To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is...To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is developed.The procedure includes(a)conversion of the finite element data into a triangular mesh,(b)selection of a common coordinate system,(c)determination of the rigid body transformation to place both measurements and FEA data in the same system and(d)interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates.For an aluminum Al-6061 double edge notched tensile specimen,FEA results are obtained using both the von Mises isotropic yield criterion and Hill’s quadratic anisotropic yield criterion,with the unknown Hill model parameters determined using full-field specimen strain measurements for the nominally plane stress specimen.Using Hill’s quadratic anisotropic yield criterion,the point-by-point comparison of experimentally based full-field strains and stresses to finite element predictions are shown to be in excellent agreement,confirming the effectiveness of the field comparison process.展开更多
In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,ma...In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications.展开更多
Predictive Business Process Monitoring(PBPM)is a significant research area in Business Process Management(BPM)aimed at accurately forecasting future behavioral events.At present,deep learning methods are widely cited ...Predictive Business Process Monitoring(PBPM)is a significant research area in Business Process Management(BPM)aimed at accurately forecasting future behavioral events.At present,deep learning methods are widely cited in PBPM research,but no method has been effective in fusing data information into the control flow for multi-perspective process prediction.Therefore,this paper proposes a process prediction method based on the hierarchical BERT and multi-perspective data fusion.Firstly,the first layer BERT network learns the correlations between different category attribute data.Then,the attribute data is integrated into a weighted event-level feature vector and input into the second layer BERT network to learn the impact and priority relationship of each event on future predicted events.Next,the multi-head attention mechanism within the framework is visualized for analysis,helping to understand the decision-making logic of the framework and providing visual predictions.Finally,experimental results show that the predictive accuracy of the framework surpasses the current state-of-the-art research methods and significantly enhances the predictive performance of BPM.展开更多
Background:This study aims to explore the involvement of ferroptosis-related genes and pathogenesis in pancreatic cancer and predict potential therapeutic interventions using Traditional Chinese Medicine(TCM).Methods:...Background:This study aims to explore the involvement of ferroptosis-related genes and pathogenesis in pancreatic cancer and predict potential therapeutic interventions using Traditional Chinese Medicine(TCM).Methods:We utilized gene expression datasets,ferroptosis upregulated genes and applied machine learning algorithms,including LASSO and SVM-RFE,to identify key ferroptosis-related genes in pancreatic cancer.Perform Gene Ontology,Kyoto Encyclopedia of Genes and Genomes,and Disease Ontology enrichment analysis,immune infiltration analysis and correlation analysis between immune infiltrating cells and characteristic genes on differentially expressed genes using the R software package.Retrieve potential traditional Chinese medicine for targeted ferroptosis gene therapy for pancreatic cancer through Coremine and Herb databases.Results:Seventeen feature genes were identified,with significant implications for immune cell infiltration in pancreatic cancer.The results of immune cell infiltration analysis showed that B cells naive,B cells memory,T cells regulatory,and M0 macrophages were significantly upregulated in pancreatic cancer patients;Mast cells resting were significantly downregulated.Chinese herbal medicines such as ginkgo,turmeric,ginseng,Codonopsis pilosula,Zedoary turmeric,deer tendons,senna leaves,Guanmu Tong,Huangqi,and Banzhilian are potential drugs for targeted ferroptosis gene therapy for pancreatic cancer.Conclusion:TIMP1 emerged as a key gene,with several TCM herbs predicted to modulate its expression,offering new avenues for treatment.展开更多
A semi-operational real time short-term climate prediction system has been developed in the Center of Climate and Environment Prediction Research (CCEPRE), Institute of Atmospheric Physics/Chinese Academy of Sciences....A semi-operational real time short-term climate prediction system has been developed in the Center of Climate and Environment Prediction Research (CCEPRE), Institute of Atmospheric Physics/Chinese Academy of Sciences. The system consists of the following components: the AGCM and OGCM and their coupling, initial conditions and initialization, practical schemes of anomaly prediction, ensemble prediction and its standard deviation, correction of GCM output, and verification of prediction. The experiences of semi-operational real-time prediction by using this system for six years (1989-1994) and of hindcasting for 1980-1989 are reported. It is shown that in most cases large positive and negative anomalies of summer precipitation resulting in disastrous climate events such as severe flood or drought over East Asia can be well predicted for two seasons in advance, although the quantitatively statistical skill scores are only satisfactory due to the difficulty in correctly predicting the signs of small anomalies. Some methods for removing the systematic errors and introducing corrections to the GCM output are suggested. The sensitivity of prediction to the initial conditions and the problem of ensemble prediction are also discussed in the paper.展开更多
In this paper both processes of landslide and subsidence are considered to be limited systems. Each of these systems in nature might be regarded as an organism. Generally their lifespan must develop with common ecolog...In this paper both processes of landslide and subsidence are considered to be limited systems. Each of these systems in nature might be regarded as an organism. Generally their lifespan must develop with common ecological characteristics, including several evolutional stages, such as initiation, growth, maturation, decline and death. Among these stages, maturation is emphasized so as to find the occurring or thriving date of both systems. An once-through cycle of both landslide and subsidence is established and is accurately predicted by a developed, mathematic model of the Poisson cycle. The Weibull distribution is cited for a landslide example. Both fundamentals are discussed. Stage predictions of landslide and subsidence are performed for several examples. Back analysis of landslides that have already happened are studied with the same model. And when compared with results from the biological mathematic model and with practical results, it is found that they correspond. Stage prediction of subsidences is also researched by the principle of the Poisson cycle.展开更多
