In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated por...In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated porous media under stress.Based on the acoustoelastic theory of fluid-saturated porous media, the field equation of fluid-saturated porous media under the conditions of confining pressure and pore pressure and the acoustic field formula of multipole source excitation in open hole are given. The influences of pore pressure and confining pressure on guided waves of multipole borehole acoustic field in fluid-saturated porous media are investigated. The numerical results show that the phase velocity and excitation intensity of guided wave increase significantly under the confining pressure. For a given confining pressure, the phase velocity of the guided wave decreases with pore pressure increasing. The excitation intensity of guided wave increases at low frequency and then decreases at high frequency with pore pressure increasing, except for that of Stoneley wave which decreases in the whole frequency range. These results will help us get an insight into the influences of confining pressure and pore pressure on the acoustic field of multipole source in borehole around fluid-saturated porous media.展开更多
The surge in popularity of rustic videos has spawned a great number of Internet memes, such as Internet trendy words growing from dialects and strange pronunciations, picture memes made from video screenshots, and mes...The surge in popularity of rustic videos has spawned a great number of Internet memes, such as Internet trendy words growing from dialects and strange pronunciations, picture memes made from video screenshots, and mesmerizing music with a vernacular flavor. Due to their reproducibility, social interaction, and involvement, these rustic videos adhere to the fundamental logic of the propagation of online memes. Rustic videos are widely disseminated as online memes on TikTok (the Chinese version), are often reproduced and used by young people in social contact, and have become a unique linguistic symbol in modern internet culture. As a symbolic carrier that transports the consciousness of the video creator and viewer, it is widely employed in the communication and engagement of young people on a regular basis, progressively altering their linguistic expression. This specific semiotic interaction has deconstructed and recreated the conventional media culture spectacle. This research examines the influence of rustic videos on TikTok on the linguistic expressions of modern youth from the perspectives of meme theory and semiotics, as well as the impact of rustic videos on the media spectacle from the standpoint of media spectacle theory. It also examines in depth the effects of the popularity of rustic videos on China’s economy and culture.展开更多
The expression and clinical significance of relevant cytokines in otitis media (OM) are discussed, and the alterations to the pathological state of the otitis media mucosa are further understood through the study of c...The expression and clinical significance of relevant cytokines in otitis media (OM) are discussed, and the alterations to the pathological state of the otitis media mucosa are further understood through the study of cytokine transduction pathways. More and more studies have shown that relevant cell proliferation and inflammation progression pathways play a role in the development of otitis media, such as the Jun amino-terminal protein kinase (JNK) mitogen-activated protein kinase (MAPK) signaling pathway, the NF-κB signaling pathway, and the PI3K/AKT/PTEN pathway, which are involved in the proliferation of the middle ear mucosa during otitis media, which affects the mucosal cilia, motor function, Eustachian tube function, and the mucosal ciliary function. These studies provide new ideas for the treatment of otitis media and further explore the feasibility of immunotherapy in the future treatment of otitis media. In this paper, we present a review of the latest research progress on the expression of various cytokines in otitis media.展开更多
Two-phase flow in porous media is a very active field of research,due to its important applications in groundwater pollution,CO_(2)sequestration,or oil and gas production from petroleum reservoirs,just to name a few o...Two-phase flow in porous media is a very active field of research,due to its important applications in groundwater pollution,CO_(2)sequestration,or oil and gas production from petroleum reservoirs,just to name a few of them.Fractional flow equations,which make use of Darcy's law,for describing the movement of two immiscible fluids in a porous medium,are among the most relevant mathematical models in reservoir simulation.This work aims to solve a fractional flow model formed by an elliptic equation,representing the spatial distribution of the pressure,and a hyperbolic equation describing the space-time evolution of water saturation.The numerical solution of the elliptic part is obtained using a finite-element(FE)scheme,while the hyperbolic equation is solved by means of two dif-ferent numerical approaches,both in the finite-volume(FV)framework.One is based on a monotonic upstream-centered scheme for conservation laws(MUSCL)-Hancock scheme,whereas the other makes use of a weighted essentially non-oscillatory(ENO)reconstruc-tion.In both cases,a first-order centered(FORCE)-αnumerical scheme is applied for inter-cell flux reconstruction,which constitutes a new contribution in the field of fractional flow models describing oil-water movement.A relevant feature of this work is the study of the effect of the parameterαon the numerical solution of the models considered.We also show that,in the FORCE-αmethod,when the parameterαincreases,the errors diminish and the order of accuracy is more properly attained,as verified using a manufactured solution technique.展开更多
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi...This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.展开更多
