The α preformation factor and penetration probability have been analyzed for even-even nuclei of Po, Rn, Ra using experimental released energies and α decay half-lives in the frame of the double folding model. It is...The α preformation factor and penetration probability have been analyzed for even-even nuclei of Po, Rn, Ra using experimental released energies and α decay half-lives in the frame of the double folding model. It is shown that N = 126 is a neutron magic number from α preformation and shell effects play an important role in α preformation, The closer the nucleon number is to the magic number, the more difficult α formation in the parent nucleus is. The preformation factor can supply information on the nuclear structure and the penetration probability mainly determines α decay half-life.展开更多
In this study,α-particle preformation factors in heavy and superheavy nuclei from ^(220)Th to ^(294)Og are investigated.By combing experimental α decay energies and half-lives,the α-particle preformation factors P_...In this study,α-particle preformation factors in heavy and superheavy nuclei from ^(220)Th to ^(294)Og are investigated.By combing experimental α decay energies and half-lives,the α-particle preformation factors P_(α) are extracted from the ratios between theoretical α decay half-lives calculated using the Two-Potential Approach (TPA)and experimental data.We find that the α-particle preformation factors exhibit a noticeable odd-even staggering behavior,and unpaired nucleons inhibit α-particle preformation.Moreover,we find that both the α decay energy and mass number of parent nucleus exhibit considerable regularity with the extracted experimental α-particle preformation factors.After considering the major physical factors,we propose a local phenomenological formula with only five valid parameters for α-particle preformation factors P_(α).This analytic expression has a clear physical meaning as well as good precision.As an application,this analytic formula is extended to estimate the α-particle preformation factors and further predict the α decay half-lives for unknown even-even nuclei with Z=118 and 120.展开更多
In the present study,the newly established preformation formula is applied for the first time to study the kinematics of the cluster emission from various radioactive nuclei,especially those that decay to the double s...In the present study,the newly established preformation formula is applied for the first time to study the kinematics of the cluster emission from various radioactive nuclei,especially those that decay to the double shell closure^(208)Pb nucleus and its neighbors as daughters.The recently proposed universal cluster preformation formula has been established based on the concepts that underscore the influence of mass and charge asymmetry(η_(A)andη_(Z)),cluster mass A_(c),and the Q-value,paving the way to quantify the energy contribution during preformation as well as during the tunneling process separately.The cluster-daughter interaction potential is obtained by folding the relativistic mean-field(RMF)densities with the recently developed microscopic R3Y using the NL 3^(*)and the phenomenological M3Y NN potentials to compare their adaptability.The penetration probabilities are calculated from the WKB approximation.With the inclusion of the new preformation probability P_(0),the predicted half-lives of the R3Y and M3Y interactions are in good agreement with the experimental data.Furthermore,a careful inspection reflects slight differences in the decay half-lives,which arise from their respective barrier properties.The P_(0)for systems with double magic shell closure^(208)Pb daughter are found to be an order of≈10^(2)higher than those with neighboring Pb daughter nuclei.By exploring the contributions of the decay energy,the recoil effect of the daughter nucleus is evaluated,in contrast to several other conjectures.Thus,the centrality of the Q-value in the decay process is demonstrated and redefined within the preformed cluster-decay model.Additionally,we have introduced a simple and intuitive set of criteria that governs the estimation of recoil energy in the cluster radioactivity.展开更多
The α-preformation probability is directly deduced from experimental α decay energies and half-lives in an analytical way without any modified parameters. Several other model-deduced results, are used to compare wit...The α-preformation probability is directly deduced from experimental α decay energies and half-lives in an analytical way without any modified parameters. Several other model-deduced results, are used to compare with that of the present study. The key role played by the shell effects in the v-preformation process is indicated in all these cases. In detail, the α-preformation factors of different theoretical extractions are found to have similar behavior for one given isotopic chain, implying the model-independent varying trend of the preformation probability of α particle. In addition, the formation probability of heavier particle in cluster radioactivity is also obtained, and this confirms the relationship between the cluster preformation factor and the product of the cluster and daughter proton numbers.展开更多
Theα-particle preformation factors of nuclei above doubly magic nuclei ^(100)Sn and ^(208)Pb are investigated within the generalized liquid drop model.The results show that theα-particle preformation factors of nucl...Theα-particle preformation factors of nuclei above doubly magic nuclei ^(100)Sn and ^(208)Pb are investigated within the generalized liquid drop model.The results show that theα-particle preformation factors of nuclei near self-conjugate doubly magic ^(100)Sn are significantly larger than those of analogous nuclei just above ^(208)Pb,and they will be enhanced as the nuclei move towards the N=Z line.The proton-neutron correlation energy E_(p-n) and two protons-two neutrons correlation energy E_(2p-2n) of nuclei near ^(100)Sn also exhibit a similar situation,indicating that the interactions between protons and neutrons occupying similar single-particle orbitals could enhance theα-particle preformation factors and result in superallowed a decay.This also provides evidence of the significant role of the proton-neutron interaction onα-particle preformation.Also,the linear relationship betweenα-particle preformation factors and the product of valence protons and valence neutrons for nuclei around ^(208)Pb is broken in the100 Sn region because theα-particle preformation factor is enhanced when a nucleus near 100 Sn moves towards the N=Z line.Furthermore,the calculatedαdecay half-lives fit well with the experimental data,including the recent observed self-conjugate nuclei ^(104)Te and ^(108)Xe[Phys.Rev.Lett.121,182501(2018)].展开更多