Predicting election outcomes is a crucial undertaking,and various methods are employed for this purpose,such as traditional opinion polling,and social media analysis.However,traditional polling approaches often strugg...Predicting election outcomes is a crucial undertaking,and various methods are employed for this purpose,such as traditional opinion polling,and social media analysis.However,traditional polling approaches often struggle to capture the intricate nuances of voter sentiment at local levels,resulting in a limited depth of analysis and understanding.In light of this challenge,this study focuses on predicting elections at the state/regional level along with the country level,intending to offer a comprehensive analysis and deeper insights into the electoral process.To achieve this,the study introduces the Location-Based Election Prediction Model(LEPM),which utilizes social media data,specifically Twitter,and integrates location-aware sentiment analysis techniques at both the state/region and country levels.LEPM predicts the support and opposing strength of each political party/candidate.To determine the location of users/voters who have not disclosed their location information in tweets,the model utilizes a Voter Location Detection(VotLocaDetect)approach,which leverages recent tweets/posts.The sentiment analysis techniques employed in this study include rule-based sentiment analysis,Valence Aware Dictionary and Sentiment Reasoner(VADER)as well as transformers-based sentiment analysis such as Bidirectional Encoder Representations from Transformers(BERT),BERTweet,and Election based BERT(ElecBERT).This study uses the 2020 United States(US)Presidential Election as a case study.By applying the LEPM model to the election,the study demonstrates its ability to accurately predict outcomes in forty-one states,achieving an 0.84 accuracy rate at the state level.Moreover,at the country level,the LEPM model outperforms traditional polling results.With a low Mean Absolute Error(MAE)of 0.87,the model exhibits more precise predictions and serves as a successful alternative to conventional polls and other methodologies.Leveraging the extensive social media data,the LEPM model provides nuanced insights into voter behavior,enabling policymakers to make informed decisions and facilitating in-depth analyses of elections.The study emphasizes the importance of using social media data for reliable election prediction and offers implications for enhancing prediction accuracy and understanding voter sentiment and behavior.展开更多
The studies in recent decades show that many natural disasters such as tropical severe storms, hurricanes development, torrential rain, river flooding, and landslides in some regions of the world and severe droughts a...The studies in recent decades show that many natural disasters such as tropical severe storms, hurricanes development, torrential rain, river flooding, and landslides in some regions of the world and severe droughts and wildfires in other areas are due to El Nino-Southern Oscillation (ENSO). This research aims to contribute to an improved definition of the relation between ENSO and seasonal (autumn and winter) variability of rainfall over Iran. The results show that during autumn, the positive phase of SOI is associated with decrease in the rainfall amount in most part of the country;negative phase of SOI is associated with a significant increase in the rainfall amount. It is also found that, during the winter time when positive phase of SOI is dominant, winter precipitation increases in most areas of the eastern part of the country while at the same time the decreases in the amount of rainfall in other parts is not significant. Moreover, with negative phase of SOI in winter season the amount of rainfall in most areas except south shores of Caspian Sea in the north decreases, so that the decrease of rainfall amount in the eastern part is statistically significant.展开更多
Memorial Sloan-Kettering Cancer Center (MSKCC) has developed 2 nomograms: the Sentinel Lymph Node Nomogram (SLNN), which is used to predict the likelihood of sentinel lymph node (SLN) metastases in patients with invas...Memorial Sloan-Kettering Cancer Center (MSKCC) has developed 2 nomograms: the Sentinel Lymph Node Nomogram (SLNN), which is used to predict the likelihood of sentinel lymph node (SLN) metastases in patients with invasive breast cancer, and the Non-Sentinel Lymph Node Nomogram (NSLNN), which is used to predict the likelihood of residual axillary disease after a positive SLN biopsy. Our purpose was to compare the accuracy of MSKCC nomogram predictions with those made by breast surgeons. Two questionnaires were built with characteristics of two sets of 33 randomly selected patients from the MSKCC Sentinel Node Database. The first included only patients with invasive breast cancer, and the second included only patients with invasive breast cancer and positive SLN biopsy. 26 randomly selected Brazilian breast surgeons were asked about the probability of each patient in the first set having SLN metastases and each patient in the second set having additional non-SLN metastases. The predictions of the nomograms and breast surgeons were compared. There was no correlation between nomogram risk predictions and breast surgeon risk prediction estimates for either the SLNN or the NSLNN. The area under the receiver operating characteristics curves (AUCs) were 0.871 and 0.657 for SLNN and breast surgeons, respectively (p 0.0001), and 0.889 and 0.575 for the NSLNN and breast surgeons, respectively (p 0.0001). The nomograms were significantly more accurate as prediction tools than the risk predictions of breast surgeons in Brazil. This study demonstrates the potential utility of both nomograms in the decision-making process for patients with invasive breast cancer.展开更多
A 61 element adaptive optical system has been preliminary tested in the Coudé path of the 1 2m telescope at the Yunnan observatory this year. The whole system will be fully operated next year. This paper describe...A 61 element adaptive optical system has been preliminary tested in the Coudé path of the 1 2m telescope at the Yunnan observatory this year. The whole system will be fully operated next year. This paper describes the AO system performances and its first experiment results, and the possible astronomical research topics.展开更多