The pressure evolution associated with the transient shock-induced infiltration of gas flow through granular media consisting of mobile particles is numerically investigated using a coupled Eulerian–Lagrangian approa...The pressure evolution associated with the transient shock-induced infiltration of gas flow through granular media consisting of mobile particles is numerically investigated using a coupled Eulerian–Lagrangian approach.The coupling between shock compaction and interstitial flow has been revealed.A distinctive two-stage diffusing pressure field with deflection occurring at the tail of the compaction front is found,with corresponding spikes in both gaseous velocity and temperature profiles emerging within the width of the compaction front.The compaction front,together with the deflection pressure,reaches a steady state during the later period.An analytical prediction of the steady deflection pressure that considers the contributions of porosity and the non-isothermal effect is proposed.The isothermal single-phase method we developed,combining the porosity jump condition across the compaction front,shows consistent pressure evolution with the non-isothermal CMP-PIC one under weak shock strength and low column permeability.Lastly,the microscale mechanism governing the formation of not only pressure deflection but also gaseous velocity and temperature spikes within the width of the compaction front has been described.These aforementioned evolutions of the flow field are shown to arise from the nozzling effects associated with the particle-scale variations in the volume fraction.展开更多
Background and Objective:Social media(SoMe)has emerged as a tool in health professions education(HPE),particularly amidst the challenges posed by the coronavirus disease 2019(COVID-19)pandemic.Despite the academia’s ...Background and Objective:Social media(SoMe)has emerged as a tool in health professions education(HPE),particularly amidst the challenges posed by the coronavirus disease 2019(COVID-19)pandemic.Despite the academia’s initial skepticism SoMe has been gaining traction in supporting learning communities,and offering opportunities for innovation in HPE.Our study aims to explore the integration of SoMe in HPE.Four key components were outlined as necessary for a successful integration,and include designing learning experiences,defining educator roles,selecting appropriate platforms,and establishing educational objectives.Methods:This article stemmed from the online Teaching Skills Series module on SoMe in education from the Ophthalmology Foundation,and drew upon evidence supporting learning theories relevant to SoMe integration and models of education.Additionally,we conducted a literature review considering Englishlanguage articles on the application of SoMe in ophthalmology from PubMed over the past decade.Key Content and Findings:Early adopters of SoMe platforms in HPE have leveraged these tools to enhance learning experiences through interaction,dialogue,content sharing,and active learning strategies.By integrating SoMe into educational programs,both online and in-person,educators can overcome time and geographical constraints,fostering more diverse and inclusive learning communities.Careful consideration is,however,necessary to address potential limitations within HPE.Conclusions:This article lays groundwork for expanding SoMe integration in HPE design,emphasizing the supportive scaffold of various learning theories,and the need of furthering robust research on examining its advantages over traditional educational formats.Our literature review underscores an ongoing multifaceted,random application of SoMe platforms in ophthalmology education.We advocate for an effective incorporation of SoMe in HPE education,with the need to comply with good educational practice.展开更多
For samples in the gaseous state at room temperature and ambient pressure,mature technology has been developed to encapsulate them in a diamond anvil cell(DAC).However,the large volume press(LVP)can only treat samples...For samples in the gaseous state at room temperature and ambient pressure,mature technology has been developed to encapsulate them in a diamond anvil cell(DAC).However,the large volume press(LVP)can only treat samples with starting materials in solid or liquid form.We have achieved stable encapsulation and reaction treatment of carbon dioxide in a centimeter sized sample chamber for a long time(over 10 min)under conditions of temperature higher than 1200C and pressure over 5 GPa through the use of integrated low-temperature freezing and rapid compression sealing method for LVP cell assemblies.This technology can also be applied to the packaging of other gaseous or liquid samples,such as ammonia,sulfur dioxide,water,etc.in LVP devices.展开更多
The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage ...The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage performance.The emerging composite membrane prepared by EHPT,which exhibits the advantages of large surface area,controllable morphology,and compact structure,has attracted immense attention.In this paper,the conduction mechanism of composite membranes in thermal and electrical energy storage and the performance enhancement method based on the fabrication process of EHPT are systematically discussed.Moreover,the state-of-the-art applications of composite membranes in these two fields are introduced.In particular,in the field of thermal energy storage,EHPT-prepared membranes have longitudinal and transverse nanofibers,which generate unique thermal conductivity pathways;also,these nanofibers offer enough space for the filling of functional materials.Moreover,EHPT-prepared membranes are beneficial in thermal management systems,building energy conservation,and electrical energy storage,e.g.,improving the electrochemical properties of the separators as well as their mechanical and thermal stability.The application of electrospinning-hot pressing membranes on capacitors,lithium-ion batteries(LIBs),fuel cells,sodium-ion batteries(SIBs),and hydrogen bromine flow batteries(HBFBs)still requires examination.In the future,EHPT is expected to make the field more exciting through its own technological breakthroughs or be combined with other technologies to produce intelligent materials.展开更多
Molasses can serve as a natural adhesive for plywood and particleboard.However,several disadvantages remain,including lower dimensional stability and low bonding strength compared to other adhesives.Therefore,modifica...Molasses can serve as a natural adhesive for plywood and particleboard.However,several disadvantages remain,including lower dimensional stability and low bonding strength compared to other adhesives.Therefore,modifications are needed to use molasses as an adhesive for plywood.This research aims to improve bio-based molasses(MO)adhesive for plywood using citric acid(CA)adhesive.In addition,this research aims to analyze the effect of adding citric acid and to investigate the optimum hot-pressing temperature to produce the best quality plywood.In the first stage,the molasses and citric acid were combined in a ratio of 100:0,75:25,50:50,25:75,0:100 w/w%.Then,the second stage focuses on analyzing the influences of pressing temperature based on an optimum first stage.The research demonstrated that the addition of CA altered the gelation time,solid content,viscosity,and pH of the molasses adhesives.In addition,the thermal properties of molasses adhesives were changed after mixing with citric acid.These phenomena indicate changes in characteristics,such as the curing of adhesive.Overall,the characteristics of plywood showed a steady improvement as the CA ratio increased but revealed a significant decline for the 25:75 MO-CA ratio.By raising the pressing temperature from 180℃ to 200℃,the quality of plywood was effectively improved.The plywood that was bonded using adhesives with a 50:50 MO-CA ratio exhibited superior mechanical properties and improved dimensional stability compared to the plywood bonded solely with MO.Furthermore,the optimal mechanical and physical properties resulted in plywood bonded with a 50:50 MO-CA ratio when subjected to a pressing temperature of 200℃.The Thermal and FTIR measurements revealed that CA established ester bonds with both the MO and wood veneers.In conclusion,the mechanical characteristics of plywood were improved,while maintaining its excellent dimensional stability.展开更多
Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed ...Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed experiments were intended to have been shown,although the areas immediately surrounding this area featured comparatively different distributions of cells.In addition,the western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.展开更多
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper...In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.展开更多
Background: The use of social media platforms for health and nutrition information has become popular among college students. Although social media made information readily accessible in different formats, nutritional...Background: The use of social media platforms for health and nutrition information has become popular among college students. Although social media made information readily accessible in different formats, nutritional misinformation promoted by influencers and non-experts caused negative impact on diet behavior and perception of body image. Previous research indicated that extensive use of social media was positively linked to disordered eating behaviors. Social media platforms like Facebook and Instagram that allow users to follow celebrities intensified exposure to influencers’ messages and images and resulted in negative moods and body dissatisfaction. Objective: This paper aims to explore the impact of social media on college students’ dietary behaviors and body image. Participants: 18 undergraduate students from a public university in the Southern United States were recruited through a mass email. Methods: A cross-sectional qualitative study of three focus groups was conducted. The focus groups were based on guiding open-ended questions. Atlas.ti was used to code and analyze the data using inductive and deductive codes. Results: Three main themes were identified. The conditions theme included elements that explain why and how social media influences the participants’ actions. The actions theme included eating behavior, physical activity, and dietary supplement intake. The consequences theme describes anticipated or actual outcomes of actions such as body image and ideal weight. Conclusions: Social media has had a negative influence on diet behaviors and a positive influence on physical activity. Evidence-based nutrition and weight management information is needed to thwart potential misinformation.展开更多
With a view to improving rabbit production performance, a trial on the chemical composition of pineapple press residue (Ananas comosus) and the effect of its incorporation in the ration on rabbit growth performance (O...With a view to improving rabbit production performance, a trial on the chemical composition of pineapple press residue (Ananas comosus) and the effect of its incorporation in the ration on rabbit growth performance (Oryctolagus cuniculus) was carried out at the KUATE Cunicole Farm in Bandjoun, in Western Cameroon. To do this, 36 rabbits of the local breed, aged 53 days with an average weight of 1337 ± 119 g were distributed and randomly assigned to 3 experimental rations corresponding respectively to treatments or batches T0, T1 and T2. The animals in treatment T0 received a ration containing no pineapple press residue, while those in treatments T1 and T2 received a ration containing 20% and 40% pineapple press residue, respectively. These residues were dried and ground for chemical composition analysis. The feed served as well as refusals from the previous day were weighed each morning to assess feed intake. The animals were weighed every 7 days to assess weight performance. At the end of the trial which lasted 7 weeks, the animals were fasted for 24 hours, then sacrificed to evaluate carcass characteristics and the relative weights of some digestive organs. The results of this study showed that pineapple press residues had a high crude fiber content (19.2%) and energy (2500 Kcal/kg DM). Their incorporation had no significant effect on feed intake and feed conversion ratio. The average live weight, weight gain and average daily weight gain of the animals receiving the ration with 20% inclusion of pineapple press residue were comparable to those of the control group and significantly higher than those of animals fed with 40% inclusion of pineapple residue. The highest carcass yields were obtained with rabbits fed 20% pineapple press residue in their ration. The cost of feed for the production of a kilogram live weight of rabbit tends to decrease with the ration incorporated with 20% pineapple press residue. Pineapple press residues constitute a by-product that can be recycled and their incorporation at 20% can increase rabbit growth performance and reduce production costs.展开更多
The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycli...The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycling process were studied in detail.The eutectic phases in the as-cast alloy transform into long period-stacking ordered(LPSO)phases after homogenization,which can improve the plasticity of the material.After isothermal sintering,the density of the sample is lower than that of the homogenized sample,and oxide films are formed adjacent to the bonding interface of the metal chips.Hence,the plasticity of the sintered sample is poor.Dense samples are fabricated after ECAP.Although the grains are not refined compared to the sintered sample,the microstructure becomes more uniform due to recrystallization.Fiber interdendritic LPSO phase and kinked 14H-LPSO phase are formed in the alloy due to the shear deformation during the ECAP process,which improves the strength and plasticity of the sample significantly.Furthermore,the basal texture is weakened due to the Bc route of the ECAP process,which can increase the Schmid factor of the basal slip system and improve the elongation of the sample.After 2 ECAP passes,the fully densified recycled billet shows superior mechanical properties with an ultimate tensile strength of 307.1 MPa and elongation of 11.1%.展开更多
