreasing the finishing temperature and coiling temperature, the precipitates volume fraction increases and strength increment is raised during hot rolling. The simulated results are in agreement with experiment results.
基金Financial support by the Austrian Federal Government (in particular from Bundesministerium für Verkehr, Innovation und Technologie and Bundesministerium für Wirtschaft, Familie und Jugend) represented by sterreichische Forschungsfrderungsgesellschaft mbHthe Styrian and the Tyrolean Provincial Government, represented by Steirische Wirtschaftsfrderungsgesellschaft mbH and Standortagentur Tirol, within the framework of the COMET Funding Programme is gratefully acknowledged
文摘Differential scanning calorimetry (DSC) has been used extensively to study different solid state reactions. The signals measured in DSC are associated with the growth and dissolution of different precipitates during a specific heat cycle. The time-temperature dependence of heat cycles and the corresponding heat flow evolution measured in the sample by DSC provide valuable experimental information about the phase evolution and the precipitation kinetics in the material. The thermo-kinetic computer simulation was used to predict the DSC signals of samples taken from 6xxx and 2xxx alloys. In the model, the evolution of different metastable and stable phases and the role and influence of excess quenched-in vacancies in the early stage of precipitation were taken into account. Transmission electron microscopy (TEM) and high-resolution TEM were used to verify the existence of precipitates, their size and number density at specific points of the DSC curves.
基金Project(BK2012715)supported by the Basic Research Program(Natural Science Foundation)of Jiangsu Province,ChinaProject(14KJA430002)supported by the Key University Science Research Project of Jiangsu Province,China+3 种基金Project(50971087)supported by the National Natural Science Foundation of ChinaProjects(11JDG070,11JDG140)supported by the Senior Talent Research Foundation of Jiangsu University,ChinaProject(hsm1301)supported by the Foundation of the Jiangsu Province Key Laboratory of High-end Structural Materials,ChinaProject(Kjsmcx2011004)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China
文摘Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP.
基金the CAS-TWAS President’s Fellowship Programme for this doctoral fellowship(Grant No.2016CTF004)。
文摘Kinetic behaviors of niobium and titanium carbide precipitates in iron are simulated with cluster dynamics.The simulations,carried out in austenite and ferrite for niobium carbides,and in austenite for titanium carbide,are analyzed for dependences on temperature,solute concentration,and initial cluster distribution.The results are presented for different temperatures and solute concentrations,compared to experimental data available.They show little impact of initial cluster distribution beyond a certain relaxation time and that highly dilute alloys with monomers only present a significantly different behavior from denser alloys or ones with different initial cluster distributions.
基金the Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT) and the federal state of Upper Austria for funding this research work within the frame work of Independent research UF2015
文摘The forming behaviour of AW-7075-T6sheet was studied across a range of shock heat treatment(SHT)temperatures of200?480°C.After SHT,formability of the samples was investigated by tension and deep drawing tests at room temperature.Differential scanning calorimetry(DSC)was used to study the precipitation states of the AW-7075sheet in the as-received and shockheat treated conditions.Formability was started to improve with increasing shock heat treatment temperature from300°C onwards.Strain hardening resulted from the dissolution ofη′precipitates and the coarsening of remaining precipitates were found to contributeto the increase in formability at room temperature.Re-precipitation and coarsening of the precipitates were responsible for thepost-paint baking strength of SHT samples.