Two different tools to evaluate quantile regression forecasts are proposed: MAD, to summarize forecast errors, and a fluctuation test to evaluate in-sample predictions. The scores of the PISA test to evaluate students...Two different tools to evaluate quantile regression forecasts are proposed: MAD, to summarize forecast errors, and a fluctuation test to evaluate in-sample predictions. The scores of the PISA test to evaluate students’ proficiency are considered. Growth analysis relates school attainment to economic growth. The analysis is complemented by investigating the estimated regression and predictions not only at the centre but also in the tails. For out-of-sample forecasts, the estimates in one wave are employed to forecast the following waves. The reliability of in-sample forecasts is controlled by excluding the part of the sample selected by a specific rule: boys to predict girls, public schools to forecast private ones, vocational schools to predict non-vocational, etc. The gradient computed in the subset is compared to its analogue computed in the full sample in order to verify the validity of the estimated equation and thus of the in-sample predictions.展开更多
The Newton gravitational constant is considered a cornerstone of modern gravity theory. Newton did not invent or use the gravity constant;it was invented in 1873, about the same time as it became standard to use the k...The Newton gravitational constant is considered a cornerstone of modern gravity theory. Newton did not invent or use the gravity constant;it was invented in 1873, about the same time as it became standard to use the kilogram mass definition. We will claim that G is just a term needed to correct the incomplete kilogram definition so to be able to make gravity predictions. But there is another way;namely, to directly use a more complete mass definition, something that in recent years has been introduced as collision-time and a corresponding energy called collision-length. The collision-length is quantum gravitational energy. We will clearly demonstrate that by working with mass and energy based on these new concepts, rather than kilogram and the gravitational constant, one can significantly reduce the uncertainty in most gravity predictions.展开更多
The study intends to find out the impact of pre-listening activities on predictions in English listening comprehension.Based on the analysis of the verbal reports of the 8 subjects, listeners facilitated with the pre-...The study intends to find out the impact of pre-listening activities on predictions in English listening comprehension.Based on the analysis of the verbal reports of the 8 subjects, listeners facilitated with the pre-listening activities were able to have a more detailed and complete predictions of the text content and their evaluation of their own listening comprehension showed more consistency with the predictions. Both vocabulary and background knowledge provided in the pre-listening activities were significant in the process. Whereas, listeners lacking the pre-listening activities could have some misleading predictions of the text content which were beyond the original listening texts.展开更多
A nested regional climate model has been experimentally used in the seasonal prediction at the China National Climate Center (NCC) since 2001. The NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM (CGCM...A nested regional climate model has been experimentally used in the seasonal prediction at the China National Climate Center (NCC) since 2001. The NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM (CGCM) provides the boundary and initial conditions for driving the regional climate model (RegCM_NCC). The latter has a 60-km horizontal resolution and improved physical parameterization schemes including the mass flux cumulus parameterization scheme, the turbulent kinetic energy closure scheme (TKE) and an improved land process model (LPM). The large-scale terrain features such as the Tibetan Plateau are included in the larger domain to produce the topographic forcing on the rain-producing systems. A sensitivity study of the East Asian climate with regard to the above physical processes has been presented in the first part of the present paper. This is the second part, as a continuation of Part Ⅰ. In order to verify the performance of the nested regional climate model, a ten-year simulation driven by NCEP reanalysis datasets has been made to explore the performance of the East Asian climate simulation and to identify the model's systematic errors. At the same time, comparative simulation experiments for 5 years between the RegCM2 and RegCM_NCC have been done to further understand their differences in simulation performance. Also, a ten-year hindcast (1991-2000) for summer (June-August), the rainy season in China, has been undertaken. The preliminary results have shown that the RegCM_NCC is capable of predicting the major seasonal rain belts. The best predicted regions with high anomaly correlation coefficient (ACC) are located in the eastern part of West China, in Northeast China and in North China, where the CGCM has maximum prediction skill as well. This fact may reflect the importance of the largescale forcing. One significant improvement of the prediction derived from RegCM_NCC is the increase of ACC in the Yangtze River valley where the CGCM has a very low, even a negative, ACC. The reason behind this improvement is likely to be related to the more realistic representation of the large-scale terrain features of the Tibetan Plateau. Presumably, many rain-producing systems may be generated over or near the Tibetan Plateau and may then move eastward along the Yangtze River basin steered by upper-level westerly airflow, thus leading to enhancement of rainfalls in the mid and lower basins of the Yangtze River. The real-time experimental predictions for summer in 2001, 2002, 2003 and 2004 by using this nested RegCM-NCC were made. The results are basically reasonable compared with the observations.展开更多
Objective:China is one of the countries with the heaviest burden of gastric cancer(GC)in the world.Understanding the epidemiological trends and patterns of GC in China can contribute to formulating effective preventio...Objective:China is one of the countries with the heaviest burden of gastric cancer(GC)in the world.Understanding the epidemiological trends and patterns of GC in China can contribute to formulating effective prevention strategies.Methods:The data on incidence,mortality,and disability-adjusted life-years(DALYs)of GC in China from1990 to 2019 were obtained from the Global Burden of Disease Study(2019).The estimated annual percentage change(EAPC)was calculated to evaluate the temporal trends of disease burden of GC,and the package Nordpred in the R program was used to perform an age-period-cohort analysis to predict the numbers and rates of incidence and mortality in the next 25 years.Results:The number of incident cases of GC increased from 317.34 thousand in 1990 to 612.82 thousand in2019,while the age-standardized incidence rate(ASIR)of GC decreased from 37.56 per 100,000 in 1990 to 30.64 per 100,000 in 2019,with an EAPC of-0.41[95%confidence interval(95%CI):-0.77,-0.06].Pronounced temporal trends in mortality and DALYs of GC were observed.In the next 25 years,the numbers of new GC cases and deaths are expected to increase to 738.79 thousand and 454.80 thousand,respectively,while the rates of incidence and deaths should steadily decrease.The deaths and DALYs attributable to smoking were different for males and females.Conclusions:In China,despite the fact that the rates of GC have decreased during the past three decades,the numbers of new GC cases and deaths increased,and will continue to increase in the next 25 years.Additional strategies are needed to reduce the burden of GC,such as screening and early detection,novel treatments,and the prevention of risk factors.展开更多