The problematic use of social media has numerous negative impacts on individuals'daily lives,interpersonal relationships,physical and mental health,and more.Currently,there are few methods and tools to alleviate p...The problematic use of social media has numerous negative impacts on individuals'daily lives,interpersonal relationships,physical and mental health,and more.Currently,there are few methods and tools to alleviate problematic social media,and their potential is yet to be fully realized.Emerging large language models(LLMs)are becoming increasingly popular for providing information and assistance to people and are being applied in many aspects of life.In mitigating problematic social media use,LLMs such as ChatGPT can play a positive role by serving as conversational partners and outlets for users,providing personalized information and resources,monitoring and intervening in problematic social media use,and more.In this process,we should recognize both the enormous potential and endless possibilities of LLMs such as ChatGPT,leveraging their advantages to better address problematic social media use,while also acknowledging the limitations and potential pitfalls of ChatGPT technology,such as errors,limitations in issue resolution,privacy and security concerns,and potential overreliance.When we leverage the advantages of LLMs to address issues in social media usage,we must adopt a cautious and ethical approach,being vigilant of the potential adverse effects that LLMs may have in addressing problematic social media use to better harness technology to serve individuals and society.展开更多
Sleep quality is closely linked to people’s health,and during the COVID-19 pandemic,the sleep patterns of residents in China were notably poor.The lockdown in China led to an increase in social media use,prompting qu...Sleep quality is closely linked to people’s health,and during the COVID-19 pandemic,the sleep patterns of residents in China were notably poor.The lockdown in China led to an increase in social media use,prompting questions about its impact on sleep.Therefore,this study investigates the association between social media use and sleep quality among Chinese residents during the COVID-19 outbreak,highlighting the potential mediating role of social media addiction.Data were collected via questionnaires through a cross-sectional survey with 779 valid responses.Variance analysis was used to test for differences in social media use among different demographic variables.Bivariate correlation analysis was employed to explore the relationships between variables,while regression analysis investigated the correlations between various media factors and sleep quality.Additionally,Bootstrap sampling was utilized to analyze the potential mediating influence of social media addiction in the relationship between social media use and sleep.The study's findings reveal a significant correlation between social media use,particularly before bedtime,and sleep quality(p<0.01),with pre-sleep activity notably linked to poorer overall sleep scores(β=0.141,p=0.004).Although the daily use of social media did not directly impact most individuals’sleep quality,specific platforms like news apps,short video apps,dating apps,and content community platforms were associated with higher levels of social media addiction,subsequently negatively affecting sleep quality.Specifically,the use of news apps(B=0.068,95%CI[0.000,0.019]),short video apps(B=0.112,95%CI[0.001,0.031]),dating apps(B=0.147,95%CI[0.000,0.028]),and content community platforms(B=0.106,95%CI[0.001,0.028])was found to increase the risk of social media addiction,subsequently leading to adverse effects on sleep quality.The study underscores a notable link between social media use and sleep quality,suggesting that mindful social media habits,particularly before bedtime,and reducing addiction-associated apps could enhance sleep quality.展开更多
Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varyi...Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varying porous structures and initial or boundary conditions.The deep operator network(DeepONet)has emerged as a popular deep learning framework for solving parametric partial differential equations.However,applying the DeepONet to porous media presents significant challenges due to its limited capability to extract representative features from intricate structures.To address this issue,we propose the Porous-DeepONet,a simple yet highly effective extension of the DeepONet framework that leverages convolutional neural networks(CNNs)to learn the solution operators of parametric reactive transport equations in porous media.By incorporating CNNs,we can effectively capture the intricate features of porous media,enabling accurate and efficient learning of the solution operators.We demonstrate the effectiveness of the Porous-DeepONet in accurately and rapidly learning the solution operators of parametric reactive transport equations with various boundary conditions,multiple phases,and multiphysical fields through five examples.This approach offers significant computational savings,potentially reducing the computation time by 50–1000 times compared with the finite-element method.Our work may provide a robust alternative for solving parametric reactive transport equations in porous media,paving the way for exploring complex phenomena in porous media.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.42074139)the Natural Science Foundation of Jilin Province,China (Grant No.20210101140JC)。
文摘In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated porous media under stress.Based on the acoustoelastic theory of fluid-saturated porous media, the field equation of fluid-saturated porous media under the conditions of confining pressure and pore pressure and the acoustic field formula of multipole source excitation in open hole are given. The influences of pore pressure and confining pressure on guided waves of multipole borehole acoustic field in fluid-saturated porous media are investigated. The numerical results show that the phase velocity and excitation intensity of guided wave increase significantly under the confining pressure. For a given confining pressure, the phase velocity of the guided wave decreases with pore pressure increasing. The excitation intensity of guided wave increases at low frequency and then decreases at high frequency with pore pressure increasing, except for that of Stoneley wave which decreases in the whole frequency range. These results will help us get an insight into the influences of confining pressure and pore pressure on the acoustic field of multipole source in borehole around fluid-saturated porous media.