基金Sponsored by National Research and Development Program in the 11th Five Year Plan of China(2006BAE03A06)
文摘The precipitation kinetics of AlN and MnS in low carbon aluminium-killed steel was calculated.Transmission electron microscopy(TEM),energy disperse spectroscopy(EDS) and phase analyses have been used to investigate the morphology,compositions and particle size distribution of AlN and MnS precipitates in three positions of the coil.The particles of AlN and MnS precipitates in the ferrite region after coiling and distributes along and adjacent to the ferrite grain boundaries.The shapes of AlN are plate-like,the precipitates size is about 10 to 60 nm;the shapes of MnS are spherical,the precipitates size is about 200 to 600 nm.The precipitation behavior of AlN is sensitive to the isothermal temperature and holding time,the precipitation quantity and particle size distribution of AlN in different positions of coil are unequal
基金financially supported by the National Natural Science Foundation of China(Grant No.52075503)the Projects of International Cooperation in Shanxi,China(Grant No.201603D421026)。
文摘A 27.6Cr-3.6Mo-2Ni alloy was solution treated and then aged for a long time to study the effect of grain size on precipitation behaviour by using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The experimental results demonstrated that the average grain size increased from 46.3 ± 6.2 to 101.8 ± 13.5 μm and the grain boundary length per unit area decreased from 3.3 × 10^(4) to 1.7 × 10^(4) m/m^(2) with an increasing annealing temperature from 1100 to 1200 ℃. After ageing at 800 ℃, the σ-phase,χ-phase and Laves phase were observed. As the ageing time increased, the σ-phase notably increased, while the χ-phase and Laves phase gradually decreased before finally vanishing after ageing for 400 h. The σ-phase precipitation kinetics curves consisted of two parts, and the grain size had a significant effect on the first stage of the precipitation curves due to the abundance of nucleation sites in the specimens with finer grains. The Laves phase was transformed from Nb(C,N) particles by Nb diffusion. As the ageing time increased, the ferrite phase decreased due to the transformation of the ferrite phase to the σ-phase, and then C was expelled into the untransformed ferrite grains. Moreover, new Nb(C,N) particles were formed by Nb diffusion from the Laves phase, resulting in the absence of the Laves phase.
基金supported by Materials Forming Processing Control and Simulation Laboratory in University of Science and Technology BeijingCNMC Ningxia Orient Group Co.,Ltd.
文摘In this paper,the evolutions of microstructure and mechanical properties of Cu-l.9Be-0.3Ni-0.15Co alloy were studied.The alloys in the condition of the solution treated(soft state) and 37% cold rolled(hard state) were aged at 320 ℃for different time,respectively.The mechanical properties,electrical conductivity and microstructure of the alloy aged for different time were analyzed.Additionally,the precipitation kinetics of Cu-1.9Be-0.3Ni-0.15Co alloys was investigated.X-ray diffraction and transmission electron microscopy results reveal that both continuous precipitation and discontinuous precipitation existed in the hard-state Cu-l.9Be-0.3Ni-0.15Co alloy during the whole aging process;the sequence of continuous precipitation is G.P.zone →γ″→γ′→γ.Furthermore,the precipitation transformation mechanism of softstate alloy is homogeneous nucleation,while hard-state alloy shows the heterogeneous nucleation(interface nucleation)with the nucleation rate of both states decaying rapidly to zero during aging at 320 ℃.
基金financially supported by the National Key Research and Development Program of China(Grant Nos.2020YFB0311000 and 2017YFB0305201)the Fund of Key Laboratory of Advanced Materials of Ministry of Education(ADV22-12)the Jiangsu Funding Program for Excellent Postdoctoral Talent.
文摘The service performance of heat resistance steels is largely determined by the precipitation kinetics.The nucleation-growth-coarsening behaviors of precipitates in G115 martensitic heat resistance steel during long-term aging at 650℃ have been systemically investigated.The microstructural characteristics,precipitate morphology and alloying element distribution were studied by scanning electron microscopy,transmission electron microscopy and scanning transmission electron microscopy.The lognormal distribution fitting combined with the multiple regression analysis was adopted to evaluate the precipitate size distributions.Laves phase has longer incubation time,and its coarsening rate is almost one order of magnitude higher in comparison with that of M_(23)C_(6) carbide.Furthermore,the nucleation rate,number density,average radius,and volume fraction of two precipitates are simulated based on the classical nucleation theory and the modified Langer-Schwartz model.The precipitation behavior of Laves phase can be well explained with the Fe-W system as the interfacial energy takes 0.10 J/m^(2).In contrast,the simulation results of M_(23)C_(6) carbide in the Fe-Cr-C system are significantly overestimated,which results from the inhibitory effect of boron on coarsening.
