期刊文献+
共找到1,576篇文章
< 1 2 79 >
每页显示 20 50 100
A FEM-DFN model for the interaction and propagation of multi-cluster fractures during variable fluid-viscosity injection in layered shale oil reservoir 被引量:9
1
作者 Chu-Hao Huang Hai-Yan Zhu +3 位作者 Jian-Dong Wang Jian Han Guang-Qing Zhou Xuan-He Tang 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2796-2809,共14页
To investigate the height growth of multi-cluster fractures during variable fluid-viscosity fracturing in a layered shale oil reservoir,a two-dimensional finite element method(FEM)-discrete fracture network(DFN)model ... To investigate the height growth of multi-cluster fractures during variable fluid-viscosity fracturing in a layered shale oil reservoir,a two-dimensional finite element method(FEM)-discrete fracture network(DFN)model coupled with flow,stress and damage is proposed.A traction-separation law is used to describe the mixed-mode response of the damaged adhesive fractures,and the cubic law is used to describe the fluid flow within the fractures.The rock deformation is controlled by the in-situ stress,fracture cohesion and fluid pressure on the hydraulic fracture surface.The coupled finite element equations are solved by the explicit time difference method.The effects of the fracturing treatment parameters including fluid viscosity,pumping rate and cluster spacing on the geometries of multifractures are investigated.The results show that variable fluid-viscosity injection can improve the complexity of the fracture network and height of the main fractures simultaneously.The pumping rate of15 m^(3)/min,variable fluid-viscosity of 3-9-21-36-45 mPa s with a cluster spacing of 7.5 m is the ideal treatment strategy.The field application shows that the peak daily production of the application well with the optimized injection procedu re of variable fluid-viscosity fracturing is 171 tons(about 2.85 times that of the adjacent well),which is the highest daily production record of a single shale oil well in China,marking a strategic breakthrough of commercial shale oil production in the Jiyang Depression,Shengli Oilfield.The variable fluid-viscosity fracturing technique is proved to be very effective for improving shale oil production. 展开更多
关键词 Shale oil reservoir FEM-DFN model fracture propagation Variable fluid-viscosity injection Bedding planes
下载PDF
Fractures interaction and propagation mechanism of multi-cluster fracturing on laminated shale oil reservoir
2
作者 Jia-Xin Lv Bing Hou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2600-2613,共14页
The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the... The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the production efficiency of reservoirs by multi-cluster fracturing,it is necessary to consider the unbalanced propagation of hydraulic fractures and the penetration effect of fractures.This paper constructed a numerical model of multi-fracture propagation and penetration based on the finite element coupling cohesive zone method;considering the construction cluster spacing,pump rate,lamina strength and other parameters studied the influencing factors of multi-cluster fracture interaction propagation;combined with AE energy data and fracture mode reconstruction method,quantitatively characterized the comprehensive impact of the strength of thin interlayer rock interfaces on the initiation and propagation of fractures that penetrate layers,and accurately predicted the propagation pattern of hydraulic fractures through laminated shale oil reservoirs.Simulation results revealed that in the process of multi-cluster fracturing,the proportion of shear damage is low,and mainly occurs in bedding fractures activated by outer fractures.Reducing the cluster spacing enhances the fracture system's penetration ability,though it lowers the activation efficiency of lamina.The high plasticity of the limestone interlayer may impact the vertical propagation distance of the main fracture.Improving the interface strength is beneficial to the reconstruction of the fracture height,but the interface communication effect is limited.Reasonable selection of layers with moderate lamina strength for fracturing stimulation,increasing the pump rate during fracturing and setting the cluster spacing reasonably are beneficial to improve the effect of reservoir stimulation. 展开更多
关键词 Laminated shale multi-cluster fracturing CROSS-LAYER Cohesive zone model Acoustic emission technique
下载PDF
Fracture propagation law of temporary plugging and diversion fracturing in shale reservoirs under completion experiments of horizontal well with multi-cluster sand jetting perforation
3
作者 ZOU Yushi LI Yanchao +3 位作者 YANG Can ZHANG Shicheng MA Xinfang ZOU Longqing 《Petroleum Exploration and Development》 SCIE 2024年第3期715-726,共12页
