In order to carry out tensor analysis in a neighborhood of a reference surface,the principal-direction orthogonal basis accompanying with Lame s coefficients or general curvilinear coordinate systems are widely used.A...In order to carry out tensor analysis in a neighborhood of a reference surface,the principal-direction orthogonal basis accompanying with Lame s coefficients or general curvilinear coordinate systems are widely used.A novel kind of field theory termed as the nonholonomic theory of the Principal-Direction Orthonormal Basis(PDOB)is presented systematically in the present paper,in which the formal Christoffel symbols are related directly to the principal and geodesic curvatures with respect to the principal directions of the surface.Furthermore,a systematic and simple way to determine the curvatures of the surface are presented with some examples.It provides a way to recognize qualitatively the bending property of a surface.展开更多
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe...Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.展开更多
We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were use...We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.展开更多
To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with ...To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.展开更多
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt...The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.展开更多
Using the Raychaudhuri equation, we associate quantum probability amplitudes (propagators) to equatorial principal ingoing and outgoing null geodesic congruences in the Kerr metric. The expansion scalars diverge at th...Using the Raychaudhuri equation, we associate quantum probability amplitudes (propagators) to equatorial principal ingoing and outgoing null geodesic congruences in the Kerr metric. The expansion scalars diverge at the ring singularity;however, the propagators remain finite, which is an indication that at the quantum level singularities might disappear or, at least, become softened.展开更多
This paper investigates the design essence of Chinese classical private gardens,integrating their design elements and fundamental principles.It systematically analyzes the unique characteristics and differences among ...This paper investigates the design essence of Chinese classical private gardens,integrating their design elements and fundamental principles.It systematically analyzes the unique characteristics and differences among classical private gardens in the Northern,Jiangnan,and Lingnan regions.The study examines nine classical private gardens from Northern China,Jiangnan,and Lingnan by utilizing the advanced tool of principal component cluster analysis.Based on literature analysis and field research,273 variables were selected for principal component analysis,from which four components with higher contribution rates were chosen for further study.Subsequently,we employed clustering analysis techniques to compare the differences among the three types of gardens.The results reveal that the first principal component effectively highlights the differences between Jiangnan and Lingnan private gardens.The second principal component serves as the key to defining the types of Northern private gardens and distinguishing them from the other two types,and the third principal component indicates that Lingnan private gardens can be categorized into two distinct types as well.展开更多
In this research,the performance of regular rapeseed oil(RSO)and modified low-linolenic rapeseed oil(LLRO)during frying was assessed using a frying procedure that commonly found in fast-food restaurants.Key physicoche...In this research,the performance of regular rapeseed oil(RSO)and modified low-linolenic rapeseed oil(LLRO)during frying was assessed using a frying procedure that commonly found in fast-food restaurants.Key physicochemical attributes of these oils were investigated.RSO and LLRO differed for initial linolenic acid(12.21%vs.2.59%),linoleic acid(19.15%vs.24.73%).After 6 successive days frying period of French fries,the ratio of linoleic acid to palmitic acid dropped by 54.49%in RSO,higher than that in LLRO(51.54%).The increment in total oxidation value for LLRO(40.46 unit)was observed to be significantly lower than those of RSO(42.58 unit).The changes in carbonyl group value and iodine value throughout the frying trial were also lower in LLRO compared to RSO.The formation rate in total polar compounds for LLRO was 1.08%per frying day,lower than that of RSO(1.31%).In addition,the formation in color component and degradation in tocopherols were proportional to the frying time for two frying oils.Besides,a longer induction period was also observed in LLRO(8.87 h)compared to RSO(7.68 h)after frying period.Overall,LLRO exhibited the better frying stability,which was confirmed by principal component analysis(PCA).展开更多
Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Anal...Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements.展开更多