In this paper, based on the two-potential approach combining with the isospin dependent nuclear potential, we systematically compare the α preformation probabilities of odd-A nuclei between nuclear isomeric states an...In this paper, based on the two-potential approach combining with the isospin dependent nuclear potential, we systematically compare the α preformation probabilities of odd-A nuclei between nuclear isomeric states and ground states. The results indicate that during the process of α particle preforming, the low lying nuclear isomeric states are similar to ground states. Meanwhile, in the framework of single nucleon energy level structure, we find that for nuclei with nucleon number below the magic numbers, the α preformation probabilities of high-spin states seem to be larger than low ones. For nuclei with nucleon number above the magic numbers, the α preformation probabilities of isomeric states are larger than those of ground states.展开更多
The α particle preformation factor is extracted within a generalized liquid drop model for Z=84-92 isotopes and N=126, 128, 152, 162, 176, 184 isotones. The calculated results show clearly that the shell effects play...The α particle preformation factor is extracted within a generalized liquid drop model for Z=84-92 isotopes and N=126, 128, 152, 162, 176, 184 isotones. The calculated results show clearly that the shell effects play a key role in α particle preformation. The closer the proton and neutron numbers are to the magic numbers, the more difficult the formation of the α cluster inside the mother nucleus is. The preformation factors of the isotopes reflect that N=126 is a magic number for Po, Rn, Ra, and Th isotopes, but for U isotopes the weakening of the influence of the N=126 shell closure is evident. The trend of the factors for N=126 and N=128 isotones also support this conclusion. We extend the calculations for N=152, 162, 176, 184 isotones to explore the magic numbers for heavy and superheavy nuclei, which are probably present near Z=108 to N=152, 162 isotones and Z=116 to N=176, 184 isotones. The results also show that another subshell closure may exist after Z=124 in the superheavy nuclei. This is useful for future experiments.展开更多
In this study,we systematically investigate theαdecay preformation factors,Pα,and theαdecay half-lives of 152 nuclei around Z=82,N=126 closed shells based on the generalized liquid drop model(GLDM)with Pαbeing ext...In this study,we systematically investigate theαdecay preformation factors,Pα,and theαdecay half-lives of 152 nuclei around Z=82,N=126 closed shells based on the generalized liquid drop model(GLDM)with Pαbeing extracted from the ratio of the calculatedαdecay half-life to the experimental one.The results show that there is a remarkable linear relationship between Pαand the product of valance protons(holes)Np and valance neutrons(holes)Nn.At the same time,we extract theαdecay preformation factor values of the even–even nuclei around the Z=82,N=126 closed shells from the study of Sun et al.[J.Phys.G:Nucl.Part.Phys.,45:075106(2018)],in which theαdecay was calculated by two different microscopic formulas.We find that theαdecay preformation factors are also related to NpNn.Combining with our previous studies[Sun et al.,Phys.Rev.C,94:024338(2016);Deng et al.,ibid.96:024318(2017);Deng et al.,ibid.97:044322(2018)]and that of Seif et al.,[Phys.Rev.C,84:064608(2011)],we suspect that this phenomenon of linear relationship for the nuclei around the above closed shells is model-independent.This may be caused by the effect of the valence protons(holes)and valence neutrons(holes)around the shell closures.Finally,using the formula obtained by fitting theαdecay preformation factor data calculated by the GLDM,we calculate theαdecay half-lives of these nuclei.The calculated results agree with the experimental data well.展开更多
In this contribution,the α preformation factors of 606 nuclei are extracted within the framework of the generalized liquid drop model(GLDM).Through the systematic analysis of the α preformation factors of even-even ...In this contribution,the α preformation factors of 606 nuclei are extracted within the framework of the generalized liquid drop model(GLDM).Through the systematic analysis of the α preformation factors of even-even Po-U isotopes,we found that there is a significant weakening of influence of N=126 shell closure in uranium,which is consistent with the results of a recent experiment [J.Khuyagbaatar et al.,Phys.Rev.Lett.115,242502(2015)],implying that N=126 may not be the magic number for U isotopes.Furthermore,we propose an improved formula with only 7 parameters to calculate α preformation factors suitable for all types of α-decay;it has fewer parameters than the original formula proposed by Zhang et al.[H.F.Zhang et al.,Phys.Rev.C 80,057301(2009)]with higher precision.The standard deviation of the α preformation factors calculated by our formula with extracted values for all 606 nuclei is 0.365 with a factor of 2.3,indicating that our improved formula can accurately reproduce the α preformation factors.Encouraged by this,the α-decay half-lives of actinide elements are predicted,which could be useful in future experiments.Notably,the predicted α-decay half-lives of two new isotopes 220 Np [Z.Y.Zhang,et al.,Phys.Rev.Lett.122,192503(2019)] and 219 Np [H.B.Yang et al.,Phys.Lett.B 777,212(2018)] are in good agreement with the experimental α-decay half-lives.展开更多
The electronic product has gravitated towards component miniaturization and integration, employment of lead-free materials, and low-temperature soldering processes. Noble-metal aerogels have drawn increasing attention...The electronic product has gravitated towards component miniaturization and integration, employment of lead-free materials, and low-temperature soldering processes. Noble-metal aerogels have drawn increasing attention for high conduction and low density. However,the noble metal aerogels with outstanding solderability were rarely studied. This work has successfully synthesized an aerogel derived from silver nanowires(AgNWs) using a liquid phase reduction method. It is found that the noble metal aerogels can be made into diverse aerogel preformed soldering sheets. The influence of bonding temperature(150-300 ℃), time(2-20 min), and pressure(5-20 MPa) on the joint strength of the AgNWs aerogel affixed to electroless nickel/silver copper plates were investigated. Additionally, the AgNWs aerogel displays almost the same shear strength for substrates of various sizes. In a word, this study presents a flux-free, high-strength, and adaptable soldering structural material.展开更多