文摘The surge in popularity of rustic videos has spawned a great number of Internet memes, such as Internet trendy words growing from dialects and strange pronunciations, picture memes made from video screenshots, and mesmerizing music with a vernacular flavor. Due to their reproducibility, social interaction, and involvement, these rustic videos adhere to the fundamental logic of the propagation of online memes. Rustic videos are widely disseminated as online memes on TikTok (the Chinese version), are often reproduced and used by young people in social contact, and have become a unique linguistic symbol in modern internet culture. As a symbolic carrier that transports the consciousness of the video creator and viewer, it is widely employed in the communication and engagement of young people on a regular basis, progressively altering their linguistic expression. This specific semiotic interaction has deconstructed and recreated the conventional media culture spectacle. This research examines the influence of rustic videos on TikTok on the linguistic expressions of modern youth from the perspectives of meme theory and semiotics, as well as the impact of rustic videos on the media spectacle from the standpoint of media spectacle theory. It also examines in depth the effects of the popularity of rustic videos on China’s economy and culture.
文摘The expression and clinical significance of relevant cytokines in otitis media (OM) are discussed, and the alterations to the pathological state of the otitis media mucosa are further understood through the study of cytokine transduction pathways. More and more studies have shown that relevant cell proliferation and inflammation progression pathways play a role in the development of otitis media, such as the Jun amino-terminal protein kinase (JNK) mitogen-activated protein kinase (MAPK) signaling pathway, the NF-κB signaling pathway, and the PI3K/AKT/PTEN pathway, which are involved in the proliferation of the middle ear mucosa during otitis media, which affects the mucosal cilia, motor function, Eustachian tube function, and the mucosal ciliary function. These studies provide new ideas for the treatment of otitis media and further explore the feasibility of immunotherapy in the future treatment of otitis media. In this paper, we present a review of the latest research progress on the expression of various cytokines in otitis media.
文摘Two-phase flow in porous media is a very active field of research,due to its important applications in groundwater pollution,CO_(2)sequestration,or oil and gas production from petroleum reservoirs,just to name a few of them.Fractional flow equations,which make use of Darcy's law,for describing the movement of two immiscible fluids in a porous medium,are among the most relevant mathematical models in reservoir simulation.This work aims to solve a fractional flow model formed by an elliptic equation,representing the spatial distribution of the pressure,and a hyperbolic equation describing the space-time evolution of water saturation.The numerical solution of the elliptic part is obtained using a finite-element(FE)scheme,while the hyperbolic equation is solved by means of two dif-ferent numerical approaches,both in the finite-volume(FV)framework.One is based on a monotonic upstream-centered scheme for conservation laws(MUSCL)-Hancock scheme,whereas the other makes use of a weighted essentially non-oscillatory(ENO)reconstruc-tion.In both cases,a first-order centered(FORCE)-αnumerical scheme is applied for inter-cell flux reconstruction,which constitutes a new contribution in the field of fractional flow models describing oil-water movement.A relevant feature of this work is the study of the effect of the parameterαon the numerical solution of the models considered.We also show that,in the FORCE-αmethod,when the parameterαincreases,the errors diminish and the order of accuracy is more properly attained,as verified using a manufactured solution technique.
文摘This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.
基金supported by National Natural Science Foundation of China(Grants No.11972088,No.12122203).