Based on the keynote report by Professor Martin Thrupp,this paper discusses the hollowing out of education provision by the state and the permeation of managerialism.It was pointed out that principals and boards of tr...Based on the keynote report by Professor Martin Thrupp,this paper discusses the hollowing out of education provision by the state and the permeation of managerialism.It was pointed out that principals and boards of trustees in socioeconomically advantaged areas may not be willing to share their benefits with schools in less advantaged areas.The new liberal policies have hollowed out state provision of education,so the education system has come to rely heavily on private actors.This paper also presents the current stage of privatization in Japan and the principals’and teachers’perceptions of privatization.展开更多
Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial...Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial conditions.The strength and failure characteristics were studied with micro-camera and acoustic emission(AE)monitoring.Furthermore,the choice of test path and the effect ofσ_(2)on fracture of unloading rock were discussed.Results show that the increasedσ_(2)can strengthen the stability of single-sided unloading rock.After unloading,the rock’s free surface underwent five phases,namely,inoculation,particle ejection,buckling rupture,stable failure,and unstable rockburst phases.Moreover,atσ_(2)≤30 MPa,the b value shows the following variation tendency:rising,dropping,significant fluctuation,and dropping,with dispersed damages signal.Atσ_(2)≥40 MPa,the tendency shows:a rise,a decrease,a slight fluctuation,and final drop,with concentrated damages signal.After unloading,AE energy is mainly concentrated in the micro-energy range.With the increasedσ_(2),the micro-energy ratio rises.In contrast,low,medium and large energy ratios drop gradually.The increased tensile fractures and decreased shear fractures indicate that the failure mode of the unloading rock gradually changes from tensile-shear mode to tensile-split one.The fractional dimension of the rock fragments first increases and then decreases with an inflection point at 20 MPa.The distribution of SIF on the planes changes asσ_(2)increases,resulting in strengthening and then weakening of the rock bearing capacity.展开更多
The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal compon...The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal component analysis(PCA)and deep neural network(DNN).The PCA was used to eliminate collinearity and reduce the dimension of the input variables,and then the data processed by PCA were used to establish the DNN model.The prediction hit ratios for the Si element yield in the error ranges of±1%,±3%,and±5%are 54.0%,93.8%,and98.8%,respectively,whereas those of the Mn element yield in the error ranges of±1%,±2%,and±3%are 77.0%,96.3%,and 99.5%,respectively,in the PCA-DNN model.The results demonstrate that the PCA-DNN model performs better than the known models,such as the reference heat method,multiple linear regression,modified backpropagation,and DNN model.Meanwhile,the accurate prediction of the alloying element yield can greatly contribute to realizing a“narrow window”control of composition in molten steel.The construction of the prediction model for the element yield can also provide a reference for the development of an alloying control model in LF intelligent refining in the modern iron and steel industry.展开更多
The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side le...The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side length with different intermediate principal stress gradients in combination with acoustic emission(AE)technique.Results show that the fracture characteristics of granite samples change from‘sudden and aggregated’to‘continuous and dispersed’with the increase of the intermediate principal stress.The effect of increasing intermediate principal stress on AE amplitude is not significant,but it increases the proportions of high-frequency AE signals and shear cracks,which in turn increases the possibility of unstable rock failure.The difference of stress in different directions causes the anisotropy of rock fracture and thus leads to the obvious anisotropic characteristics of wave velocity variations.The anisotropy of wave velocity variations with stress difference is probable to identify the principal stress directions.The AE characteristics and the anisotropy of wave velocity variations of granite under two-dimensional stress are not only beneficial complements for rock fracture characteristic and principal stress direction identification,but also can provide a new analysis method for stability monitoring in practical rock engineering.展开更多