The automobiles, aircraft, and lightweight industries continuously demand thin near-net-shape preforms just out-of-machine as close to the final shape. This study addresses the possibilities of 3D thin shell textile p...The automobiles, aircraft, and lightweight industries continuously demand thin near-net-shape preforms just out-of-machine as close to the final shape. This study addresses the possibilities of 3D thin shell textile preform as the solution of lightweight reinforcement in various applications. Investigation into the development of 3D thin shells has led to different manufacturing processes. However, 3D thin shell preforms are mostly made by weaving and knitting, but nonwoven, winding, and/or layup techniques have been reported for over a decade. Owing to the complex thin shell manufacturing processes, they are not similar to the conventional methods. The different 3D thin shell preforms can extend the opportunities for new applications in various technical fields. This study presents existing research gaps and a few potential issues to be solved regarding 3D thin shell preforms in the near future.展开更多
The automobiles, aircraft, and lightweight industries continuously demand thin near-net-shape preforms just out-of-machine as close to the final shape. This study addresses the possibilities of 3D thin shell textile p...The automobiles, aircraft, and lightweight industries continuously demand thin near-net-shape preforms just out-of-machine as close to the final shape. This study addresses the possibilities of 3D thin shell textile preform as the solution of lightweight reinforcement in various applications. Investigation into the development of 3D thin shells has led to different manufacturing processes. However, 3D thin shell preforms are mostly made by weaving and knitting, but nonwoven, winding, and/or layup techniques have been reported for over a decade. Owing to the complex thin shell manufacturing processes, they are not similar to the conventional methods. The different 3D thin shell preforms can extend the opportunities for new applications in various technical fields. This study presents existing research gaps and a few potential issues to be solved regarding 3D thin shell preforms in the near future.展开更多
C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high...C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high density of 0.94 g/cm3 as preform.Experimental results indicated that the fracture characteristics of C/C composites were closely related to the frequency of high-temperature treatment(HTT) at the break of CVI process.According to the load?displacement curves,C/C composites showed a pseudoplastic fracture after twice of HTT.After three times of HTT,load?displacement curves tended to be stable with a decreasing bending strength at 177.5 MPa.Delamination failure and intrastratal fiber fracture were observed at the cross-section of C/C composites by scanning electronic microscope.Because the content of pyrocarbon and fibers has a different distribution in layers,the C/C composites show different fracture characteristics at various regions,which leads to good toughness and bending strength.展开更多
The multiple objective preform design optimization was put forward. The final forging's shape and deformation uniformity were considered in the multiple objective. The objective is to optimize the shape and the defor...The multiple objective preform design optimization was put forward. The final forging's shape and deformation uniformity were considered in the multiple objective. The objective is to optimize the shape and the deformation uniformity of the final forging at the same time so that a more high integrate quality of the final forging can be obtained. The total objective was assembled by the shape and uniformity objective using the weight adding method. The preform die shape is presented by cubic B-spline curves. The control points of B-spline curves are used as the design variables. The forms of the total objective function, shape and uniformity sub-objective function are given. The sensitivities of the total objective function and the sub-objective functions with respect to the design variables are developed. Using this method, the preform die shape of an H-shaped forging process is optimally designed. The optimization results are very satisfactory.展开更多
Pressure-assisted sinter bonding was performed in air at 250−350℃ using a preform comprising copper formate particles to form a bondline that is sustainable at high temperatures.H2 and CO generated concurrently by th...Pressure-assisted sinter bonding was performed in air at 250−350℃ using a preform comprising copper formate particles to form a bondline that is sustainable at high temperatures.H2 and CO generated concurrently by the pyrolysis of copper formate at 210℃ during the sinter bonding removed the native oxide and other oxides grown on bulk Cu finishes,enabling interface bonding.Moreover,Cu produced in situ by the reduction of Cu(II)accelerated the sinter bonding.Consequently,the bonding achieved at 300−350℃ under 5 MPa exhibited sufficient shear strength of 20.0−31.5 MPa after 180−300 min of sinter bonding.In addition,an increase in pressure to 10 MPa resulted in shear strength of 21.9 MPa after an extremely short time of 30 s at 250℃,and a near-full-density bondline was achieved after 300 s.The obtained results indicate the promising potential of the preform comprising copper formate particles for high-speed sinter bonding.展开更多