This study conducted temporary plugging and diversion fracturing(TPDF)experiments using a true triaxial fracturing simulation system within a laboratory setting that replicated a lab-based horizontal well completion w... This study conducted temporary plugging and diversion fracturing(TPDF)experiments using a true triaxial fracturing simulation system within a laboratory setting that replicated a lab-based horizontal well completion with multi-cluster sand jetting perforation.The effects of temporary plugging agent(TPA)particle size,TPA concentration,single-cluster perforation number and cluster number on plugging pressure,multi-fracture diversion pattern and distribution of TPAs were investigated.A combination of TPAs with small particle sizes within the fracture and large particle sizes within the segment is conducive to increasing the plugging pressure and promoting the diversion of multi-fractures.The addition of fibers can quickly achieve ultra-high pressure,but it may lead to longitudinal fractures extending along the wellbore.The temporary plugging peak pressure increases with an increase in the concentration of the TPA,reaching a peak at a certain concentration,and further increases do not significantly improve the temporary plugging peak pressure.The breaking pressure and temporary plugging peak pressure show a decreasing trend with an increase in single-cluster perforation number.A lower number of single-cluster perforations is beneficial for increasing the breaking pressure and temporary plugging peak pressure,and it has a more significant control on the propagation of multi-cluster fractures.A lower number of clusters is not conducive to increasing the total number and complexity of artificial fractures,while a higher number of clusters makes it difficult to achieve effective plugging.The TPAs within the fracture is mainly concentrated in the complex fracture areas,especially at the intersections of fractures.Meanwhile,the TPAs within the segment are primarily distributed near the perforation cluster apertures which initiated complex fractures. 展开更多
关键词 shale temporary plugging and diversion fracturing multi-cluster sand jetting perforation distribution of temporary plugging agent fracture propagation law
下载PDF
Numerical modeling of fracture propagation of supercritical CO_(2)compound fracturing 被引量:1
4
作者 Hao Chen Yong Kang +2 位作者 Wanchun Jin Changhai Li Can Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2607-2628,共22页
The exploitation of shale gas is promising due to depletion of the conventional energy and intensification of the greenhouse effect.In this paper,we proposed a heat-fluid-solid coupling damage model of supercritical C... The exploitation of shale gas is promising due to depletion of the conventional energy and intensification of the greenhouse effect.In this paper,we proposed a heat-fluid-solid coupling damage model of supercritical CO_(2)(SC-CO_(2))compound fracturing which is expected to be an efficient and environmentally friendly way to develop shale gas.The coupling model is solved by the finite element method,and the results are in good agreement with the analytical solutions and fracturing experiments.Based on this model,the fracture propagation characteristics at the two stages of compound fracturing are studied and the influence of pressurization rate,in situ stress,bedding angle,and other factors are considered.The results show that at the SC-CO_(2)fracturing stage,a lower pressurization rate is conducive to formation of the branches around main fractures,while a higher pressurization rate inhibits formation of the branches around main fractures and promotes formation of the main fractures.Both bedding and in situ stress play a dominant role in the fracture propagation.When the in situ stress ratio(δ_(x)/δ_(y))is 1,the presence of bedding can reduce the initiation pressure and failure pressure.Nevertheless,it will cause the fracture to propagate along the bedding direction,reducing the fracture complexity.In rocks without bedding,hydraulic fracturing has the lengthening and widening effects for SC-CO_(2)induced fracture.In shale,fractures induced at the hydraulic fracturing stage are more likely to be dominated by in situ stresses and have a shorter reorientation radius.Therefore,fracture branches propagating along the maximum principal stress direction may be generated around the main fractures induced by SC-CO_(2)at the hydraulic fracturing stage.When the branches converge with the main fractures,fracture zones are easily formed,and thus the fracture complexity and damage area can be significantly increased.The results are instructive for the design and application of SC-CO_(2)compound fracturing. 展开更多
关键词 Compound fracturing fracture propagation Finite element method Damage evolution
下载PDF
Numerical analysis of hydraulic fracture propagation in deep shale reservoir with different injection strategies 被引量:1
5
作者 Yingjie Xia Mingyu Yao +2 位作者 Tianjiao Li Hai Yang Chun'an Tang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3558-3574,共17页
