The effects of sulfuric acid-associated mechanical pretreatment on the hydrolysis behavior of pine sawdust were investigated in this study.Sulfuric acid could act as an acidic catalyst to depolymerize holocellulose th...The effects of sulfuric acid-associated mechanical pretreatment on the hydrolysis behavior of pine sawdust were investigated in this study.Sulfuric acid could act as an acidic catalyst to depolymerize holocellulose through cleavage of the glycosidic bonds,the dissociation energies of which were supplied by the impact of a ball on pine sawdust,during milling.The destruction of glycosidic and hydrogen bonds in pine sawdust resulted in a decrease of crystallinity and an increase of water solubility.The sulfuric acid could promote the hydrolysis of holocellulose and its hydrolysis products.It also destroyed the chemical linkages between holocellulose and lignin during ball milling.The cleavage of chemical linkages with holocellulose made lignin more difficult to hydrolyze in subcritical water,and higher activation energy was needed to hydrolyze pretreated pine sawdust at higher reaction temperatures.It also led to the formation of glucose char and aromatic-linked polymer char from the hydrolysis products of holocellulose.展开更多
Cotton stalks(CS)are lignocellulosic agricultural by-products,a potential source for biogas production,but pretreatment must be considered since hydrolysis is the rate-limiting stage for lignocellulosic biomass substr...Cotton stalks(CS)are lignocellulosic agricultural by-products,a potential source for biogas production,but pretreatment must be considered since hydrolysis is the rate-limiting stage for lignocellulosic biomass substrates.This study investigates the feasibility of mechanical pretreatment of CS to enhance methane production.Batch anaerobic digestion of CS samples with particle sizes ranging from 0.5 to 65 mm was carried out in 1 L eudiometer batch digesters for 48 days at 37◦C.Results showed that methane yield was inversely proportional to particle size,and the quality of biogas was good(54.0-55.2%CH_(4)).Significant increases in methane yield were observed with 20.3%and 26%for samples with a particle size of 3 mm and 0.5 mm,respectively,compared to untreated CS.The coefficient of anaerobic energy turnover was relatively low(20.2-25.5%).Reduction of the CS particle size to 3 mm or less is recommended to achieve effective methane conversion and decrease the retention time in an anaerobic digester from 31 to about 25 days.However,to offset the high energy demand required for grinding,further research should be conducted in combining size reduction with chemical and physicochemical pretreatment.展开更多
基金supported by the National Natural Science Foundation of China(22078225)the Natural Science Foundation of Zhejiang Province(LGF22E080025 and LHY22E080005)。
文摘The effects of sulfuric acid-associated mechanical pretreatment on the hydrolysis behavior of pine sawdust were investigated in this study.Sulfuric acid could act as an acidic catalyst to depolymerize holocellulose through cleavage of the glycosidic bonds,the dissociation energies of which were supplied by the impact of a ball on pine sawdust,during milling.The destruction of glycosidic and hydrogen bonds in pine sawdust resulted in a decrease of crystallinity and an increase of water solubility.The sulfuric acid could promote the hydrolysis of holocellulose and its hydrolysis products.It also destroyed the chemical linkages between holocellulose and lignin during ball milling.The cleavage of chemical linkages with holocellulose made lignin more difficult to hydrolyze in subcritical water,and higher activation energy was needed to hydrolyze pretreated pine sawdust at higher reaction temperatures.It also led to the formation of glucose char and aromatic-linked polymer char from the hydrolysis products of holocellulose.
文摘Cotton stalks(CS)are lignocellulosic agricultural by-products,a potential source for biogas production,but pretreatment must be considered since hydrolysis is the rate-limiting stage for lignocellulosic biomass substrates.This study investigates the feasibility of mechanical pretreatment of CS to enhance methane production.Batch anaerobic digestion of CS samples with particle sizes ranging from 0.5 to 65 mm was carried out in 1 L eudiometer batch digesters for 48 days at 37◦C.Results showed that methane yield was inversely proportional to particle size,and the quality of biogas was good(54.0-55.2%CH_(4)).Significant increases in methane yield were observed with 20.3%and 26%for samples with a particle size of 3 mm and 0.5 mm,respectively,compared to untreated CS.The coefficient of anaerobic energy turnover was relatively low(20.2-25.5%).Reduction of the CS particle size to 3 mm or less is recommended to achieve effective methane conversion and decrease the retention time in an anaerobic digester from 31 to about 25 days.However,to offset the high energy demand required for grinding,further research should be conducted in combining size reduction with chemical and physicochemical pretreatment.