Preformed albumin corona of albumin-nonselective nanoparticles(NPs)is widely exploited to inhibit the unavoidable protein adsorption upon intravenous administration.However,very few studies have concerned the preforme...Preformed albumin corona of albumin-nonselective nanoparticles(NPs)is widely exploited to inhibit the unavoidable protein adsorption upon intravenous administration.However,very few studies have concerned the preformed albumin corona of albumin-selective NPs.Herein,we report a novel type of albumin-selective NPs by decorating 6-maleimidocaproyl polyethylene glycol stearate(SA)onto PLGA NPs(SP NPs)surface,taking albuminnonselective PLGA NPs as control.PLGA NPs and SP NPs were prepared by emulsion-solvent evaporation method and the resultant NPs were in spherical shape with an average diameter around 180 nm.The corresponding albumin-coating PLGA NPs(PLGA@BSA NPs)and albumin-coating SP NPs(SP@BSA NPs)were formulated by incubating SP NPs or PLGA NPs with bovine serum albumin solution,respectively.The impact of albumin corona on particle characteristics,stability,photothermal effect,cytotoxicity,cell uptake,spheroid penetration and pharmacokinetics was investigated.In line with previous findings of preformed albumin coating,PLGA@BSA NPs exhibited higher stability,cytotoxicity,cell internalization and spheroid penetration performances in vitro,and longer blood circulation time in vivo than those of albumin-nonselective PLGA NPs,but albumin-selective SP NPs is capable of achieving a comparable in vitro and in vivo performances with both SP@BSA NPs and PLGA@BSA NPs.Our results demonstrate that SA decorated albumin-selective NPs pave a versatile avenue for optimizing nanoparticulate delivery without preformed albumin corona.展开更多
This paper measured permeability of three-dimension braided preform by radial technology. The results show that principal permeability tensor coincided with their braiding axial direction. The software of one dimensio...This paper measured permeability of three-dimension braided preform by radial technology. The results show that principal permeability tensor coincided with their braiding axial direction. The software of one dimensional flow filling mold was designed using Visual C++ language. Filling time is predicted and validated. The result showed that the filling time of the mold centerline agrees with the prediction value. The filling time of the mould edge is shorter than that of the prediction. An actual plate of 3D braided preform/ modified polyarylacetylene composite is produced according to prediction value and validation analysis.展开更多
A finite element based sensitivity analysis method for preform die shape design in metal forging is developed. The optimization goal is to obtain more uniform deformation within the final forging by controlling the de...A finite element based sensitivity analysis method for preform die shape design in metal forging is developed. The optimization goal is to obtain more uniform deformation within the final forging by controlling the deformation uniformity. The objective function expressed by the effective strain is constructed. The sensitivity equations of the objective function, elemental volume, elemental effective strain rate and the elemental strain rate with respect to the design variables are constituted. The preform die shapes of an H-shaped forging process in axisymmetric deformation are designed using this method.展开更多
Production of A6063/SiC-B4C hybrid composite using vacuum assisted block mould investment casting was investigated. Firstly,SiC-B4C hybrid preforms were fabricated in cylindrical shape.The preferred mean particle size...Production of A6063/SiC-B4C hybrid composite using vacuum assisted block mould investment casting was investigated. Firstly,SiC-B4C hybrid preforms were fabricated in cylindrical shape.The preferred mean particle size of the SiC and B4C powders were 60μm and 55μm respectively.In early experiments,single powder ratio of 85%SiC and 15%B4C was selected to produce the tough preforms.Subsequently,the preforms were placed into the cylindrical shape gypsum bonded block investment moulds and A6063 alloy was infiltrated into the preforms using vacuum assisted(-10 5 Pa)casting machine.Porosity fraction of preforms was determined using Archimedes’test.The fabricated cast specimens were characterized using hardness tests,image analysis and SEM observations and EDX analysis.The result indicates that,by the vacuum assisted block mould investment casting technique,the infiltration of the preforms by molten metal was successfully realized.展开更多
The effect of Mg and Si additon to Al matrix on infiltration kinetics and rates of Al alloys pressureless infiltration into porous SiCp preform was investigated by observing the change of infiltration distance with ti...The effect of Mg and Si additon to Al matrix on infiltration kinetics and rates of Al alloys pressureless infiltration into porous SiCp preform was investigated by observing the change of infiltration distance with time as the Al alloys infiltrate into SiCp preforms at different temperatures.The results show that infiltration of SiCp preforms by Al melt is a thermal activation process and there is an incubation period before the infiltration becomes stable.With the increase of Mg content in the Al alloys from 0wt% to 8wt%,the infiltration will become much easier,the incubation period becomes shorter and the infiltration rate is faster,but these effects are not obvious when the Mg content is higher than 8wt%.As for Si addition to the Al alloys,it has no obvious effect on the incubation period,but the infiltration rate increases markedly with the increase of Si content from 0wt% to 12wt% and the rate has no obvious change when the content is bigger than 12wt%.The effect of Mg and Si on the incubation period is related to the infiltration mechanism of Al pressureless infiltration into SiCp preforms and their impact on the infiltration rate is a combined result from viscosity and surface tension of Al melt and SiC-Al wetting ability.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 60572177)
文摘The α preformation factor and penetration probability have been analyzed for even-even nuclei of Po, Rn, Ra using experimental released energies and α decay half-lives in the frame of the double folding model. It is shown that N = 126 is a neutron magic number from α preformation and shell effects play an important role in α preformation, The closer the nucleon number is to the magic number, the more difficult α formation in the parent nucleus is. The preformation factor can supply information on the nuclear structure and the penetration probability mainly determines α decay half-life.