文摘The pressure evolution associated with the transient shock-induced infiltration of gas flow through granular media consisting of mobile particles is numerically investigated using a coupled Eulerian–Lagrangian approach.The coupling between shock compaction and interstitial flow has been revealed.A distinctive two-stage diffusing pressure field with deflection occurring at the tail of the compaction front is found,with corresponding spikes in both gaseous velocity and temperature profiles emerging within the width of the compaction front.The compaction front,together with the deflection pressure,reaches a steady state during the later period.An analytical prediction of the steady deflection pressure that considers the contributions of porosity and the non-isothermal effect is proposed.The isothermal single-phase method we developed,combining the porosity jump condition across the compaction front,shows consistent pressure evolution with the non-isothermal CMP-PIC one under weak shock strength and low column permeability.Lastly,the microscale mechanism governing the formation of not only pressure deflection but also gaseous velocity and temperature spikes within the width of the compaction front has been described.These aforementioned evolutions of the flow field are shown to arise from the nozzling effects associated with the particle-scale variations in the volume fraction.
文摘Background and Objective:Social media(SoMe)has emerged as a tool in health professions education(HPE),particularly amidst the challenges posed by the coronavirus disease 2019(COVID-19)pandemic.Despite the academia’s initial skepticism SoMe has been gaining traction in supporting learning communities,and offering opportunities for innovation in HPE.Our study aims to explore the integration of SoMe in HPE.Four key components were outlined as necessary for a successful integration,and include designing learning experiences,defining educator roles,selecting appropriate platforms,and establishing educational objectives.Methods:This article stemmed from the online Teaching Skills Series module on SoMe in education from the Ophthalmology Foundation,and drew upon evidence supporting learning theories relevant to SoMe integration and models of education.Additionally,we conducted a literature review considering Englishlanguage articles on the application of SoMe in ophthalmology from PubMed over the past decade.Key Content and Findings:Early adopters of SoMe platforms in HPE have leveraged these tools to enhance learning experiences through interaction,dialogue,content sharing,and active learning strategies.By integrating SoMe into educational programs,both online and in-person,educators can overcome time and geographical constraints,fostering more diverse and inclusive learning communities.Careful consideration is,however,necessary to address potential limitations within HPE.Conclusions:This article lays groundwork for expanding SoMe integration in HPE design,emphasizing the supportive scaffold of various learning theories,and the need of furthering robust research on examining its advantages over traditional educational formats.Our literature review underscores an ongoing multifaceted,random application of SoMe platforms in ophthalmology education.We advocate for an effective incorporation of SoMe in HPE education,with the need to comply with good educational practice.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200).
文摘For samples in the gaseous state at room temperature and ambient pressure,mature technology has been developed to encapsulate them in a diamond anvil cell(DAC).However,the large volume press(LVP)can only treat samples with starting materials in solid or liquid form.We have achieved stable encapsulation and reaction treatment of carbon dioxide in a centimeter sized sample chamber for a long time(over 10 min)under conditions of temperature higher than 1200C and pressure over 5 GPa through the use of integrated low-temperature freezing and rapid compression sealing method for LVP cell assemblies.This technology can also be applied to the packaging of other gaseous or liquid samples,such as ammonia,sulfur dioxide,water,etc.in LVP devices.
基金supported by the National Natural Science Foundation of China(No.52274252)the Key Science and Technology Project of Changsha City,China(No.kq2102005)+1 种基金the Special Fund for the Construction of Innovative Province in Hunan Province,China(Nos.2020RC3038 and 2022WK4004)the Changsha City Fund for Distinguished and Innovative Young Scholars,China(No.kq1802007).
文摘The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage performance.The emerging composite membrane prepared by EHPT,which exhibits the advantages of large surface area,controllable morphology,and compact structure,has attracted immense attention.In this paper,the conduction mechanism of composite membranes in thermal and electrical energy storage and the performance enhancement method based on the fabrication process of EHPT are systematically discussed.Moreover,the state-of-the-art applications of composite membranes in these two fields are introduced.In particular,in the field of thermal energy storage,EHPT-prepared membranes have longitudinal and transverse nanofibers,which generate unique thermal conductivity pathways;also,these nanofibers offer enough space for the filling of functional materials.Moreover,EHPT-prepared membranes are beneficial in thermal management systems,building energy conservation,and electrical energy storage,e.g.,improving the electrochemical properties of the separators as well as their mechanical and thermal stability.The application of electrospinning-hot pressing membranes on capacitors,lithium-ion batteries(LIBs),fuel cells,sodium-ion batteries(SIBs),and hydrogen bromine flow batteries(HBFBs)still requires examination.In the future,EHPT is expected to make the field more exciting through its own technological breakthroughs or be combined with other technologies to produce intelligent materials.
基金funded by Riset dan Inovasi untuk Indonesia Maju(RIIM)National Riset and Innovation Agency(Grant Numbers:4/IV/KS/05/2023 and 13955/IT3/PT.01.03/P/B/2023)Research Program by Research Organization of Nanotechnology and Materials,National Research and Innovation Agency(Grant Number 20/III.10/HK/2024).