The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring f...The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring false alarms. To address the above problem, an ensemble of greedy dynamic principal component analysis-Gaussian mixture model(EGDPCA-GMM) is proposed in this paper. First, PCA-GMM is introduced to deal with the collinearity and the non-Gaussian distribution of blast furnace data.Second, in order to explain the dynamics of data, the greedy algorithm is used to determine the extended variables and their corresponding time lags, so as to avoid introducing unnecessary noise. Then the bagging ensemble is adopted to cooperate with greedy extension to eliminate the randomness brought by the greedy algorithm and further reduce the false alarm rate(FAR) of monitoring results. Finally, the algorithm is applied to the blast furnace of a large iron and steel group in South China to verify performance.Compared with the basic algorithms, the proposed method achieves lowest FAR, while keeping missed alarm rate(MAR) remain stable.展开更多
Total organic carbon(TOC)content is one of the most important parameters for characterizing the quality of source rocks and assessing the hydrocarbon-generating potential of shales.The Lucaogou Formation shale reservo...Total organic carbon(TOC)content is one of the most important parameters for characterizing the quality of source rocks and assessing the hydrocarbon-generating potential of shales.The Lucaogou Formation shale reservoirs in the Jimusaer Sag,Junggar Basin,NW China,is characterized by extremely complex lithology and a wide variety of mineral compositions with source rocks mainly consisting of carbonaceous mudstone and dolomitic mudstone.The logging responses of organic matter in the shale reservoirs is quite different from those in conventional reservoirs.Analyses show that the traditional△logR method is not suitable for evaluating the TOC content in the study area.Analysis of the sensitivity characteristics of TOC content to well logs reveals that the TOC content has good correlation with the separation degree of porosity logs.After a dimension reduction processing by the principal component analysis technology,the principal components are determined through correlation analysis of porosity logs.The results show that the TOC values obtained by the new method are in good agreement with that measured by core analysis.The average absolute error of the new method is only 0.555,much less when compared with 1.222 of using traditional△logR method.The proposed method can be used to produce more accurate TOC estimates,thus providing a reliable basis for source rock mapping.展开更多
Principal component analysis(PCA)was employed to determine the implications of geochemical and isotopic data from Cenozoic volcanic activities in the Southeast Asian region,including China(South China Sea(SCS),Hainan ...Principal component analysis(PCA)was employed to determine the implications of geochemical and isotopic data from Cenozoic volcanic activities in the Southeast Asian region,including China(South China Sea(SCS),Hainan Island,Fujian-Zhejiang coast,Taiwan Island),and parts of Vietnam and Thailand.We analyzed 15 trace element indicators and 5 isotopic indicators for 623 volcanic rock samples collected from the study region.Two principal components(PCs)were extracted by PCA based on the trace elements and Sr-Nd-Pb isotopic ratios,which probably indicate an enriched oceanic island basalt-type mantle plume and a depleted mid-ocean ridge basalt-type spreading ridge.The results show that the influence of the Hainan mantle plume on younger volcanic activities(<13 Ma)is stronger than that on older ones(>13 Ma)at the same location in the Southeast Asian region.PCA was employed to verify the mantle-plume-ridge interaction model of volcanic activities beneath the expansion center of SCS and refute the hypothesis that the tension of SCS is triggered by the Hainan plume.This study reveals the efficiency and applicability of PCA in discussing mantle sources of volcanic activities;thus,PCA is a suitable research method for analyzing geochemical data.展开更多
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig...In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.展开更多
This work utilizes a statistical approach of Principal Component Ana-lysis(PCA)towards the detection of Methane(CH_(4))-Carbon Monoxide(CO)Poi-soning occurring in coal mines,forestfires,drainage systems etc.where the ...This work utilizes a statistical approach of Principal Component Ana-lysis(PCA)towards the detection of Methane(CH_(4))-Carbon Monoxide(CO)Poi-soning occurring in coal mines,forestfires,drainage systems etc.where the CH_(4) and CO emissions are very high in closed buildings or confined spaces during oxi-dation processes.Both methane and carbon monoxide are highly toxic,colorless and odorless gases.Both of the gases have their own toxic levels to be detected.But during their combined presence,the toxicity of the either one goes unidentified may be due to their low levels which may lead to an explosion.By using PCA,the correlation of CO and CH_(4) data is carried out and by identifying the areas of high correlation(along the principal component axis)the explosion suppression action can be triggered earlier thus avoiding adverse effects of massive explosions.Wire-less Sensor Network is deployed and simulations are carried with heterogeneous sensors(Carbon Monoxide and Methane sensors)in NS-2 Mannasim framework.The rise in the value of CO even when CH_(4) is below the toxic level may become hazardous to the people around.Thus our proposed methodology will detect the combined presence of both the gases(CH_(4) and CO)and provide an early warning in order to avoid any human losses or toxic effects.展开更多