基金Supported in part by the National Natural Science Foundation of China (12175100, 11975132)the Construct Program of the Key Discipline in Hunan Province+5 种基金the Research Foundation of Education Bureau of Hunan Province,China (21B0402, 18A237, 22A0305)the Natural Science Foundation of Hunan Province,China(2018JJ2321)the Innovation Group of Nuclear and Particle Physics in USCthe Shandong Province Natural Science Foundation,China (ZR2022JQ04)the Opening Project of Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment,University of South China (2019KFZ10)Hunan Provincial Innovation Foundation for Postgraduate (CX20230962).
文摘In this study,α-particle preformation factors in heavy and superheavy nuclei from ^(220)Th to ^(294)Og are investigated.By combing experimental α decay energies and half-lives,the α-particle preformation factors P_(α) are extracted from the ratios between theoretical α decay half-lives calculated using the Two-Potential Approach (TPA)and experimental data.We find that the α-particle preformation factors exhibit a noticeable odd-even staggering behavior,and unpaired nucleons inhibit α-particle preformation.Moreover,we find that both the α decay energy and mass number of parent nucleus exhibit considerable regularity with the extracted experimental α-particle preformation factors.After considering the major physical factors,we propose a local phenomenological formula with only five valid parameters for α-particle preformation factors P_(α).This analytic expression has a clear physical meaning as well as good precision.As an application,this analytic formula is extended to estimate the α-particle preformation factors and further predict the α decay half-lives for unknown even-even nuclei with Z=118 and 120.
基金Supported by the Fundamental Research Grant Scheme(FRGS/1/2019/STG02/UNIMAP/02/2)from the Ministry of Education Malaysia stipulated with the Institute of Engineering Mathematics(IMK)of the Faculty of Applied and Human Sciences UniMAP as the beholder,Science and Engineering Research Board(SERB,CRG/2021/001229)FOSTECT Project(FOSTECT.2019B.04)FAPESP Project(2017/05660-0)
文摘In the present study,the newly established preformation formula is applied for the first time to study the kinematics of the cluster emission from various radioactive nuclei,especially those that decay to the double shell closure^(208)Pb nucleus and its neighbors as daughters.The recently proposed universal cluster preformation formula has been established based on the concepts that underscore the influence of mass and charge asymmetry(η_(A)andη_(Z)),cluster mass A_(c),and the Q-value,paving the way to quantify the energy contribution during preformation as well as during the tunneling process separately.The cluster-daughter interaction potential is obtained by folding the relativistic mean-field(RMF)densities with the recently developed microscopic R3Y using the NL 3^(*)and the phenomenological M3Y NN potentials to compare their adaptability.The penetration probabilities are calculated from the WKB approximation.With the inclusion of the new preformation probability P_(0),the predicted half-lives of the R3Y and M3Y interactions are in good agreement with the experimental data.Furthermore,a careful inspection reflects slight differences in the decay half-lives,which arise from their respective barrier properties.The P_(0)for systems with double magic shell closure^(208)Pb daughter are found to be an order of≈10^(2)higher than those with neighboring Pb daughter nuclei.By exploring the contributions of the decay energy,the recoil effect of the daughter nucleus is evaluated,in contrast to several other conjectures.Thus,the centrality of the Q-value in the decay process is demonstrated and redefined within the preformed cluster-decay model.Additionally,we have introduced a simple and intuitive set of criteria that governs the estimation of recoil energy in the cluster radioactivity.
基金the National Natural Science Foundation of China (Grant Nos. 11035001, 10975072, 10735010 and 11120101005)the National Major State Basic Research and Development of China (Grant Nos. 2010CB327803 and 2013CB834400)+4 种基金the Knowledge Innovative Program of the Chinese Academy of Sciences (Grant No. KJCX2-SW-N02)the Research Fund of Doctoral Point (RFDP) (Grant No. 20100091110028)the Project Funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions (PAPD)the Research and Innovation for College Postgraduate of JiangSu Province (Grant No. CXZZ12 0031)the Science and Technology Development Fund of Macao (Grant No.068/2011/A)
文摘The α-preformation probability is directly deduced from experimental α decay energies and half-lives in an analytical way without any modified parameters. Several other model-deduced results, are used to compare with that of the present study. The key role played by the shell effects in the v-preformation process is indicated in all these cases. In detail, the α-preformation factors of different theoretical extractions are found to have similar behavior for one given isotopic chain, implying the model-independent varying trend of the preformation probability of α particle. In addition, the formation probability of heavier particle in cluster radioactivity is also obtained, and this confirms the relationship between the cluster preformation factor and the product of the cluster and daughter proton numbers.
基金Supported by the National Natural Science Foundation of China(12175170,11675066,12005303)。
文摘Theα-particle preformation factors of nuclei above doubly magic nuclei ^(100)Sn and ^(208)Pb are investigated within the generalized liquid drop model.The results show that theα-particle preformation factors of nuclei near self-conjugate doubly magic ^(100)Sn are significantly larger than those of analogous nuclei just above ^(208)Pb,and they will be enhanced as the nuclei move towards the N=Z line.The proton-neutron correlation energy E_(p-n) and two protons-two neutrons correlation energy E_(2p-2n) of nuclei near ^(100)Sn also exhibit a similar situation,indicating that the interactions between protons and neutrons occupying similar single-particle orbitals could enhance theα-particle preformation factors and result in superallowed a decay.This also provides evidence of the significant role of the proton-neutron interaction onα-particle preformation.Also,the linear relationship betweenα-particle preformation factors and the product of valence protons and valence neutrons for nuclei around ^(208)Pb is broken in the100 Sn region because theα-particle preformation factor is enhanced when a nucleus near 100 Sn moves towards the N=Z line.Furthermore,the calculatedαdecay half-lives fit well with the experimental data,including the recent observed self-conjugate nuclei ^(104)Te and ^(108)Xe[Phys.Rev.Lett.121,182501(2018)].