文摘Molasses can serve as a natural adhesive for plywood and particleboard.However,several disadvantages remain,including lower dimensional stability and low bonding strength compared to other adhesives.Therefore,modifications are needed to use molasses as an adhesive for plywood.This research aims to improve bio-based molasses(MO)adhesive for plywood using citric acid(CA)adhesive.In addition,this research aims to analyze the effect of adding citric acid and to investigate the optimum hot-pressing temperature to produce the best quality plywood.In the first stage,the molasses and citric acid were combined in a ratio of 100:0,75:25,50:50,25:75,0:100 w/w%.Then,the second stage focuses on analyzing the influences of pressing temperature based on an optimum first stage.The research demonstrated that the addition of CA altered the gelation time,solid content,viscosity,and pH of the molasses adhesives.In addition,the thermal properties of molasses adhesives were changed after mixing with citric acid.These phenomena indicate changes in characteristics,such as the curing of adhesive.Overall,the characteristics of plywood showed a steady improvement as the CA ratio increased but revealed a significant decline for the 25:75 MO-CA ratio.By raising the pressing temperature from 180℃ to 200℃,the quality of plywood was effectively improved.The plywood that was bonded using adhesives with a 50:50 MO-CA ratio exhibited superior mechanical properties and improved dimensional stability compared to the plywood bonded solely with MO.Furthermore,the optimal mechanical and physical properties resulted in plywood bonded with a 50:50 MO-CA ratio when subjected to a pressing temperature of 200℃.The Thermal and FTIR measurements revealed that CA established ester bonds with both the MO and wood veneers.In conclusion,the mechanical characteristics of plywood were improved,while maintaining its excellent dimensional stability.
文摘Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed experiments were intended to have been shown,although the areas immediately surrounding this area featured comparatively different distributions of cells.In addition,the western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.
基金Project(U2202255)supported by the National Natural Science Foundation of ChinaProject(2024JJ2076)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(2023Z092)supported by the Key Technology Research Program of Ningbo,China。
文摘In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.
文摘Background: The use of social media platforms for health and nutrition information has become popular among college students. Although social media made information readily accessible in different formats, nutritional misinformation promoted by influencers and non-experts caused negative impact on diet behavior and perception of body image. Previous research indicated that extensive use of social media was positively linked to disordered eating behaviors. Social media platforms like Facebook and Instagram that allow users to follow celebrities intensified exposure to influencers’ messages and images and resulted in negative moods and body dissatisfaction. Objective: This paper aims to explore the impact of social media on college students’ dietary behaviors and body image. Participants: 18 undergraduate students from a public university in the Southern United States were recruited through a mass email. Methods: A cross-sectional qualitative study of three focus groups was conducted. The focus groups were based on guiding open-ended questions. Atlas.ti was used to code and analyze the data using inductive and deductive codes. Results: Three main themes were identified. The conditions theme included elements that explain why and how social media influences the participants’ actions. The actions theme included eating behavior, physical activity, and dietary supplement intake. The consequences theme describes anticipated or actual outcomes of actions such as body image and ideal weight. Conclusions: Social media has had a negative influence on diet behaviors and a positive influence on physical activity. Evidence-based nutrition and weight management information is needed to thwart potential misinformation.
文摘With a view to improving rabbit production performance, a trial on the chemical composition of pineapple press residue (Ananas comosus) and the effect of its incorporation in the ration on rabbit growth performance (Oryctolagus cuniculus) was carried out at the KUATE Cunicole Farm in Bandjoun, in Western Cameroon. To do this, 36 rabbits of the local breed, aged 53 days with an average weight of 1337 ± 119 g were distributed and randomly assigned to 3 experimental rations corresponding respectively to treatments or batches T0, T1 and T2. The animals in treatment T0 received a ration containing no pineapple press residue, while those in treatments T1 and T2 received a ration containing 20% and 40% pineapple press residue, respectively. These residues were dried and ground for chemical composition analysis. The feed served as well as refusals from the previous day were weighed each morning to assess feed intake. The animals were weighed every 7 days to assess weight performance. At the end of the trial which lasted 7 weeks, the animals were fasted for 24 hours, then sacrificed to evaluate carcass characteristics and the relative weights of some digestive organs. The results of this study showed that pineapple press residues had a high crude fiber content (19.2%) and energy (2500 Kcal/kg DM). Their incorporation had no significant effect on feed intake and feed conversion ratio. The average live weight, weight gain and average daily weight gain of the animals receiving the ration with 20% inclusion of pineapple press residue were comparable to those of the control group and significantly higher than those of animals fed with 40% inclusion of pineapple residue. The highest carcass yields were obtained with rabbits fed 20% pineapple press residue in their ration. The cost of feed for the production of a kilogram live weight of rabbit tends to decrease with the ration incorporated with 20% pineapple press residue. Pineapple press residues constitute a by-product that can be recycled and their incorporation at 20% can increase rabbit growth performance and reduce production costs.
基金supported by the fund of the National Natural Science Foundation of China(51875127,52275322).