Deep shale reservoirs are characterized by elevated breakdown pressures,diminished fracture complexity,and reduced modified volumes compared to medium and shallow reservoirs.Therefore,it is urgent to investigate parti... Deep shale reservoirs are characterized by elevated breakdown pressures,diminished fracture complexity,and reduced modified volumes compared to medium and shallow reservoirs.Therefore,it is urgent to investigate particular injection strategies that can optimize breakdown pressure and fracturing efficiency to address the increasing demands for deep shale reservoir stimulation.In this study,the efficiency of various stimulation strategies,including multi-cluster simultaneous fracturing,modified alternating fracturing,alternating shut-in fracturing,and cyclic alternating fracturing,was evaluated.Subsequently,the sensitivity of factors such as the cycle index,shut-in time,cluster spacing,and horizontal permeability was investigated.Additionally,the flow distribution effect within the wellbore was discussed.The results indicate that relative to multi-cluster simultaneous fracturing,modified alternating fracturing exhibits reduced susceptibility to the stress shadow effect,which results in earlier breakdown,extended hydraulic fracture lengths,and more consistent propagation despite an increase in breakdown pressure.The alternating shut-in fracturing benefits the increase of fracture length,which is closely related to the shut-in time.Furthermore,cyclic alternating fracturing markedly lowers breakdown pressure and contributes to uniform fracture propagation,in which the cycle count plays an important role.Modified alternating fracturing demonstrates insensitivity to variations in cluster spacing,whereas horizontal permeability is a critical factor affecting fracture length.The wellbore effect restrains the accumulation of pressure and flow near the perforation,delaying the initiation of hydraulic fractures.The simulation results can provide valuable numerical insights for optimizing injection strategies for deep shale hydraulic fracturing. 展开更多
关键词 fracture propagation Numerical simulation Hydraulic fracturing Rock failure process analysis(RFPA) Injection strategy
下载PDF
Effect mechanism of seepage force on the hydraulic fracture propagation
6
作者 Haiyang Wang Desheng Zhou +1 位作者 Yi Zou Peng Zheng 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期223-240,共18页
The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix.Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a not... The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix.Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a notable influence on rock deformation and failure,its effect on hydraulic fracture(HF)propagation remains ambiguous.Therefore,in this study,we improved a traditional fluid–solid coupling method by incorporating the role of seepage force during the fracturing fluid seepage,using the discrete element method.First,we validated the simulation results of the improved method by comparing them with an analytical solution of the seepage force and published experimental results.Next,we conducted numerical simulations in both homogeneous and heterogeneous sandstone formations to investigate the influence of seepage force on HF propagation.Our results indicate that fluid viscosity has a greater impact on the magnitude and extent of seepage force compared to injection rate,and that lower viscosity and injection rate correspond to shorter hydraulic fracture lengths.Furthermore,seepage force influences the direction of HF propagation,causing HFs to deflect towards the side of the reservoir with weaker cementation and higher permeability. 展开更多
关键词 Hydraulic fracturing Seepage force fracture propagation Discrete element method Reservoir heterogeneity
下载PDF
Experimental investigation of methane explosion fracturing in bedding shales:Load characteristics and three-dimensional fracture propagation
7
作者 Yu Wang Cheng Zhai +5 位作者 Ting Liu Jizhao Xu Wei Tang Yangfeng Zheng Xinyu Zhu Ning Luo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第10期1365-1383,共19页
Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying expl... Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology. 展开更多
关键词 Methane in-situ explosion fracturing Bedding shale fracture propagation Three-dimensional reconstruction Crack-generated fines Fractal dimension
下载PDF
Fracture propagation and evolution law of indirect fracturing in the roof of broken soft coal seams
8
作者 Haifeng Zhao Pengyue Li +1 位作者 Xuejiao Li Wenjie Yao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期78-102,共25页
Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings ... Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings of true triaxial hydraulic fracturing experiments and field pilot under this technology and the cohesive element method,a 3D numerical model of indirect fracturing in the roof of broken soft coal seams was established,the fracture morphology propagation and evolution law under different conditions was investigated,and analysis of main controlling factors of fracture parameters was conducted with the combination weight method,which was based on grey incidence,analytic hierarchy process and entropy weight method.The results show that“士”-shaped fractures,T-shaped fractures,cross fractures,H-shaped fractures,and“干”-shaped fractures dominated by horizontal fractures were formed.Different parameter combinations can form different fracture morphologies.When the coal seam permeability is lower and the minimum horizontal principal stress difference between layers and fracturing fluid injection rate are both larger,it tends to form“士”-shaped fractures.When the coal seam permeability and minimum horizontal principal stress between layers and perforation position are moderate,cross fractures are easily generated.Different fracture parameters have different main controlling factors.Engineering factors of perforation location,fracturing fluid injection rate and viscosity are the dominant factors of hydraulic fracture shape parameters.This study can provide a reference for the design of indirect fracturing in the roof of broken soft coal seams. 展开更多