基金Supported by National Natural Science Foundation of China(11205083)Construct Program of Key Discipline in Hunan Province+3 种基金Rearch Foundation of Education Bureau of Hunan Province,China(15A159)Natural Science Foundation of Hunan Province,China(2015JJ3103,2015JJ2123)Innovation Group of Nuclear and Particle Physics in USCHunan Provincial Innovation Foundation for Postgraduate(CX2015B398)
文摘In this paper, based on the two-potential approach combining with the isospin dependent nuclear potential, we systematically compare the α preformation probabilities of odd-A nuclei between nuclear isomeric states and ground states. The results indicate that during the process of α particle preforming, the low lying nuclear isomeric states are similar to ground states. Meanwhile, in the framework of single nucleon energy level structure, we find that for nuclei with nucleon number below the magic numbers, the α preformation probabilities of high-spin states seem to be larger than low ones. For nuclei with nucleon number above the magic numbers, the α preformation probabilities of isomeric states are larger than those of ground states.
基金Supported by National Natural Science Foundation of China(11675066,11475050)Fundamental Research Funds for the Central Universities(lzujbky-2017-ot04)Feitian Scholar Project of Gansu Province
文摘The α particle preformation factor is extracted within a generalized liquid drop model for Z=84-92 isotopes and N=126, 128, 152, 162, 176, 184 isotones. The calculated results show clearly that the shell effects play a key role in α particle preformation. The closer the proton and neutron numbers are to the magic numbers, the more difficult the formation of the α cluster inside the mother nucleus is. The preformation factors of the isotopes reflect that N=126 is a magic number for Po, Rn, Ra, and Th isotopes, but for U isotopes the weakening of the influence of the N=126 shell closure is evident. The trend of the factors for N=126 and N=128 isotones also support this conclusion. We extend the calculations for N=152, 162, 176, 184 isotones to explore the magic numbers for heavy and superheavy nuclei, which are probably present near Z=108 to N=152, 162 isotones and Z=116 to N=176, 184 isotones. The results also show that another subshell closure may exist after Z=124 in the superheavy nuclei. This is useful for future experiments.
基金Supported in part by the National Natural Science Foundation of China(11205083,11505100,11705055)the Construct Program of the Key Discipline in Hunan Province,the Research Foundation of Education Bureau of Hunan Province,China(15A159,18A237)+4 种基金the Natural Science Foundation of Hunan Province,China(2015JJ3103,2015JJ2121,2018JJ3324)the Innovation Group of Nuclear and Particle Physics in USC,the Shandong Province Natural Science Foundation,China(ZR2015AQ007)the Hunan Provincial Innovation Foundation For Postgraduate(CX20190714,CX20200909)the National Innovation Training Foundation of China(201910555161)and the Opening Project of Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment,University of South China(2019KFZ10)。
文摘In this study,we systematically investigate theαdecay preformation factors,Pα,and theαdecay half-lives of 152 nuclei around Z=82,N=126 closed shells based on the generalized liquid drop model(GLDM)with Pαbeing extracted from the ratio of the calculatedαdecay half-life to the experimental one.The results show that there is a remarkable linear relationship between Pαand the product of valance protons(holes)Np and valance neutrons(holes)Nn.At the same time,we extract theαdecay preformation factor values of the even–even nuclei around the Z=82,N=126 closed shells from the study of Sun et al.[J.Phys.G:Nucl.Part.Phys.,45:075106(2018)],in which theαdecay was calculated by two different microscopic formulas.We find that theαdecay preformation factors are also related to NpNn.Combining with our previous studies[Sun et al.,Phys.Rev.C,94:024338(2016);Deng et al.,ibid.96:024318(2017);Deng et al.,ibid.97:044322(2018)]and that of Seif et al.,[Phys.Rev.C,84:064608(2011)],we suspect that this phenomenon of linear relationship for the nuclei around the above closed shells is model-independent.This may be caused by the effect of the valence protons(holes)and valence neutrons(holes)around the shell closures.Finally,using the formula obtained by fitting theαdecay preformation factor data calculated by the GLDM,we calculate theαdecay half-lives of these nuclei.The calculated results agree with the experimental data well.
基金Supported by the National Natural Science Foundation of China (11675066, 11665019, 11947229)Fundamental Research Funds for the Central Universities(lzujbky-2017-ot04)Feitian Scholar Project of Gansu province。
文摘In this contribution,the α preformation factors of 606 nuclei are extracted within the framework of the generalized liquid drop model(GLDM).Through the systematic analysis of the α preformation factors of even-even Po-U isotopes,we found that there is a significant weakening of influence of N=126 shell closure in uranium,which is consistent with the results of a recent experiment [J.Khuyagbaatar et al.,Phys.Rev.Lett.115,242502(2015)],implying that N=126 may not be the magic number for U isotopes.Furthermore,we propose an improved formula with only 7 parameters to calculate α preformation factors suitable for all types of α-decay;it has fewer parameters than the original formula proposed by Zhang et al.[H.F.Zhang et al.,Phys.Rev.C 80,057301(2009)]with higher precision.The standard deviation of the α preformation factors calculated by our formula with extracted values for all 606 nuclei is 0.365 with a factor of 2.3,indicating that our improved formula can accurately reproduce the α preformation factors.Encouraged by this,the α-decay half-lives of actinide elements are predicted,which could be useful in future experiments.Notably,the predicted α-decay half-lives of two new isotopes 220 Np [Z.Y.Zhang,et al.,Phys.Rev.Lett.122,192503(2019)] and 219 Np [H.B.Yang et al.,Phys.Lett.B 777,212(2018)] are in good agreement with the experimental α-decay half-lives.