In this study, the ilnpacts of horizontal resolution on the conditional nonlinear optimal perturbation (CNOP) and on its identified sensitive areas were investigated for tropical cyclone predictions. Three resolutio...In this study, the ilnpacts of horizontal resolution on the conditional nonlinear optimal perturbation (CNOP) and on its identified sensitive areas were investigated for tropical cyclone predictions. Three resolutions, 30 km, 60 km, and 120 kin, were studied for three tropical cyclones, TC Mindulle (2004), TC Meari (2004), and TC Matsa (2005). Results show that CNOP may present different structures with different resolutions, and the major parts of CNOP become increasingly localized with increased horizontal resolution. CNOP produces spiral and baroclinic structures, which partially account for its rapid amplification. The differences in CNOP structures result in different sensitive areas, but there are common areas for the CNOP-identified sensitive areas at various resolutions, and the size of the common areas is different from case to case. Generally, the forecasts benefit more from the reduction of the initial errors in the sensitive areas identified using higher resolutions than those using lower resolutions. However, the largest improvement of the forecast can be obtained at the resolution that is not the highest for some cases. In addition, the sensitive areas identified at lower resolutions are also helpful for improving the forecast with a finer resolution, but the sensitive areas identified at the same resolution as the forecast would be the most beneficial.展开更多
The initial errors constitute one of the main limiting factors in the ability to predict the E1 Nino-Southem Oscillation (ENSO) in ocean-atmosphere coupled models. The conditional nonlinear optimal perturbation (C...The initial errors constitute one of the main limiting factors in the ability to predict the E1 Nino-Southem Oscillation (ENSO) in ocean-atmosphere coupled models. The conditional nonlinear optimal perturbation (CNOP) approach was em- ployed to study the largest initial error growth in the E1 Nino predictions of an intermediate coupled model (ICM). The optimal initial errors (as represented by CNOPs) in sea surface temperature anomalies (SSTAs) and sea level anomalies (SLAs) were obtained with seasonal variation. The CNOP-induced perturbations, which tend to evolve into the La Nifia mode, were found to have the same dynamics as ENSO itself. This indicates that, if CNOP-type errors are present in the initial conditions used to make a prediction of E1 Nino, the E1 Nino event tends to be under-predicted. In particular, compared with other seasonal CNOPs, the CNOPs in winter can induce the largest error growth, which gives rise to an ENSO amplitude that is hardly ever predicted accurately. Additionally, it was found that the CNOP-induced perturbations exhibit a strong spring predictability barrier (SPB) phenomenon for ENSO prediction. These results offer a way to enhance ICM prediction skill and, particularly, weaken the SPB phenomenon by filtering the CNOP-type errors in the initial state. The characteristic distributions of the CNOPs derived from the ICM also provide useful information for targeted observations through data assimilation. Given the fact that the derived CNOPs are season-dependent, it is suggested that seasonally varying targeted observations should be implemented to accurately predict ENSO events.展开更多
The tropical Pacific has begun to experience a new type of El Nio, which has occurred particularly frequently during the last decade, referred to as the central Pacific(CP) El Nio. Various coupled models with differen...The tropical Pacific has begun to experience a new type of El Nio, which has occurred particularly frequently during the last decade, referred to as the central Pacific(CP) El Nio. Various coupled models with different degrees of complexity have been used to make real-time El Nio predictions, but high uncertainty still exists in their forecasts. It remains unknown as to how much of this uncertainty is specifically related to the new CP-type El Nio and how much is common to both this type and the conventional Eastern Pacific(EP)-type El Nio. In this study, the deterministic performance of an El Nio–Southern Oscillation(ENSO) ensemble prediction system is examined for the two types of El Nio. Ensemble hindcasts are run for the nine EP El Nio events and twelve CP El Nio events that have occurred since 1950. The results show that(1) the skill scores for the EP events are significantly better than those for the CP events, at all lead times;(2) the systematic forecast biases come mostly from the prediction of the CP events; and(3) the systematic error is characterized by an overly warm eastern Pacific during the spring season, indicating a stronger spring prediction barrier for the CP El Nio. Further improvements to coupled atmosphere–ocean models in terms of CP El Nio prediction should be recognized as a key and high-priority task for the climate prediction community.展开更多
The rock indentation tests by a conical pick were conducted to investigate the rock cuttability correlated to confining stress conditions and rock strength.Based on the test results,the regression analyses,support vec...The rock indentation tests by a conical pick were conducted to investigate the rock cuttability correlated to confining stress conditions and rock strength.Based on the test results,the regression analyses,support vector machine(SVM)and generalized regression neural network(GRNN)were used to find the relationship among rock cuttability,uniaxial confining stress applied to rock,uniaxial compressive strength(UCS)and tensile strength of rock material.It was found that the regression and SVM-based models can accurately reflect the variation law of rock cuttability,which presented decreases followed by increases with the increase in uniaxial confining stress and the negative correlation to UCS and tensile strength of rock material.Based on prediction models for revealing the optimal stress condition and determining the cutting parameters,the axial boom roadheader with many conical picks mounted was satisfactorily utilized to perform rock cutting in hard phosphate rock around pillar.展开更多
基金Financial support provided by Correlated Solutions Incorporated to perform StereoDIC experimentsthe Department of Mechanical Engineering at the University of South Carolina for simulation studies is deeply appreciated.