文摘The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycling process were studied in detail.The eutectic phases in the as-cast alloy transform into long period-stacking ordered(LPSO)phases after homogenization,which can improve the plasticity of the material.After isothermal sintering,the density of the sample is lower than that of the homogenized sample,and oxide films are formed adjacent to the bonding interface of the metal chips.Hence,the plasticity of the sintered sample is poor.Dense samples are fabricated after ECAP.Although the grains are not refined compared to the sintered sample,the microstructure becomes more uniform due to recrystallization.Fiber interdendritic LPSO phase and kinked 14H-LPSO phase are formed in the alloy due to the shear deformation during the ECAP process,which improves the strength and plasticity of the sample significantly.Furthermore,the basal texture is weakened due to the Bc route of the ECAP process,which can increase the Schmid factor of the basal slip system and improve the elongation of the sample.After 2 ECAP passes,the fully densified recycled billet shows superior mechanical properties with an ultimate tensile strength of 307.1 MPa and elongation of 11.1%.
文摘The problematic use of social media has numerous negative impacts on individuals'daily lives,interpersonal relationships,physical and mental health,and more.Currently,there are few methods and tools to alleviate problematic social media,and their potential is yet to be fully realized.Emerging large language models(LLMs)are becoming increasingly popular for providing information and assistance to people and are being applied in many aspects of life.In mitigating problematic social media use,LLMs such as ChatGPT can play a positive role by serving as conversational partners and outlets for users,providing personalized information and resources,monitoring and intervening in problematic social media use,and more.In this process,we should recognize both the enormous potential and endless possibilities of LLMs such as ChatGPT,leveraging their advantages to better address problematic social media use,while also acknowledging the limitations and potential pitfalls of ChatGPT technology,such as errors,limitations in issue resolution,privacy and security concerns,and potential overreliance.When we leverage the advantages of LLMs to address issues in social media usage,we must adopt a cautious and ethical approach,being vigilant of the potential adverse effects that LLMs may have in addressing problematic social media use to better harness technology to serve individuals and society.
基金the Declaration of Helsinki and has received ethical approval from the Biomedical Research Ethics Committee of Nanjing Normal University(IRB Number:NNU2022060054).
文摘Sleep quality is closely linked to people’s health,and during the COVID-19 pandemic,the sleep patterns of residents in China were notably poor.The lockdown in China led to an increase in social media use,prompting questions about its impact on sleep.Therefore,this study investigates the association between social media use and sleep quality among Chinese residents during the COVID-19 outbreak,highlighting the potential mediating role of social media addiction.Data were collected via questionnaires through a cross-sectional survey with 779 valid responses.Variance analysis was used to test for differences in social media use among different demographic variables.Bivariate correlation analysis was employed to explore the relationships between variables,while regression analysis investigated the correlations between various media factors and sleep quality.Additionally,Bootstrap sampling was utilized to analyze the potential mediating influence of social media addiction in the relationship between social media use and sleep.The study's findings reveal a significant correlation between social media use,particularly before bedtime,and sleep quality(p<0.01),with pre-sleep activity notably linked to poorer overall sleep scores(β=0.141,p=0.004).Although the daily use of social media did not directly impact most individuals’sleep quality,specific platforms like news apps,short video apps,dating apps,and content community platforms were associated with higher levels of social media addiction,subsequently negatively affecting sleep quality.Specifically,the use of news apps(B=0.068,95%CI[0.000,0.019]),short video apps(B=0.112,95%CI[0.001,0.031]),dating apps(B=0.147,95%CI[0.000,0.028]),and content community platforms(B=0.106,95%CI[0.001,0.028])was found to increase the risk of social media addiction,subsequently leading to adverse effects on sleep quality.The study underscores a notable link between social media use and sleep quality,suggesting that mindful social media habits,particularly before bedtime,and reducing addiction-associated apps could enhance sleep quality.
基金supported by the National Key Research and Development Program of China(2022YFA1503501)the National Natural Science Foundation of China(22378112,22278127,and 22078088)+1 种基金the Fundamental Research Funds for the Central Universities(2022ZFJH004)the Shanghai Rising-Star Program(21QA1401900).
文摘Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varying porous structures and initial or boundary conditions.The deep operator network(DeepONet)has emerged as a popular deep learning framework for solving parametric partial differential equations.However,applying the DeepONet to porous media presents significant challenges due to its limited capability to extract representative features from intricate structures.To address this issue,we propose the Porous-DeepONet,a simple yet highly effective extension of the DeepONet framework that leverages convolutional neural networks(CNNs)to learn the solution operators of parametric reactive transport equations in porous media.By incorporating CNNs,we can effectively capture the intricate features of porous media,enabling accurate and efficient learning of the solution operators.We demonstrate the effectiveness of the Porous-DeepONet in accurately and rapidly learning the solution operators of parametric reactive transport equations with various boundary conditions,multiple phases,and multiphysical fields through five examples.This approach offers significant computational savings,potentially reducing the computation time by 50–1000 times compared with the finite-element method.Our work may provide a robust alternative for solving parametric reactive transport equations in porous media,paving the way for exploring complex phenomena in porous media.