基金the National Natural Science Foundation of China(Grant No.52075125,No.52105331)the Shenzhen Science and Technology Innovation Committee(Grant No.JCYJ20210324124203009,No.JSGG20201102154600003,No.GXWD20220818163456002)+1 种基金Special Fund for Science and Technology Innovation Strategy of Guangdong Province(Grant No.pdjh2022b0570)Sustainedly Supported Fundation by National Key Laboratory of Science and Technology on Space Microwave under Grant HTKJ2022KL504011,and NIO University Programme(NIO UP).
文摘The electronic product has gravitated towards component miniaturization and integration, employment of lead-free materials, and low-temperature soldering processes. Noble-metal aerogels have drawn increasing attention for high conduction and low density. However,the noble metal aerogels with outstanding solderability were rarely studied. This work has successfully synthesized an aerogel derived from silver nanowires(AgNWs) using a liquid phase reduction method. It is found that the noble metal aerogels can be made into diverse aerogel preformed soldering sheets. The influence of bonding temperature(150-300 ℃), time(2-20 min), and pressure(5-20 MPa) on the joint strength of the AgNWs aerogel affixed to electroless nickel/silver copper plates were investigated. Additionally, the AgNWs aerogel displays almost the same shear strength for substrates of various sizes. In a word, this study presents a flux-free, high-strength, and adaptable soldering structural material.
文摘The automobiles, aircraft, and lightweight industries continuously demand thin near-net-shape preforms just out-of-machine as close to the final shape. This study addresses the possibilities of 3D thin shell textile preform as the solution of lightweight reinforcement in various applications. Investigation into the development of 3D thin shells has led to different manufacturing processes. However, 3D thin shell preforms are mostly made by weaving and knitting, but nonwoven, winding, and/or layup techniques have been reported for over a decade. Owing to the complex thin shell manufacturing processes, they are not similar to the conventional methods. The different 3D thin shell preforms can extend the opportunities for new applications in various technical fields. This study presents existing research gaps and a few potential issues to be solved regarding 3D thin shell preforms in the near future.
文摘The automobiles, aircraft, and lightweight industries continuously demand thin near-net-shape preforms just out-of-machine as close to the final shape. This study addresses the possibilities of 3D thin shell textile preform as the solution of lightweight reinforcement in various applications. Investigation into the development of 3D thin shells has led to different manufacturing processes. However, 3D thin shell preforms are mostly made by weaving and knitting, but nonwoven, winding, and/or layup techniques have been reported for over a decade. Owing to the complex thin shell manufacturing processes, they are not similar to the conventional methods. The different 3D thin shell preforms can extend the opportunities for new applications in various technical fields. This study presents existing research gaps and a few potential issues to be solved regarding 3D thin shell preforms in the near future.
基金Project (50802115) supported by the National Natural Science Foundation of ChinaProject (2011CB605801) supported by the National Basic Research Program of China
文摘C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high density of 0.94 g/cm3 as preform.Experimental results indicated that the fracture characteristics of C/C composites were closely related to the frequency of high-temperature treatment(HTT) at the break of CVI process.According to the load?displacement curves,C/C composites showed a pseudoplastic fracture after twice of HTT.After three times of HTT,load?displacement curves tended to be stable with a decreasing bending strength at 177.5 MPa.Delamination failure and intrastratal fiber fracture were observed at the cross-section of C/C composites by scanning electronic microscope.Because the content of pyrocarbon and fibers has a different distribution in layers,the C/C composites show different fracture characteristics at various regions,which leads to good toughness and bending strength.
文摘The multiple objective preform design optimization was put forward. The final forging's shape and deformation uniformity were considered in the multiple objective. The objective is to optimize the shape and the deformation uniformity of the final forging at the same time so that a more high integrate quality of the final forging can be obtained. The total objective was assembled by the shape and uniformity objective using the weight adding method. The preform die shape is presented by cubic B-spline curves. The control points of B-spline curves are used as the design variables. The forms of the total objective function, shape and uniformity sub-objective function are given. The sensitivities of the total objective function and the sub-objective functions with respect to the design variables are developed. Using this method, the preform die shape of an H-shaped forging process is optimally designed. The optimization results are very satisfactory.