文摘To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is developed.The procedure includes(a)conversion of the finite element data into a triangular mesh,(b)selection of a common coordinate system,(c)determination of the rigid body transformation to place both measurements and FEA data in the same system and(d)interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates.For an aluminum Al-6061 double edge notched tensile specimen,FEA results are obtained using both the von Mises isotropic yield criterion and Hill’s quadratic anisotropic yield criterion,with the unknown Hill model parameters determined using full-field specimen strain measurements for the nominally plane stress specimen.Using Hill’s quadratic anisotropic yield criterion,the point-by-point comparison of experimentally based full-field strains and stresses to finite element predictions are shown to be in excellent agreement,confirming the effectiveness of the field comparison process.
基金supported by the National Natural Science Foundation of China(Grant Nos.41976193 and 42176243).
文摘In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications.
基金Supported by the National Natural Science Foundation,China(No.61402011)the Open Project Program of the Key Laboratory of Embedded System and Service Computing of Ministry of Education(No.ESSCKF2021-05).
文摘Predictive Business Process Monitoring(PBPM)is a significant research area in Business Process Management(BPM)aimed at accurately forecasting future behavioral events.At present,deep learning methods are widely cited in PBPM research,but no method has been effective in fusing data information into the control flow for multi-perspective process prediction.Therefore,this paper proposes a process prediction method based on the hierarchical BERT and multi-perspective data fusion.Firstly,the first layer BERT network learns the correlations between different category attribute data.Then,the attribute data is integrated into a weighted event-level feature vector and input into the second layer BERT network to learn the impact and priority relationship of each event on future predicted events.Next,the multi-head attention mechanism within the framework is visualized for analysis,helping to understand the decision-making logic of the framework and providing visual predictions.Finally,experimental results show that the predictive accuracy of the framework surpasses the current state-of-the-art research methods and significantly enhances the predictive performance of BPM.
基金supported by the Modern Traditional Chinese Medicine Haihe Laboratory science and technology project(22HHZYSS00005)and the National Administration of Traditional Chinese Medicine Young Qihuang Scholar Project.
文摘Background:This study aims to explore the involvement of ferroptosis-related genes and pathogenesis in pancreatic cancer and predict potential therapeutic interventions using Traditional Chinese Medicine(TCM).Methods:We utilized gene expression datasets,ferroptosis upregulated genes and applied machine learning algorithms,including LASSO and SVM-RFE,to identify key ferroptosis-related genes in pancreatic cancer.Perform Gene Ontology,Kyoto Encyclopedia of Genes and Genomes,and Disease Ontology enrichment analysis,immune infiltration analysis and correlation analysis between immune infiltrating cells and characteristic genes on differentially expressed genes using the R software package.Retrieve potential traditional Chinese medicine for targeted ferroptosis gene therapy for pancreatic cancer through Coremine and Herb databases.Results:Seventeen feature genes were identified,with significant implications for immune cell infiltration in pancreatic cancer.The results of immune cell infiltration analysis showed that B cells naive,B cells memory,T cells regulatory,and M0 macrophages were significantly upregulated in pancreatic cancer patients;Mast cells resting were significantly downregulated.Chinese herbal medicines such as ginkgo,turmeric,ginseng,Codonopsis pilosula,Zedoary turmeric,deer tendons,senna leaves,Guanmu Tong,Huangqi,and Banzhilian are potential drugs for targeted ferroptosis gene therapy for pancreatic cancer.Conclusion:TIMP1 emerged as a key gene,with several TCM herbs predicted to modulate its expression,offering new avenues for treatment.
文摘A semi-operational real time short-term climate prediction system has been developed in the Center of Climate and Environment Prediction Research (CCEPRE), Institute of Atmospheric Physics/Chinese Academy of Sciences. The system consists of the following components: the AGCM and OGCM and their coupling, initial conditions and initialization, practical schemes of anomaly prediction, ensemble prediction and its standard deviation, correction of GCM output, and verification of prediction. The experiences of semi-operational real-time prediction by using this system for six years (1989-1994) and of hindcasting for 1980-1989 are reported. It is shown that in most cases large positive and negative anomalies of summer precipitation resulting in disastrous climate events such as severe flood or drought over East Asia can be well predicted for two seasons in advance, although the quantitatively statistical skill scores are only satisfactory due to the difficulty in correctly predicting the signs of small anomalies. Some methods for removing the systematic errors and introducing corrections to the GCM output are suggested. The sensitivity of prediction to the initial conditions and the problem of ensemble prediction are also discussed in the paper.