基金the support of the Foment Ministry through 80032/A04 Projectthe Ministry of the Innovation Technology and Science of Spain through Project MAT 2008-06793-C02-01
文摘The strain induced effect on the precipitation kinetics of a high strength low alloy (HSLA) steel microalloyed with Nb-V was investigated.The stress relaxation method was employed to determine the dependence of the precipitation-time-temperature curves (PTT) on previous strain.Relaxation tests were performed over a temperature range of 850 to 1150 oC at a constant strain rate of 0.1 s-1 at three deformation levels,namely 5,15 and 25 pct.Field emission scanning electron microscopy (FESEM) was used to study the progress of precipitation on samples obtained by interrupted relaxation test at different times.Results display the acceleration kinetics at increasing strain.Theoretical models are discussed and compared with the present experimental results.
基金financially supported by the Foundation of Beijing Institute of Aeronautical Materials (No.KJSJ150109)
文摘To study the influence of aging heat treatments on the microstructure of single crystal superalloys with high content of refractory elements and optimal the aging heat treatment regimes, a single crystal superalloy containing 22 wt% refractory elements was investigated.Results show that for the experimental alloy, even the homogenization-solution heat treatment for 25 h cannot homogenize the alloying elements completely. During primary aging heat treatment, γ' phase grows larger and turns to regular cubes. Higher aging temperature induces larger γ' cubes. For specimens with primary aging heat treated at 1120 ℃,γ' morphology does not change apparently during secondary aging heat treatment. For specimens with primary aging heat treatment at 1150 ℃,γ'phase in interdendrite grows obviously comparing with that in dendrites. By analyzing the precipitating kinetics of γ'phase, it is found that owning to the dendrite segregation and different aging heat treatment temperatures, γ' phase at different regions grows under the control of different factors at different aging heat treatment stages. The two controlling factors that are driving forces of phase transformation and element diffusion rate induce obviously different growth rates of γ' phase. As a result, the γ'-precipitating behaviors are variable based on different solute concentrations and aging temperatures. For advanced single crystal superalloys that are supposed to be used at relatively high temperatures, the final γ' size after aging heat treatment is suggested to be close to the crossing point of diffusion controlling curve and driving force controlling curve corresponding to the serving temperature. And then,high-temperature properties can be improved.
文摘The precipitation kinetics of secondary phases in two austeno-ferritic lean duplex stainless steels(lean DSS)were examined after aging the materials at 800 ℃.Owing to the instability of ferrite,all DSS are known to be sensitive to solid-state phase transformations in the critical temperature range 600-1,000 ℃ and different secondary phases may form,depending on composition and microstructure.The performed thermodynamic simulations revealed the proneness to the precipitation of such phases also have been done in lean DSS,but only information on the equilibrium microstructures were achieved.Therefore,the materials were aged at various times,in order to verify the simulations and determine the precipitation kinetics.The occurred structural modifications were observed and quantified by scanning electron microscope and X-ray diffraction measurements,determining phase type,composition and volumetric fraction.At 800 ℃,grade 2101 was found to be only affected by Cr_2N nitrides precipitation,whereas a significant amount of σ-phase was found to form in LDX 2404 for treatment longer than 1 h,almost totally replacing ferrite after 50 h.Up to now,the intermetallic σ-phase has been observed only in the high alloyed DSS,and the unexpected precipitation in grade 2404 highlighted that the increased content of molybdenum in this steel might be considered as determinant for the formation.
基金financially supported by the National Defense Supporting Research Program(No.JPPT-125GJGG-08-01)。
文摘The quench sensitivity of Al-Cu-Mg alloy was investigated at different thicknesses of the thick plate.The quenching process was simulated via finite element analysis(FEA);time-temperature-property(TTP)curves and time-temperature-transformation(TTT)curves were obtained through hardness test and differential scanning calorimetry(DSC)test;and the microstructural observation was carried out by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Experimental results exhibit that the quench cooling rate decreases dramatically from the surface to the center of the plate,and the inhomogeneous quenching causes the difference in microstructure.With the decrease in quench cooling rate,constituent particles are coarsening gradually;the quantity of T-phase(Al_(20)Cu_(2)Mn_(3))increases and the S-phase(Al_(2)Cu Mg)decreases.According to the precipitation kinetics analysis,the decrease in S-phase is caused by the increase in precipitate activation energy.So that the center of the plate shows the highest quenching sensitivity,which is consistent with the analysis of time-temperature-property curves and time-temperature-transformation curves.