Following several damaging earthquakes in China, research has been devoted to find the causes of the collapse of reinforced concrete (RC) building sand studying the vulnerability of existing buildings. The Chinese C...Following several damaging earthquakes in China, research has been devoted to find the causes of the collapse of reinforced concrete (RC) building sand studying the vulnerability of existing buildings. The Chinese Code for Seismic Design of Buildings (CCSDB) has evolved over time, however, there is still reported earthquake induced damage of newly designed RC buildings. Thus, to investigate modern Chinese seismic design code, three low-, mid- and high-rise RC frames were designed according to the 2010 CCSDB and the corresponding vulnerability curves were derived by computing a probabilistic seismic demand model (PSDM).The PSDM was computed by carrying out nonlinear time history analysis using thirty ground motions obtained from the Pacific Earthquake Engineering Research Center. Finally, the PSDM was used to generate fragility curves for immediate occupancy, significant damage, and collapse prevention damage levels. Results of the vulnerability assessment indicate that the seismic demands on the three different frames designed according to the 2010 CCSDB meet the seismic requirements and are almost in the same safety level.展开更多
A typical single-layer raw soil structure in villages and towns in China is taken as the research object.In the probabilistic seismic demand analysis,the seismic demand model is obtained by the incremental dynamic tim...A typical single-layer raw soil structure in villages and towns in China is taken as the research object.In the probabilistic seismic demand analysis,the seismic demand model is obtained by the incremental dynamic time history analysis method.The seismic vulnerability analysis is carried out for the raw soil structure of nonfoundation,strip foundation,and spiral anchor composite foundation,respectively.The spiral anchor composite foundation can reduce the seismic response and failure state of raw soil structure,and the performance level of the structure is significantly improved.Structural requirements sample data with the same ground motion intensity are analyzed by linear regression statistics.Compared with the probabilistic seismic demand model under various working conditions,the seismic demand increases gradually with the increase of intensity.The seismic vulnerability curve is summarized for comparative analysis.With the gradual deepening of the limit state,the reduction effect of spiral anchor composite foundation on the exceedance probability becomes more and more obvious,which can reduce the probability of structural failure to a certain extent.展开更多
To study the ground motion intensity measures(IMs)suitable for the design of seismic performance with a focus on longitudinal resistance in tunnel structures,21 different seismic intensity parameters are selected for ...To study the ground motion intensity measures(IMs)suitable for the design of seismic performance with a focus on longitudinal resistance in tunnel structures,21 different seismic intensity parameters are selected for nonlinear calculation and analysis of tunnel structures,in order to determine the optimal IM for the longitudinal seismic performance of tunnel structures under different site conditions.An improved nonlinear beam-spring model is developed to calculate the longitudinal seismic response of tunnels.The PQ-Fiber model is used to simulate the longitudinal nonlinear behavior of tunnel structures and the tangential interactions between the tunnel and the soil is realized by load in the form of moment.Five different site types are considered and 21 IMs is evaluated against four criteria:effectiveness,practicality,usefulness,and sufficiency.The results indicate that the optimal IMs are significantly influenced by the site conditions.Specifically,sustained maximum velocity(V_(SM))emerges as the optimal IM for circular tunnels in soft soil conditions(CaseⅠsites),peak ground velocity(V PG)is best suited for CaseⅡsites,sustained maximum acceleration(A_(SM))is ideal for both CaseⅢand CaseⅤsites,and peak ground acceleration(A PG)for CaseⅣsites.As site conditions transition from CaseⅠto CaseⅤ,from soft to hard,the applicability of acceleration-type intensity parameters gradually decreases,while the applicability of velocity-type intensity parameters gradually increases.展开更多
Recent earthquakes have shown that tunnels are prone to damage,posing a major threat to safety and having major cascading and socioeconomic impacts.Therefore,reliable models are needed for the seismic fragility assess...Recent earthquakes have shown that tunnels are prone to damage,posing a major threat to safety and having major cascading and socioeconomic impacts.Therefore,reliable models are needed for the seismic fragility assessment of underground structures and the quantitative evaluation of expected losses.Based on previous researches,this paper presented a probabilistic framework based on an artificial neural network(ANN),aiming at the development of fragility curves for circular tunnels in soft soils.Initially,a two-dimensional incremental dynamic analysis of the nonlinear soil-tunnel system was performed to estimate the response of the tunnel under ground shaking.The effects of soil-structure-interaction and the ground motion characteristics on the seismic response and the fragility of tunnels were adequately considered within the proposed framework.An ANN was employed to develop a probabilistic seismic demand model,and its results were compared with the traditional linear regression models.Fragility curves were generated for various damage states,accounting for the associated uncertainties.The results indicate that the proposed ANN-based probabilistic framework can results in reliable fragility models,having similar capabilities as the traditional approaches,and a lower computational cost is required.The proposed fragility models can be adopted for the risk analysis of typical circular tunnel in soft soils subjected to seismic loading,and they are expected to facilitate decision-making and risk management toward more resilient transport infrastructure.展开更多
基金National Natural Science Foundation of China Under Grant No.51108105,90815029,50938006 Research Fund for the Doctoral Program of Higher Education of China Under Grant No.20094410120002+3 种基金 Major Program of National Natural Science Foundation of China Under Grant No.90815027Key Projects in the National Science&Technology Pillar Program during the Eleventh Five-Year Plan Period Under Grant No.2009BAJ28B03Fund for High School in Guangzhou (10A057)the Open Foundation of State Key Laboratory of Subtropical Building Science(2011KB15)
文摘Following several damaging earthquakes in China, research has been devoted to find the causes of the collapse of reinforced concrete (RC) building sand studying the vulnerability of existing buildings. The Chinese Code for Seismic Design of Buildings (CCSDB) has evolved over time, however, there is still reported earthquake induced damage of newly designed RC buildings. Thus, to investigate modern Chinese seismic design code, three low-, mid- and high-rise RC frames were designed according to the 2010 CCSDB and the corresponding vulnerability curves were derived by computing a probabilistic seismic demand model (PSDM).The PSDM was computed by carrying out nonlinear time history analysis using thirty ground motions obtained from the Pacific Earthquake Engineering Research Center. Finally, the PSDM was used to generate fragility curves for immediate occupancy, significant damage, and collapse prevention damage levels. Results of the vulnerability assessment indicate that the seismic demands on the three different frames designed according to the 2010 CCSDB meet the seismic requirements and are almost in the same safety level.