Intended for good productivity and perfect operation of the solar power grid a failure-free system is required.Therefore,thermal image processing with the thermal camera is the latest non-invasive(without manual conta...Intended for good productivity and perfect operation of the solar power grid a failure-free system is required.Therefore,thermal image processing with the thermal camera is the latest non-invasive(without manual contact)type fault identification technique which may give good precision in all aspects.The soiling issue,which is major productivity affecting factor may import from several reasons such as dust on the wind,bird mucks,etc.The efficient power production sufferers due to accumulated soil deposits reaching from 1%–7%in the county,such as India,to more than 25%in middle-east countries country,such as Dubai,Kuwait,etc.This research offers a solar panel soiling detection system built on thermal imaging which powers the inspection method and mitigates the requirement for physical panel inspection in a large solar production place.Hence,in this method,solar panels can be verified by working without disturbing production operation and it will save time and price of recognition.India ranks 3rd worldwide in the usage use age of Photovoltaic(PV)panels now and it is supported about 8.6%of the Nation’s electricity need in the year 2020.In the meantime,the installed PV production areas in India are aged 4–5 years old.Hence the need for inspection and maintenance of installed PV is growing fast day by day.As a result,this research focuses on finding the soiling hotspot exactly of the working solar panels with the help of Principal Components Thermal Analysis(PCTA)on MATLAB Environment.展开更多
Machine learning algorithms (MLs) can potentially improve disease diagnostics, leading to early detection and treatment of these diseases. As a malignant tumor whose primary focus is located in the bronchial mucosal e...Machine learning algorithms (MLs) can potentially improve disease diagnostics, leading to early detection and treatment of these diseases. As a malignant tumor whose primary focus is located in the bronchial mucosal epithelium, lung cancer has the highest mortality and morbidity among cancer types, threatening health and life of patients suffering from the disease. Machine learning algorithms such as Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and Naïve Bayes (NB) have been used for lung cancer prediction. However they still face challenges such as high dimensionality of the feature space, over-fitting, high computational complexity, noise and missing data, low accuracies, low precision and high error rates. Ensemble learning, which combines classifiers, may be helpful to boost prediction on new data. However, current ensemble ML techniques rarely consider comprehensive evaluation metrics to evaluate the performance of individual classifiers. The main purpose of this study was to develop an ensemble classifier that improves lung cancer prediction. An ensemble machine learning algorithm is developed based on RF, SVM, NB, and KNN. Feature selection is done based on Principal Component Analysis (PCA) and Analysis of Variance (ANOVA). This algorithm is then executed on lung cancer data and evaluated using execution time, true positives (TP), true negatives (TN), false positives (FP), false negatives (FN), false positive rate (FPR), recall (R), precision (P) and F-measure (FM). Experimental results show that the proposed ensemble classifier has the best classification of 0.9825% with the lowest error rate of 0.0193. This is followed by SVM in which the probability of having the best classification is 0.9652% at an error rate of 0.0206. On the other hand, NB had the worst performance of 0.8475% classification at 0.0738 error rate.展开更多
基金Project supported by the National Natural Science Foundation of China(11972120,11472082,12032016)。
文摘In order to carry out tensor analysis in a neighborhood of a reference surface,the principal-direction orthogonal basis accompanying with Lame s coefficients or general curvilinear coordinate systems are widely used.A novel kind of field theory termed as the nonholonomic theory of the Principal-Direction Orthonormal Basis(PDOB)is presented systematically in the present paper,in which the formal Christoffel symbols are related directly to the principal and geodesic curvatures with respect to the principal directions of the surface.Furthermore,a systematic and simple way to determine the curvatures of the surface are presented with some examples.It provides a way to recognize qualitatively the bending property of a surface.
