期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of acid-associated mechanical pretreatment on the hydrolysis behavior of pine sawdust in subcritical water
1
作者 Wei Yang Yalun Ma +6 位作者 Xu Zhang Fan Yang Dong Zhang Shengji Wu Huanghu Peng Zezhou Chen Lei Che 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期195-204,共10页
The effects of sulfuric acid-associated mechanical pretreatment on the hydrolysis behavior of pine sawdust were investigated in this study.Sulfuric acid could act as an acidic catalyst to depolymerize holocellulose th... The effects of sulfuric acid-associated mechanical pretreatment on the hydrolysis behavior of pine sawdust were investigated in this study.Sulfuric acid could act as an acidic catalyst to depolymerize holocellulose through cleavage of the glycosidic bonds,the dissociation energies of which were supplied by the impact of a ball on pine sawdust,during milling.The destruction of glycosidic and hydrogen bonds in pine sawdust resulted in a decrease of crystallinity and an increase of water solubility.The sulfuric acid could promote the hydrolysis of holocellulose and its hydrolysis products.It also destroyed the chemical linkages between holocellulose and lignin during ball milling.The cleavage of chemical linkages with holocellulose made lignin more difficult to hydrolyze in subcritical water,and higher activation energy was needed to hydrolyze pretreated pine sawdust at higher reaction temperatures.It also led to the formation of glucose char and aromatic-linked polymer char from the hydrolysis products of holocellulose. 展开更多
关键词 Acid-associated mechanical pretreatment Subcritical water Pine sawdust Hydrolysis behavior Kinetic parameters
下载PDF
Enhancement of methane yield from cotton stalks by mechanical pre-treatment 被引量:2
2
作者 Rafat Al Afif Christoph Pfeifer 《Carbon Resources Conversion》 2021年第1期164-168,共5页
Cotton stalks(CS)are lignocellulosic agricultural by-products,a potential source for biogas production,but pretreatment must be considered since hydrolysis is the rate-limiting stage for lignocellulosic biomass substr... Cotton stalks(CS)are lignocellulosic agricultural by-products,a potential source for biogas production,but pretreatment must be considered since hydrolysis is the rate-limiting stage for lignocellulosic biomass substrates.This study investigates the feasibility of mechanical pretreatment of CS to enhance methane production.Batch anaerobic digestion of CS samples with particle sizes ranging from 0.5 to 65 mm was carried out in 1 L eudiometer batch digesters for 48 days at 37◦C.Results showed that methane yield was inversely proportional to particle size,and the quality of biogas was good(54.0-55.2%CH_(4)).Significant increases in methane yield were observed with 20.3%and 26%for samples with a particle size of 3 mm and 0.5 mm,respectively,compared to untreated CS.The coefficient of anaerobic energy turnover was relatively low(20.2-25.5%).Reduction of the CS particle size to 3 mm or less is recommended to achieve effective methane conversion and decrease the retention time in an anaerobic digester from 31 to about 25 days.However,to offset the high energy demand required for grinding,further research should be conducted in combining size reduction with chemical and physicochemical pretreatment. 展开更多
关键词 Cotton stalks Anaerobic digestion Methane yield Mechanical pretreatment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部