基金The paper is one part of a project supported by National Education Committee Funds for Doctoral Faculty
文摘In this paper both processes of landslide and subsidence are considered to be limited systems. Each of these systems in nature might be regarded as an organism. Generally their lifespan must develop with common ecological characteristics, including several evolutional stages, such as initiation, growth, maturation, decline and death. Among these stages, maturation is emphasized so as to find the occurring or thriving date of both systems. An once-through cycle of both landslide and subsidence is established and is accurately predicted by a developed, mathematic model of the Poisson cycle. The Weibull distribution is cited for a landslide example. Both fundamentals are discussed. Stage predictions of landslide and subsidence are performed for several examples. Back analysis of landslides that have already happened are studied with the same model. And when compared with results from the biological mathematic model and with practical results, it is found that they correspond. Stage prediction of subsidences is also researched by the principle of the Poisson cycle.
基金funded by the Beijing Municipal Natural Science Foundation(Grant No.4212026)the Foundation Enhancement Program(Grant No.2021-JCJQ-JJ-0059).
文摘Predicting election outcomes is a crucial undertaking,and various methods are employed for this purpose,such as traditional opinion polling,and social media analysis.However,traditional polling approaches often struggle to capture the intricate nuances of voter sentiment at local levels,resulting in a limited depth of analysis and understanding.In light of this challenge,this study focuses on predicting elections at the state/regional level along with the country level,intending to offer a comprehensive analysis and deeper insights into the electoral process.To achieve this,the study introduces the Location-Based Election Prediction Model(LEPM),which utilizes social media data,specifically Twitter,and integrates location-aware sentiment analysis techniques at both the state/region and country levels.LEPM predicts the support and opposing strength of each political party/candidate.To determine the location of users/voters who have not disclosed their location information in tweets,the model utilizes a Voter Location Detection(VotLocaDetect)approach,which leverages recent tweets/posts.The sentiment analysis techniques employed in this study include rule-based sentiment analysis,Valence Aware Dictionary and Sentiment Reasoner(VADER)as well as transformers-based sentiment analysis such as Bidirectional Encoder Representations from Transformers(BERT),BERTweet,and Election based BERT(ElecBERT).This study uses the 2020 United States(US)Presidential Election as a case study.By applying the LEPM model to the election,the study demonstrates its ability to accurately predict outcomes in forty-one states,achieving an 0.84 accuracy rate at the state level.Moreover,at the country level,the LEPM model outperforms traditional polling results.With a low Mean Absolute Error(MAE)of 0.87,the model exhibits more precise predictions and serves as a successful alternative to conventional polls and other methodologies.Leveraging the extensive social media data,the LEPM model provides nuanced insights into voter behavior,enabling policymakers to make informed decisions and facilitating in-depth analyses of elections.The study emphasizes the importance of using social media data for reliable election prediction and offers implications for enhancing prediction accuracy and understanding voter sentiment and behavior.
文摘The studies in recent decades show that many natural disasters such as tropical severe storms, hurricanes development, torrential rain, river flooding, and landslides in some regions of the world and severe droughts and wildfires in other areas are due to El Nino-Southern Oscillation (ENSO). This research aims to contribute to an improved definition of the relation between ENSO and seasonal (autumn and winter) variability of rainfall over Iran. The results show that during autumn, the positive phase of SOI is associated with decrease in the rainfall amount in most part of the country;negative phase of SOI is associated with a significant increase in the rainfall amount. It is also found that, during the winter time when positive phase of SOI is dominant, winter precipitation increases in most areas of the eastern part of the country while at the same time the decreases in the amount of rainfall in other parts is not significant. Moreover, with negative phase of SOI in winter season the amount of rainfall in most areas except south shores of Caspian Sea in the north decreases, so that the decrease of rainfall amount in the eastern part is statistically significant.
文摘Memorial Sloan-Kettering Cancer Center (MSKCC) has developed 2 nomograms: the Sentinel Lymph Node Nomogram (SLNN), which is used to predict the likelihood of sentinel lymph node (SLN) metastases in patients with invasive breast cancer, and the Non-Sentinel Lymph Node Nomogram (NSLNN), which is used to predict the likelihood of residual axillary disease after a positive SLN biopsy. Our purpose was to compare the accuracy of MSKCC nomogram predictions with those made by breast surgeons. Two questionnaires were built with characteristics of two sets of 33 randomly selected patients from the MSKCC Sentinel Node Database. The first included only patients with invasive breast cancer, and the second included only patients with invasive breast cancer and positive SLN biopsy. 26 randomly selected Brazilian breast surgeons were asked about the probability of each patient in the first set having SLN metastases and each patient in the second set having additional non-SLN metastases. The predictions of the nomograms and breast surgeons were compared. There was no correlation between nomogram risk predictions and breast surgeon risk prediction estimates for either the SLNN or the NSLNN. The area under the receiver operating characteristics curves (AUCs) were 0.871 and 0.657 for SLNN and breast surgeons, respectively (p 0.0001), and 0.889 and 0.575 for the NSLNN and breast surgeons, respectively (p 0.0001). The nomograms were significantly more accurate as prediction tools than the risk predictions of breast surgeons in Brazil. This study demonstrates the potential utility of both nomograms in the decision-making process for patients with invasive breast cancer.
文摘A 61 element adaptive optical system has been preliminary tested in the Coudé path of the 1 2m telescope at the Yunnan observatory this year. The whole system will be fully operated next year. This paper describes the AO system performances and its first experiment results, and the possible astronomical research topics.