基金This work was supported by the Pilot Seed Grant(Grant No.RES0049944)the Collaborative Research Project(Grant No.RES0043251)from the University of Alberta.
文摘Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.
文摘We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.
基金the financial support from the National Natural Science Foundation of China(Grant No.51839003)Liaoning Revitalization Talents Program(Grant No.XLYCYSZX 1902)Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources(Grant No.2023zy002).
文摘To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.
基金supported by the National Key Research and Development Program of China(No.2018YFA0702800)the National Natural Science Foundation of China(No.12072056)supported by National Defense Fundamental Scientific Research Project(XXXX2018204BXXX).
文摘The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.
文摘Using the Raychaudhuri equation, we associate quantum probability amplitudes (propagators) to equatorial principal ingoing and outgoing null geodesic congruences in the Kerr metric. The expansion scalars diverge at the ring singularity;however, the propagators remain finite, which is an indication that at the quantum level singularities might disappear or, at least, become softened.
文摘This paper investigates the design essence of Chinese classical private gardens,integrating their design elements and fundamental principles.It systematically analyzes the unique characteristics and differences among classical private gardens in the Northern,Jiangnan,and Lingnan regions.The study examines nine classical private gardens from Northern China,Jiangnan,and Lingnan by utilizing the advanced tool of principal component cluster analysis.Based on literature analysis and field research,273 variables were selected for principal component analysis,from which four components with higher contribution rates were chosen for further study.Subsequently,we employed clustering analysis techniques to compare the differences among the three types of gardens.The results reveal that the first principal component effectively highlights the differences between Jiangnan and Lingnan private gardens.The second principal component serves as the key to defining the types of Northern private gardens and distinguishing them from the other two types,and the third principal component indicates that Lingnan private gardens can be categorized into two distinct types as well.
基金This work was financially supported by the Science and Technology Research Project of Jiangxi Provincial Education Department(GJJ210322)the National Natural Science Foundation of China(No.32260635).
文摘In this research,the performance of regular rapeseed oil(RSO)and modified low-linolenic rapeseed oil(LLRO)during frying was assessed using a frying procedure that commonly found in fast-food restaurants.Key physicochemical attributes of these oils were investigated.RSO and LLRO differed for initial linolenic acid(12.21%vs.2.59%),linoleic acid(19.15%vs.24.73%).After 6 successive days frying period of French fries,the ratio of linoleic acid to palmitic acid dropped by 54.49%in RSO,higher than that in LLRO(51.54%).The increment in total oxidation value for LLRO(40.46 unit)was observed to be significantly lower than those of RSO(42.58 unit).The changes in carbonyl group value and iodine value throughout the frying trial were also lower in LLRO compared to RSO.The formation rate in total polar compounds for LLRO was 1.08%per frying day,lower than that of RSO(1.31%).In addition,the formation in color component and degradation in tocopherols were proportional to the frying time for two frying oils.Besides,a longer induction period was also observed in LLRO(8.87 h)compared to RSO(7.68 h)after frying period.Overall,LLRO exhibited the better frying stability,which was confirmed by principal component analysis(PCA).
文摘Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements.
文摘Based on the keynote report by Professor Martin Thrupp,this paper discusses the hollowing out of education provision by the state and the permeation of managerialism.It was pointed out that principals and boards of trustees in socioeconomically advantaged areas may not be willing to share their benefits with schools in less advantaged areas.The new liberal policies have hollowed out state provision of education,so the education system has come to rely heavily on private actors.This paper also presents the current stage of privatization in Japan and the principals’and teachers’perceptions of privatization.