基金the financial supports from the National Key R&D Program of China(2018YFD1100404)the Program of Liaoning Provincial Department of Education(LJKZ0564)The supports from the Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education,Beijing University of Technology(2022B08)。
文摘A typical single-layer raw soil structure in villages and towns in China is taken as the research object.In the probabilistic seismic demand analysis,the seismic demand model is obtained by the incremental dynamic time history analysis method.The seismic vulnerability analysis is carried out for the raw soil structure of nonfoundation,strip foundation,and spiral anchor composite foundation,respectively.The spiral anchor composite foundation can reduce the seismic response and failure state of raw soil structure,and the performance level of the structure is significantly improved.Structural requirements sample data with the same ground motion intensity are analyzed by linear regression statistics.Compared with the probabilistic seismic demand model under various working conditions,the seismic demand increases gradually with the increase of intensity.The seismic vulnerability curve is summarized for comparative analysis.With the gradual deepening of the limit state,the reduction effect of spiral anchor composite foundation on the exceedance probability becomes more and more obvious,which can reduce the probability of structural failure to a certain extent.
基金National Key Research and Development Program of China(No.2022YFC3004300)the National Natural Science Foundation of China(No.52378475).
文摘To study the ground motion intensity measures(IMs)suitable for the design of seismic performance with a focus on longitudinal resistance in tunnel structures,21 different seismic intensity parameters are selected for nonlinear calculation and analysis of tunnel structures,in order to determine the optimal IM for the longitudinal seismic performance of tunnel structures under different site conditions.An improved nonlinear beam-spring model is developed to calculate the longitudinal seismic response of tunnels.The PQ-Fiber model is used to simulate the longitudinal nonlinear behavior of tunnel structures and the tangential interactions between the tunnel and the soil is realized by load in the form of moment.Five different site types are considered and 21 IMs is evaluated against four criteria:effectiveness,practicality,usefulness,and sufficiency.The results indicate that the optimal IMs are significantly influenced by the site conditions.Specifically,sustained maximum velocity(V_(SM))emerges as the optimal IM for circular tunnels in soft soil conditions(CaseⅠsites),peak ground velocity(V PG)is best suited for CaseⅡsites,sustained maximum acceleration(A_(SM))is ideal for both CaseⅢand CaseⅤsites,and peak ground acceleration(A PG)for CaseⅣsites.As site conditions transition from CaseⅠto CaseⅤ,from soft to hard,the applicability of acceleration-type intensity parameters gradually decreases,while the applicability of velocity-type intensity parameters gradually increases.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52108381,52090082,41772295,51978517)Innovation Program of Shanghai Municipal Education Commission(Grant No.2019-01-07-00-07-456 E00051)key innovation team program of innovation talents promotion plan by MOST of China(No.2016RA4059).
文摘Recent earthquakes have shown that tunnels are prone to damage,posing a major threat to safety and having major cascading and socioeconomic impacts.Therefore,reliable models are needed for the seismic fragility assessment of underground structures and the quantitative evaluation of expected losses.Based on previous researches,this paper presented a probabilistic framework based on an artificial neural network(ANN),aiming at the development of fragility curves for circular tunnels in soft soils.Initially,a two-dimensional incremental dynamic analysis of the nonlinear soil-tunnel system was performed to estimate the response of the tunnel under ground shaking.The effects of soil-structure-interaction and the ground motion characteristics on the seismic response and the fragility of tunnels were adequately considered within the proposed framework.An ANN was employed to develop a probabilistic seismic demand model,and its results were compared with the traditional linear regression models.Fragility curves were generated for various damage states,accounting for the associated uncertainties.The results indicate that the proposed ANN-based probabilistic framework can results in reliable fragility models,having similar capabilities as the traditional approaches,and a lower computational cost is required.The proposed fragility models can be adopted for the risk analysis of typical circular tunnel in soft soils subjected to seismic loading,and they are expected to facilitate decision-making and risk management toward more resilient transport infrastructure.