关键词 Indirect fracturing Roof of coal seam fracture propagation and evolution Coalbed methane Cohesive element method Combination weight method
下载PDF
Simulation Method and Feature Analysis of Shutdown Pressure Evolution During Multi-Cluster Fracturing Stimulation
9
作者 Huaiyin He Longqing Zou +5 位作者 Yanchao Li Yixuan Wang Junxiang Li Huan Wen Bei Chang Lijun Liu 《Energy Engineering》 EI 2024年第1期111-123,共13页
Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown a... Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown are influenced by hydraulic fractures,which can reflect the geometric features of hydraulic fracture.The shutdown pressure can be used to interpret the hydraulic fracture parameters in a real-time and cost-effective manner.In this paper,a mathematical model for shutdown pressure evolution is developed considering the effects of wellbore friction,perforation friction and fluid loss in fractures.An efficient numerical simulation method is established by using the method of characteristics.Based on this method,the impacts of fracture half-length,fracture height,opened cluster and perforation number,and filtration coefficient on the evolution of shutdown pressure are analyzed.The results indicate that a larger fracture half-length may hasten the decay of shutdown pressure,while a larger fracture height can slow down the decay of shutdown pressure.A smaller number of opened clusters and perforations can significantly increase the perforation friction and decrease the overall level of shutdown pressure.A larger filtration coefficient may accelerate the fluid filtration in the fracture and hasten the drop of the shutdown pressure.The simulation method of shutdown pressure,as well as the analysis results,has important implications for the interpretation of hydraulic fracture parameters. 展开更多
关键词 Multistage multi-cluster hydraulic fracturing pump shutdown pressure feature analysis numerical simulation
下载PDF
Failure Patterns and Mechanisms of Hydraulic Fracture Propagation Behavior in the Presence of Naturally Cemented Fractures 被引量:1
10
作者 Daobing Wang Fang Shi +2 位作者 Hao Qin Dongliang Sun Bo Yu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第3期891-914,共24页
In this study,we use the extended finite element method(XFEM)with a consideration of junction enrichment functions to investigate the mechanics of hydraulic fractures related to naturally cemented fractures.In the pro... In this study,we use the extended finite element method(XFEM)with a consideration of junction enrichment functions to investigate the mechanics of hydraulic fractures related to naturally cemented fractures.In the proposed numerical model,the lubrication equation is adopted to describe the fluid flow within fractures.The fluid-solid coupling systems of the hydraulic fracturing problem are solved using the Newton-Raphson method.The energy release rate criterion is used to determine the cross/arrest behavior between a hydraulic fracture(HF)and a cemented natural fracture(NF).The failure patterns and mechanisms of crack propagation at the intersection of natural fractures are discussed.Simulation results show that after crossing an NF,the failure mode along the cemented NF path may change from the tensile regime to the shear or mixed-mode regime.When an advancing HF kinks back toward the matrix,the failure mode may gradually switch back to the tensile-dominated regime.Key factors,including the length of the upper/lower portion of the cemented NF,horizontal stress anisotropy,and the intersection angle of the crack propagation are investigated in detail.An uncemented or partially cemented NF will form a more complex fracture network than a cemented NF.This study provides insight into the formation mechanism of fracture networks in formations that contain cemented NF. 展开更多
关键词 Hydraulic fracturing natural fractures crack propagation unconventional reservoirs mechanical interaction JOINTS
下载PDF
A Numerical Study on the Propagation Mechanisms of Hydraulic Fractures in Fracture-Cavity Carbonate Reservoirs 被引量:1
11
作者 Fang Shi Daobing Wang Xiaogang Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第5期575-598,共24页