基金This work was supported by the Scientific Research Project of Anhui Province Universities,China(No.YJS20210388)the National Natural Science Foundation of China(Nos.51974009,52004006,and 52004005)+2 种基金the Major Science and Technology Special Project of Anhui Province,China(No.202203a07020011)the Collaborative Innovation Project of Anhui Province Universities,China(No.GXXT-2021-075)the Huaibei City Science and Technology Major Program(No.Z2020005).
文摘Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial conditions.The strength and failure characteristics were studied with micro-camera and acoustic emission(AE)monitoring.Furthermore,the choice of test path and the effect ofσ_(2)on fracture of unloading rock were discussed.Results show that the increasedσ_(2)can strengthen the stability of single-sided unloading rock.After unloading,the rock’s free surface underwent five phases,namely,inoculation,particle ejection,buckling rupture,stable failure,and unstable rockburst phases.Moreover,atσ_(2)≤30 MPa,the b value shows the following variation tendency:rising,dropping,significant fluctuation,and dropping,with dispersed damages signal.Atσ_(2)≥40 MPa,the tendency shows:a rise,a decrease,a slight fluctuation,and final drop,with concentrated damages signal.After unloading,AE energy is mainly concentrated in the micro-energy range.With the increasedσ_(2),the micro-energy ratio rises.In contrast,low,medium and large energy ratios drop gradually.The increased tensile fractures and decreased shear fractures indicate that the failure mode of the unloading rock gradually changes from tensile-shear mode to tensile-split one.The fractional dimension of the rock fragments first increases and then decreases with an inflection point at 20 MPa.The distribution of SIF on the planes changes asσ_(2)increases,resulting in strengthening and then weakening of the rock bearing capacity.
基金supported by the National Natural Science Foundation of China(No.51974023)State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing(No.41621005)。
文摘The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal component analysis(PCA)and deep neural network(DNN).The PCA was used to eliminate collinearity and reduce the dimension of the input variables,and then the data processed by PCA were used to establish the DNN model.The prediction hit ratios for the Si element yield in the error ranges of±1%,±3%,and±5%are 54.0%,93.8%,and98.8%,respectively,whereas those of the Mn element yield in the error ranges of±1%,±2%,and±3%are 77.0%,96.3%,and 99.5%,respectively,in the PCA-DNN model.The results demonstrate that the PCA-DNN model performs better than the known models,such as the reference heat method,multiple linear regression,modified backpropagation,and DNN model.Meanwhile,the accurate prediction of the alloying element yield can greatly contribute to realizing a“narrow window”control of composition in molten steel.The construction of the prediction model for the element yield can also provide a reference for the development of an alloying control model in LF intelligent refining in the modern iron and steel industry.
基金This work was financially supported by the National Key Research and Development Program of China(Grant No.2021YFC2900500)the International(Regional)Cooperation and Exchange Program of National Natural Science Foundation of China(Grant No.52161135301)the Special Fund for Basic Scientific Research Operations in Universities(Grant No.2282020cxqd055).
文摘The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side length with different intermediate principal stress gradients in combination with acoustic emission(AE)technique.Results show that the fracture characteristics of granite samples change from‘sudden and aggregated’to‘continuous and dispersed’with the increase of the intermediate principal stress.The effect of increasing intermediate principal stress on AE amplitude is not significant,but it increases the proportions of high-frequency AE signals and shear cracks,which in turn increases the possibility of unstable rock failure.The difference of stress in different directions causes the anisotropy of rock fracture and thus leads to the obvious anisotropic characteristics of wave velocity variations.The anisotropy of wave velocity variations with stress difference is probable to identify the principal stress directions.The AE characteristics and the anisotropy of wave velocity variations of granite under two-dimensional stress are not only beneficial complements for rock fracture characteristic and principal stress direction identification,but also can provide a new analysis method for stability monitoring in practical rock engineering.