文摘Two different tools to evaluate quantile regression forecasts are proposed: MAD, to summarize forecast errors, and a fluctuation test to evaluate in-sample predictions. The scores of the PISA test to evaluate students’ proficiency are considered. Growth analysis relates school attainment to economic growth. The analysis is complemented by investigating the estimated regression and predictions not only at the centre but also in the tails. For out-of-sample forecasts, the estimates in one wave are employed to forecast the following waves. The reliability of in-sample forecasts is controlled by excluding the part of the sample selected by a specific rule: boys to predict girls, public schools to forecast private ones, vocational schools to predict non-vocational, etc. The gradient computed in the subset is compared to its analogue computed in the full sample in order to verify the validity of the estimated equation and thus of the in-sample predictions.
文摘The Newton gravitational constant is considered a cornerstone of modern gravity theory. Newton did not invent or use the gravity constant;it was invented in 1873, about the same time as it became standard to use the kilogram mass definition. We will claim that G is just a term needed to correct the incomplete kilogram definition so to be able to make gravity predictions. But there is another way;namely, to directly use a more complete mass definition, something that in recent years has been introduced as collision-time and a corresponding energy called collision-length. The collision-length is quantum gravitational energy. We will clearly demonstrate that by working with mass and energy based on these new concepts, rather than kilogram and the gravitational constant, one can significantly reduce the uncertainty in most gravity predictions.
文摘The study intends to find out the impact of pre-listening activities on predictions in English listening comprehension.Based on the analysis of the verbal reports of the 8 subjects, listeners facilitated with the pre-listening activities were able to have a more detailed and complete predictions of the text content and their evaluation of their own listening comprehension showed more consistency with the predictions. Both vocabulary and background knowledge provided in the pre-listening activities were significant in the process. Whereas, listeners lacking the pre-listening activities could have some misleading predictions of the text content which were beyond the original listening texts.
文摘A nested regional climate model has been experimentally used in the seasonal prediction at the China National Climate Center (NCC) since 2001. The NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM (CGCM) provides the boundary and initial conditions for driving the regional climate model (RegCM_NCC). The latter has a 60-km horizontal resolution and improved physical parameterization schemes including the mass flux cumulus parameterization scheme, the turbulent kinetic energy closure scheme (TKE) and an improved land process model (LPM). The large-scale terrain features such as the Tibetan Plateau are included in the larger domain to produce the topographic forcing on the rain-producing systems. A sensitivity study of the East Asian climate with regard to the above physical processes has been presented in the first part of the present paper. This is the second part, as a continuation of Part Ⅰ. In order to verify the performance of the nested regional climate model, a ten-year simulation driven by NCEP reanalysis datasets has been made to explore the performance of the East Asian climate simulation and to identify the model's systematic errors. At the same time, comparative simulation experiments for 5 years between the RegCM2 and RegCM_NCC have been done to further understand their differences in simulation performance. Also, a ten-year hindcast (1991-2000) for summer (June-August), the rainy season in China, has been undertaken. The preliminary results have shown that the RegCM_NCC is capable of predicting the major seasonal rain belts. The best predicted regions with high anomaly correlation coefficient (ACC) are located in the eastern part of West China, in Northeast China and in North China, where the CGCM has maximum prediction skill as well. This fact may reflect the importance of the largescale forcing. One significant improvement of the prediction derived from RegCM_NCC is the increase of ACC in the Yangtze River valley where the CGCM has a very low, even a negative, ACC. The reason behind this improvement is likely to be related to the more realistic representation of the large-scale terrain features of the Tibetan Plateau. Presumably, many rain-producing systems may be generated over or near the Tibetan Plateau and may then move eastward along the Yangtze River basin steered by upper-level westerly airflow, thus leading to enhancement of rainfalls in the mid and lower basins of the Yangtze River. The real-time experimental predictions for summer in 2001, 2002, 2003 and 2004 by using this nested RegCM-NCC were made. The results are basically reasonable compared with the observations.
基金supported by the National Key Research and Development Program of China(No.2017YFC0907003)the National Natural Science Foundation of China(No.81973116 and 81573229)the Joint Research Funds for Shandong University and Karolinska Institute(No.SDU-KI-2020-03)。
文摘Objective:China is one of the countries with the heaviest burden of gastric cancer(GC)in the world.Understanding the epidemiological trends and patterns of GC in China can contribute to formulating effective prevention strategies.Methods:The data on incidence,mortality,and disability-adjusted life-years(DALYs)of GC in China from1990 to 2019 were obtained from the Global Burden of Disease Study(2019).The estimated annual percentage change(EAPC)was calculated to evaluate the temporal trends of disease burden of GC,and the package Nordpred in the R program was used to perform an age-period-cohort analysis to predict the numbers and rates of incidence and mortality in the next 25 years.Results:The number of incident cases of GC increased from 317.34 thousand in 1990 to 612.82 thousand in2019,while the age-standardized incidence rate(ASIR)of GC decreased from 37.56 per 100,000 in 1990 to 30.64 per 100,000 in 2019,with an EAPC of-0.41[95%confidence interval(95%CI):-0.77,-0.06].Pronounced temporal trends in mortality and DALYs of GC were observed.In the next 25 years,the numbers of new GC cases and deaths are expected to increase to 738.79 thousand and 454.80 thousand,respectively,while the rates of incidence and deaths should steadily decrease.The deaths and DALYs attributable to smoking were different for males and females.Conclusions:In China,despite the fact that the rates of GC have decreased during the past three decades,the numbers of new GC cases and deaths increased,and will continue to increase in the next 25 years.Additional strategies are needed to reduce the burden of GC,such as screening and early detection,novel treatments,and the prevention of risk factors.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40830955,41105038)the China Meteorological Administration (Grant No.GYHY200906009)the National Basic Research Program of China (Grant No. 2009CB421505)
文摘In this study, the ilnpacts of horizontal resolution on the conditional nonlinear optimal perturbation (CNOP) and on its identified sensitive areas were investigated for tropical cyclone predictions. Three resolutions, 30 km, 60 km, and 120 kin, were studied for three tropical cyclones, TC Mindulle (2004), TC Meari (2004), and TC Matsa (2005). Results show that CNOP may present different structures with different resolutions, and the major parts of CNOP become increasingly localized with increased horizontal resolution. CNOP produces spiral and baroclinic structures, which partially account for its rapid amplification. The differences in CNOP structures result in different sensitive areas, but there are common areas for the CNOP-identified sensitive areas at various resolutions, and the size of the common areas is different from case to case. Generally, the forecasts benefit more from the reduction of the initial errors in the sensitive areas identified using higher resolutions than those using lower resolutions. However, the largest improvement of the forecast can be obtained at the resolution that is not the highest for some cases. In addition, the sensitive areas identified at lower resolutions are also helpful for improving the forecast with a finer resolution, but the sensitive areas identified at the same resolution as the forecast would be the most beneficial.