Field data suggests that carbonate reservoirs contain abundant natural fractures and cavities.The propagation mechanisms of hydraulic fractures in fracture-cavity reservoirs are different from conventional reservoirs ... Field data suggests that carbonate reservoirs contain abundant natural fractures and cavities.The propagation mechanisms of hydraulic fractures in fracture-cavity reservoirs are different from conventional reservoirs on account of the stress concentration surrounding cavities.In this paper,we develop a fully coupled numerical model using the extended finite element method(XFEM)to investigate the behaviors and propagation mechanisms of hydraulic fractures in fracture-cavity reservoirs.Simulation results show that a higher lateral stress coefficient can enhance the influence of the natural cavity,causing a more curved fracture path.However,lower confining stress or smaller in-situ stress difference can reduce this influence,and thus contributes to the penetration of the hydraulic fracture towards the cavity.Higher fluid viscosity and high fluid pumping rate are both able to attenuate the effect of the cavity.The frictional natural fracture connected to the cavity can significantly change the stress distribution around the cavity,thus dramatically deviates the hydraulic fracture from its original propagation direction.It is also found that the natural cavity existing between two adjacent fracturing stages will significantly influence the stress distribution between fractures and is more likely to result in irregular propagation paths compared to the case without a cavity. 展开更多
关键词 Hydraulic fracturing fracture-cavity reservoir crack propagation XFEM
下载PDF
Propagation law of hydraulic fractures during multi-staged horizontal well fracturing in a tight reservoir 被引量:1
12
作者 LIU Naizhen ZHANG Zhaopeng +2 位作者 ZOU Yushi MA Xinfang ZHANG Yinuo 《Petroleum Exploration and Development》 2018年第6期1129-1138,共10页
A novel laboratory simulation method for modeling multi-staged fracturing in a horizontal well was established based on a true tri-axial hydraulic fracturing simulation system. Using this method, the influences of net... A novel laboratory simulation method for modeling multi-staged fracturing in a horizontal well was established based on a true tri-axial hydraulic fracturing simulation system. Using this method, the influences of net pressure in hydraulic fracture, stage spacing, perforation parameter, horizontal stress bias and well cementation quality on the propagation geometry of multiple fractures in a tight sandstone formation were studied in detail. The specimen splitting and analogy analysis of fracturing curve patterns reveals: Multiple fractures tend to merge under the condition of high horizontal stress bias and short stage spacing with pre-existing hydraulic fractures under critical closure situation, and the propagation of subsequent fractures is possibly suppressed because of high net pressure in pre-created fractures and asymmetric distribution of fracture width. And the subsequently created fractures are situated in the induced stress decreasing zone due to long stage spacing, leading to weak stress interference, and perforation with intense density and deep penetration facilitates the decrease of initiation fracture pressure. The deflection angle of subsequent fracture and horizontal stress variation tend to be amplified under low horizontal bias with constant net pressure in fractures. The longitudinal fracture is likely to be initiated at the interface of wellbore and concrete sample with poor cementation quality. The initiation fracture pressure of the different stages increases in turn, with the largest increase of 30%. Pressure quickly declines after initiation with low propagation pressure when the transverse hydraulic fracture is formed. The pressure reduces with fluctuation after the initiation of fracture when the fracture deflects, the extension pressure is high, and the fracture formed is tortuous and narrow. There is a violently fluctuant rise of pressure with multiple peak values when longitudinal fracture created, and it is hard to distinguish the features between the initiation stage and propagation stage. 展开更多
关键词 tight SANDSTONE horizontal well multi-staged fracturING PERFORATION net pressure in fracturE stress interference between fractures fracturE propagation
下载PDF
Morphology and Propagation of Hydraulic Fractures for CBM Wells
13
作者 WU Caifang ZHANG Xiaoyang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第5期1936-1937,共2页
Objective As the most widely used and effective technique in reservoir reconstruction of unconventional natural gas,hydraulic fracturing has been achieved good effect in CBM development.It is important to note that co... Objective As the most widely used and effective technique in reservoir reconstruction of unconventional natural gas,hydraulic fracturing has been achieved good effect in CBM development.It is important to note that coal seam is both source rock and reservoir, 展开更多
关键词 In Morphology and propagation of Hydraulic fractures for CBM Wells
下载PDF
Understanding hydraulic fracture propagation behavior in tight sandstone–coal interbedded formations: an experimentalinvestigation 被引量:21
14
作者 Peng Tan Yan Jin +4 位作者 Liang Yuan Zhen-Yu Xiong Bing Hou Mian Chen Li-Ming Wan 《Petroleum Science》 SCIE CAS CSCD 2019年第1期148-160,共13页