基金supported by the National Natural Science Foundation of China (61903326, 61933015)。
文摘The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring false alarms. To address the above problem, an ensemble of greedy dynamic principal component analysis-Gaussian mixture model(EGDPCA-GMM) is proposed in this paper. First, PCA-GMM is introduced to deal with the collinearity and the non-Gaussian distribution of blast furnace data.Second, in order to explain the dynamics of data, the greedy algorithm is used to determine the extended variables and their corresponding time lags, so as to avoid introducing unnecessary noise. Then the bagging ensemble is adopted to cooperate with greedy extension to eliminate the randomness brought by the greedy algorithm and further reduce the false alarm rate(FAR) of monitoring results. Finally, the algorithm is applied to the blast furnace of a large iron and steel group in South China to verify performance.Compared with the basic algorithms, the proposed method achieves lowest FAR, while keeping missed alarm rate(MAR) remain stable.
基金This research was funded by the National Natural Science Foundation of China(Grant No.41504103).
文摘Total organic carbon(TOC)content is one of the most important parameters for characterizing the quality of source rocks and assessing the hydrocarbon-generating potential of shales.The Lucaogou Formation shale reservoirs in the Jimusaer Sag,Junggar Basin,NW China,is characterized by extremely complex lithology and a wide variety of mineral compositions with source rocks mainly consisting of carbonaceous mudstone and dolomitic mudstone.The logging responses of organic matter in the shale reservoirs is quite different from those in conventional reservoirs.Analyses show that the traditional△logR method is not suitable for evaluating the TOC content in the study area.Analysis of the sensitivity characteristics of TOC content to well logs reveals that the TOC content has good correlation with the separation degree of porosity logs.After a dimension reduction processing by the principal component analysis technology,the principal components are determined through correlation analysis of porosity logs.The results show that the TOC values obtained by the new method are in good agreement with that measured by core analysis.The average absolute error of the new method is only 0.555,much less when compared with 1.222 of using traditional△logR method.The proposed method can be used to produce more accurate TOC estimates,thus providing a reliable basis for source rock mapping.
基金Supported by the State Key Laboratory of Marine Environmental Science Visiting Fellowship(No.MELRS2233)the State Key Laboratory of Marine Geology,Tongji University(No.MGK202302)+4 种基金the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.311021003)the Zhujiang Talent Project Foundation of Guangdong Province(No.2017ZT07Z066)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(Nos.22qntd2101,2021qntd23)the Major Projects of the National Natural Science Foundation of China(Nos.41790465,41590863)the National Natural Science Foundation of China(Nos.42102333,41806077,41904045)。
文摘Principal component analysis(PCA)was employed to determine the implications of geochemical and isotopic data from Cenozoic volcanic activities in the Southeast Asian region,including China(South China Sea(SCS),Hainan Island,Fujian-Zhejiang coast,Taiwan Island),and parts of Vietnam and Thailand.We analyzed 15 trace element indicators and 5 isotopic indicators for 623 volcanic rock samples collected from the study region.Two principal components(PCs)were extracted by PCA based on the trace elements and Sr-Nd-Pb isotopic ratios,which probably indicate an enriched oceanic island basalt-type mantle plume and a depleted mid-ocean ridge basalt-type spreading ridge.The results show that the influence of the Hainan mantle plume on younger volcanic activities(<13 Ma)is stronger than that on older ones(>13 Ma)at the same location in the Southeast Asian region.PCA was employed to verify the mantle-plume-ridge interaction model of volcanic activities beneath the expansion center of SCS and refute the hypothesis that the tension of SCS is triggered by the Hainan plume.This study reveals the efficiency and applicability of PCA in discussing mantle sources of volcanic activities;thus,PCA is a suitable research method for analyzing geochemical data.
基金funded by the National Natural Science Foundation of China(42174131)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03).