基金supported by the National Natural Science Foundation of China (NFSC Grant Nos. 41690122, 41690120, 41490644, 41490640 and 41475101)+5 种基金the Ao Shan Talents Program supported by Qingdao National Laboratory for Marine Science and Technology (Grant No. 2015ASTP)a Chinese Academy of Sciences Strategic Priority Projectthe Western Pacific Ocean System (Grant Nos. XDA11010105, XDA11020306)the NSFC–Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406401)the National Natural Science Foundation of China Innovative Group Grant (Grant No. 41421005)the Taishan Scholarship and Qingdao Innovative Program (Grant No. 2014GJJS0101)
文摘The initial errors constitute one of the main limiting factors in the ability to predict the E1 Nino-Southem Oscillation (ENSO) in ocean-atmosphere coupled models. The conditional nonlinear optimal perturbation (CNOP) approach was em- ployed to study the largest initial error growth in the E1 Nino predictions of an intermediate coupled model (ICM). The optimal initial errors (as represented by CNOPs) in sea surface temperature anomalies (SSTAs) and sea level anomalies (SLAs) were obtained with seasonal variation. The CNOP-induced perturbations, which tend to evolve into the La Nifia mode, were found to have the same dynamics as ENSO itself. This indicates that, if CNOP-type errors are present in the initial conditions used to make a prediction of E1 Nino, the E1 Nino event tends to be under-predicted. In particular, compared with other seasonal CNOPs, the CNOPs in winter can induce the largest error growth, which gives rise to an ENSO amplitude that is hardly ever predicted accurately. Additionally, it was found that the CNOP-induced perturbations exhibit a strong spring predictability barrier (SPB) phenomenon for ENSO prediction. These results offer a way to enhance ICM prediction skill and, particularly, weaken the SPB phenomenon by filtering the CNOP-type errors in the initial state. The characteristic distributions of the CNOPs derived from the ICM also provide useful information for targeted observations through data assimilation. Given the fact that the derived CNOPs are season-dependent, it is suggested that seasonally varying targeted observations should be implemented to accurately predict ENSO events.
基金supported by the National Program for Support of Top-notch Young Professionalsthe National Natural Science Foundation of China (Grant No. 41576019)J.-Y. YU was supported by the US National Science Foundation (Grant No. AGS-150514)
文摘The tropical Pacific has begun to experience a new type of El Nio, which has occurred particularly frequently during the last decade, referred to as the central Pacific(CP) El Nio. Various coupled models with different degrees of complexity have been used to make real-time El Nio predictions, but high uncertainty still exists in their forecasts. It remains unknown as to how much of this uncertainty is specifically related to the new CP-type El Nio and how much is common to both this type and the conventional Eastern Pacific(EP)-type El Nio. In this study, the deterministic performance of an El Nio–Southern Oscillation(ENSO) ensemble prediction system is examined for the two types of El Nio. Ensemble hindcasts are run for the nine EP El Nio events and twelve CP El Nio events that have occurred since 1950. The results show that(1) the skill scores for the EP events are significantly better than those for the CP events, at all lead times;(2) the systematic forecast biases come mostly from the prediction of the CP events; and(3) the systematic error is characterized by an overly warm eastern Pacific during the spring season, indicating a stronger spring prediction barrier for the CP El Nio. Further improvements to coupled atmosphere–ocean models in terms of CP El Nio prediction should be recognized as a key and high-priority task for the climate prediction community.
基金financial supports from the National Natural Science Foundation of China(Nos.51904333,51774326)。
文摘The rock indentation tests by a conical pick were conducted to investigate the rock cuttability correlated to confining stress conditions and rock strength.Based on the test results,the regression analyses,support vector machine(SVM)and generalized regression neural network(GRNN)were used to find the relationship among rock cuttability,uniaxial confining stress applied to rock,uniaxial compressive strength(UCS)and tensile strength of rock material.It was found that the regression and SVM-based models can accurately reflect the variation law of rock cuttability,which presented decreases followed by increases with the increase in uniaxial confining stress and the negative correlation to UCS and tensile strength of rock material.Based on prediction models for revealing the optimal stress condition and determining the cutting parameters,the axial boom roadheader with many conical picks mounted was satisfactorily utilized to perform rock cutting in hard phosphate rock around pillar.