Whether hydraulic fractures could connect multiple gas zones in the vertical plane is the key to fracturing treatment to jointly exploit coalbed methane and tight sandstone gas through integrative hydraulic fracturing... Whether hydraulic fractures could connect multiple gas zones in the vertical plane is the key to fracturing treatment to jointly exploit coalbed methane and tight sandstone gas through integrative hydraulic fracturing in tight sandstone–coal interbedded formations. Laboratory true triaxial hydraulic fracturing experiments were conducted on layered specimens with di erent combination types of natural sandstone and coal to simulate the propagation behavior of hydraulic fractures. The effects of the fracture initiation position, fracturing fluid viscosity and injection rate were discussed. The results showed that di erent fracture morphologies could be found. When initiating from coal seams, three patterns of fracture initiation and propagation were obtained:(1) The main hydraulic fracture initiated and propagated along the natural fractures and then diverged due to the effects of in situ stress and formed secondary fractures.(2) The hydraulic fracture initiated and propagated in the direction of the maximum horizontal stress.(3) Multiple fractures initiated and propagated at the same time. With the same fracturing fluid viscosity and injection rate, the hydraulic fractures initiating in sandstones had greater chances than those in coal seams to penetrate interfaces and enter neighboring layers. Excessively small or large fracturing fluid viscosity and injection rate would do harm to the vertical extension height of the induced fracture and improvement of the stimulated reservoir volume. Compared with operation parameters(fracturing fluid viscosity and injection rate), the natural weak planes in coals were considered to be the key factor that a ected the fracture propagation path. The experimental results would make some contributions to the development of tight sandstone–coal interbedded reservoirs. 展开更多
关键词 HYDRAULIC fracturING fracturE propagation Sandstone-coal interbed LAYERED formation
下载PDF
Experimental investigation of propagation mechanisms and fracture morphology for coalbed methane reservoirs 被引量:6
15
作者 Chi Ai Xiao-Xuan Li +2 位作者 Jun Zhang Dan Jia Wen-Jing Tan 《Petroleum Science》 SCIE CAS CSCD 2018年第4期815-829,共15页
Fracture propagation mechanisms in coalbed methane(CBM) reservoirs are very complex due to the development of the internal cleat system. In this paper, the characteristics of initiation and propagation of hydraulic fr... Fracture propagation mechanisms in coalbed methane(CBM) reservoirs are very complex due to the development of the internal cleat system. In this paper, the characteristics of initiation and propagation of hydraulic fractures in coal specimens at different angles between the face cleat and the maximum horizontal principal stress were investigated with hydraulic fracturing tests. The results indicate that the interactions between the hydraulic fractures and the cleat system have a major effect on fracture networks. "Step-like’’ fractures were formed in most experiments due to the existence of discontinuous butt cleats. The hydraulic fractures were more likely to divert or propagate along the butt cleat with an increase in the angles and a decrease in the horizontal principal stress difference. An increase in the injection rate and a decrease in the fracturing fluid viscosity were more conducive to fracture networks. In addition, the influence on fracture propagation of the residual coal fines in the wellbore was also studied. The existence of coal fines was an obstacle in fracturing, and no effective connection can be formed between fractures. The experimental investigation revealed the fracture propagation mechanisms and can provide guidance for hydraulic fracturing design of CBM reservoirs. 展开更多
关键词 Coalbed methane reservoir Butt cleat propagation mechanisms fracture morphology Step-like fractures
下载PDF
Numerical simulation of hydraulic fracture propagation in weakly consolidated sandstone reservoirs 被引量:7
16
作者 LIN Hai DENG Jin-gen +3 位作者 LIU Wei XIE Tao XU Jie LIU Hai-long 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第12期2944-2952,共9页
Frac-packing technology has been introduced to improve the development effect of weakly consolidated sandstone.It has double effects on increasing production and sand control.However,determining operation parameters o... Frac-packing technology has been introduced to improve the development effect of weakly consolidated sandstone.It has double effects on increasing production and sand control.However,determining operation parameters of frac-packing is the key factor due to the particularity of weakly consolidated sandstone.In order to study the mechanisms of hydraulic fracture propagation and reveal the effect of fracturing parameters on fracture morphology in weakly consolidated sandstone,finite element numerical model of fluid-solid coupling is established to carry out numerical simulation to analyze influences of mechanical characteristics,formation permeability,fracturing fluid injection rate and viscosity on fracture propagation.The result shows that lower elastic modulus is favorable for inducing short and wide fractures and controls the fracture length while Poisson ratio has almost no effect.Large injection rate and high viscosity of fracturing fluid are advantageous to fracture initiation and propagation.Suitable fractures are produced when the injection rate is approximate to3–4m3/min and fluid viscosity is over100mPa?s.The leak-off of fracturing fluid to formation is rising with the increase of formation permeability,which is adverse to fracture propagation.The work provides theoretical reference to determine the construction parameters for the frac-packing design in weakly consolidated reservoirs. 展开更多