文摘In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.
文摘This work utilizes a statistical approach of Principal Component Ana-lysis(PCA)towards the detection of Methane(CH_(4))-Carbon Monoxide(CO)Poi-soning occurring in coal mines,forestfires,drainage systems etc.where the CH_(4) and CO emissions are very high in closed buildings or confined spaces during oxi-dation processes.Both methane and carbon monoxide are highly toxic,colorless and odorless gases.Both of the gases have their own toxic levels to be detected.But during their combined presence,the toxicity of the either one goes unidentified may be due to their low levels which may lead to an explosion.By using PCA,the correlation of CO and CH_(4) data is carried out and by identifying the areas of high correlation(along the principal component axis)the explosion suppression action can be triggered earlier thus avoiding adverse effects of massive explosions.Wire-less Sensor Network is deployed and simulations are carried with heterogeneous sensors(Carbon Monoxide and Methane sensors)in NS-2 Mannasim framework.The rise in the value of CO even when CH_(4) is below the toxic level may become hazardous to the people around.Thus our proposed methodology will detect the combined presence of both the gases(CH_(4) and CO)and provide an early warning in order to avoid any human losses or toxic effects.
文摘Intended for good productivity and perfect operation of the solar power grid a failure-free system is required.Therefore,thermal image processing with the thermal camera is the latest non-invasive(without manual contact)type fault identification technique which may give good precision in all aspects.The soiling issue,which is major productivity affecting factor may import from several reasons such as dust on the wind,bird mucks,etc.The efficient power production sufferers due to accumulated soil deposits reaching from 1%–7%in the county,such as India,to more than 25%in middle-east countries country,such as Dubai,Kuwait,etc.This research offers a solar panel soiling detection system built on thermal imaging which powers the inspection method and mitigates the requirement for physical panel inspection in a large solar production place.Hence,in this method,solar panels can be verified by working without disturbing production operation and it will save time and price of recognition.India ranks 3rd worldwide in the usage use age of Photovoltaic(PV)panels now and it is supported about 8.6%of the Nation’s electricity need in the year 2020.In the meantime,the installed PV production areas in India are aged 4–5 years old.Hence the need for inspection and maintenance of installed PV is growing fast day by day.As a result,this research focuses on finding the soiling hotspot exactly of the working solar panels with the help of Principal Components Thermal Analysis(PCTA)on MATLAB Environment.
文摘Machine learning algorithms (MLs) can potentially improve disease diagnostics, leading to early detection and treatment of these diseases. As a malignant tumor whose primary focus is located in the bronchial mucosal epithelium, lung cancer has the highest mortality and morbidity among cancer types, threatening health and life of patients suffering from the disease. Machine learning algorithms such as Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and Naïve Bayes (NB) have been used for lung cancer prediction. However they still face challenges such as high dimensionality of the feature space, over-fitting, high computational complexity, noise and missing data, low accuracies, low precision and high error rates. Ensemble learning, which combines classifiers, may be helpful to boost prediction on new data. However, current ensemble ML techniques rarely consider comprehensive evaluation metrics to evaluate the performance of individual classifiers. The main purpose of this study was to develop an ensemble classifier that improves lung cancer prediction. An ensemble machine learning algorithm is developed based on RF, SVM, NB, and KNN. Feature selection is done based on Principal Component Analysis (PCA) and Analysis of Variance (ANOVA). This algorithm is then executed on lung cancer data and evaluated using execution time, true positives (TP), true negatives (TN), false positives (FP), false negatives (FN), false positive rate (FPR), recall (R), precision (P) and F-measure (FM). Experimental results show that the proposed ensemble classifier has the best classification of 0.9825% with the lowest error rate of 0.0193. This is followed by SVM in which the probability of having the best classification is 0.9652% at an error rate of 0.0206. On the other hand, NB had the worst performance of 0.8475% classification at 0.0738 error rate.