基金supported by the Materials&Components Technology Development Program(10080187)funded by the Ministry of Trade,Industry&Energy(MI,Korea)。
文摘Pressure-assisted sinter bonding was performed in air at 250−350℃ using a preform comprising copper formate particles to form a bondline that is sustainable at high temperatures.H2 and CO generated concurrently by the pyrolysis of copper formate at 210℃ during the sinter bonding removed the native oxide and other oxides grown on bulk Cu finishes,enabling interface bonding.Moreover,Cu produced in situ by the reduction of Cu(II)accelerated the sinter bonding.Consequently,the bonding achieved at 300−350℃ under 5 MPa exhibited sufficient shear strength of 20.0−31.5 MPa after 180−300 min of sinter bonding.In addition,an increase in pressure to 10 MPa resulted in shear strength of 21.9 MPa after an extremely short time of 30 s at 250℃,and a near-full-density bondline was achieved after 300 s.The obtained results indicate the promising potential of the preform comprising copper formate particles for high-speed sinter bonding.
基金financially supported by the National Basic Research Program of China(973 Program,No.2015CB932100)National Natural Science Foundation of China(No.81703451,81573371,81473164)。
文摘Preformed albumin corona of albumin-nonselective nanoparticles(NPs)is widely exploited to inhibit the unavoidable protein adsorption upon intravenous administration.However,very few studies have concerned the preformed albumin corona of albumin-selective NPs.Herein,we report a novel type of albumin-selective NPs by decorating 6-maleimidocaproyl polyethylene glycol stearate(SA)onto PLGA NPs(SP NPs)surface,taking albuminnonselective PLGA NPs as control.PLGA NPs and SP NPs were prepared by emulsion-solvent evaporation method and the resultant NPs were in spherical shape with an average diameter around 180 nm.The corresponding albumin-coating PLGA NPs(PLGA@BSA NPs)and albumin-coating SP NPs(SP@BSA NPs)were formulated by incubating SP NPs or PLGA NPs with bovine serum albumin solution,respectively.The impact of albumin corona on particle characteristics,stability,photothermal effect,cytotoxicity,cell uptake,spheroid penetration and pharmacokinetics was investigated.In line with previous findings of preformed albumin coating,PLGA@BSA NPs exhibited higher stability,cytotoxicity,cell internalization and spheroid penetration performances in vitro,and longer blood circulation time in vivo than those of albumin-nonselective PLGA NPs,but albumin-selective SP NPs is capable of achieving a comparable in vitro and in vivo performances with both SP@BSA NPs and PLGA@BSA NPs.Our results demonstrate that SA decorated albumin-selective NPs pave a versatile avenue for optimizing nanoparticulate delivery without preformed albumin corona.
文摘This paper measured permeability of three-dimension braided preform by radial technology. The results show that principal permeability tensor coincided with their braiding axial direction. The software of one dimensional flow filling mold was designed using Visual C++ language. Filling time is predicted and validated. The result showed that the filling time of the mold centerline agrees with the prediction value. The filling time of the mould edge is shorter than that of the prediction. An actual plate of 3D braided preform/ modified polyarylacetylene composite is produced according to prediction value and validation analysis.
基金This research work was supported by Science Fund of the Post Doctor of China ([2000]23).
文摘A finite element based sensitivity analysis method for preform die shape design in metal forging is developed. The optimization goal is to obtain more uniform deformation within the final forging by controlling the deformation uniformity. The objective function expressed by the effective strain is constructed. The sensitivity equations of the objective function, elemental volume, elemental effective strain rate and the elemental strain rate with respect to the design variables are constituted. The preform die shapes of an H-shaped forging process in axisymmetric deformation are designed using this method.
基金Yildiz Technical University and Balkan Center for Advanced Casting Technologies (BCACT) for their financial support
文摘Production of A6063/SiC-B4C hybrid composite using vacuum assisted block mould investment casting was investigated. Firstly,SiC-B4C hybrid preforms were fabricated in cylindrical shape.The preferred mean particle size of the SiC and B4C powders were 60μm and 55μm respectively.In early experiments,single powder ratio of 85%SiC and 15%B4C was selected to produce the tough preforms.Subsequently,the preforms were placed into the cylindrical shape gypsum bonded block investment moulds and A6063 alloy was infiltrated into the preforms using vacuum assisted(-10 5 Pa)casting machine.Porosity fraction of preforms was determined using Archimedes’test.The fabricated cast specimens were characterized using hardness tests,image analysis and SEM observations and EDX analysis.The result indicates that,by the vacuum assisted block mould investment casting technique,the infiltration of the preforms by molten metal was successfully realized.
基金supported by the National Natural Science Foundation of China (No.51004010)the Research Fund for the Doctoral Program of Higher Education of China (No.20090006120022)
文摘The effect of Mg and Si additon to Al matrix on infiltration kinetics and rates of Al alloys pressureless infiltration into porous SiCp preform was investigated by observing the change of infiltration distance with time as the Al alloys infiltrate into SiCp preforms at different temperatures.The results show that infiltration of SiCp preforms by Al melt is a thermal activation process and there is an incubation period before the infiltration becomes stable.With the increase of Mg content in the Al alloys from 0wt% to 8wt%,the infiltration will become much easier,the incubation period becomes shorter and the infiltration rate is faster,but these effects are not obvious when the Mg content is higher than 8wt%.As for Si addition to the Al alloys,it has no obvious effect on the incubation period,but the infiltration rate increases markedly with the increase of Si content from 0wt% to 12wt% and the rate has no obvious change when the content is bigger than 12wt%.The effect of Mg and Si on the incubation period is related to the infiltration mechanism of Al pressureless infiltration into SiCp preforms and their impact on the infiltration rate is a combined result from viscosity and surface tension of Al melt and SiC-Al wetting ability.