关键词 weakly-consolidated sandstone frac-packing hydraulic fracture fracture propagation numerical simulation
下载PDF
Numerical simulation on the multiple planar fracture propagation with perforation plugging in horizontal wells 被引量:3
17
作者 Ming-Hui Li Fu-Jian Zhou +5 位作者 Bo Wang Xiao-Dong Hu Dao-Bing Wang Xiao-Ying Zhuang Shao-Bo Han Guo-Peng Huang 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2253-2267,共15页
Intra-stage multi-cluster temporary plugging and diverting fracturing(ITPF)is one of the fastest-growing techniques to obtain uniform reservoir stimulation in shale gas reservoirs.However,propagation geometries of mul... Intra-stage multi-cluster temporary plugging and diverting fracturing(ITPF)is one of the fastest-growing techniques to obtain uniform reservoir stimulation in shale gas reservoirs.However,propagation geometries of multiple fractures during ITPF are not clear due that the existing numerical models cannot capture the effects of perforation plugging.In this paper,a new three-dimensional FEM based on CZM was developed to investigate multiple planar fracture propagation considering perforation plugging during ITPF.Meanwhile,the fluid pipe element and its subroutine were first developed to realize the flux partitioning before or after perforation plugging.The results showed that the perforation plugging changed the original distribution of the number of perforations in each fracture,thus changing the flux partitioning after perforation plugging,which could eliminate the effect of stress interference between multiple fractures and promote a uniform fluid distribution.The standard deviation of fluid distribution in the perforation plugging case was only 8.48%of that in the non-diversion case.Furthermore,critical plugging parameters have been investigated quantitatively.Specifically,injecting more diverters will create a higher fluid pressure rise in the wellbore,which will increase the risk of wellbore integrity.Comprehensively considering pressure rise and fluid distribution,the number of diverters should be 50%of the total number of perforations(N_(pt)),whose standard deviation of fluid distribution of multiple fractures was lower than those in the cases of injecting 10%N_(pt),30%N_(pt)and 70%N_(pt).The diverters should be injected at an appropriate timing,i.e.40%or 50%of the total fracturing time(tft),whose standard deviation of the fluid distribution was only about 20%of standard deviations in the cases of injecting at20%tftor 70%tft.A single injection with all diverters can maintain high bottom-hole pressure for a longer period and promote a more uniform fluid distribution.The standard deviation of the fluid distribution in the case of a single injection was 43.62%-55.41%of the other cases with multiple injection times.This study provides a meaningful perspective and some optimal plugging parameters on the field design during IPTF. 展开更多
关键词 Hydraulic fracturing multi-cluster fracture propagation Perforation plugging Finite element method Fluid distribution
下载PDF
Stability of the formation interface under the impact of hydraulic fracture propagation in the vicinity of the formation interface 被引量:6
18
作者 Cong Lu Yun-Xiao Lu +1 位作者 Jian-Chun Guo Li-ming Liu 《Petroleum Science》 SCIE CAS CSCD 2020年第4期1101-1118,共18页
Unconventional hydrocarbon reservoirs in layered formations,such as tight sandstones and shales,are continually being developed.Hydraulic fracturing is a critical technology for the high-efficiency development of hydr... Unconventional hydrocarbon reservoirs in layered formations,such as tight sandstones and shales,are continually being developed.Hydraulic fracturing is a critical technology for the high-efficiency development of hydrocarbon reservoirs.Understanding the stress field and stability of the formation interface is vital to understanding stress propagation,preferably before the growing hydraulic fracture contacts the formation interface.In this study,models are developed for computing the stress field of hydraulic fracture propagation near the formation interface,and the stress fields within and at the two sides of the formation interface are analyzed.Four failure modes of the interface under the impact of hydraulic fracture propagation in its vicinity are identified,and the corresponding failure criteria are proposed.By simulating the magnitude and direction of peak stress at different parameters,the failure mode and stability of the formation interface are analyzed.Results reveal that when the interface strength is weak,the formation interface fails before the growing hydraulic fracture contacts it,and its stability is significantly related to a variety of factors,including the type of formation interface,rock mechanical properties,far-field stress,structural parameters,distance between the hydraulic fracture and formation interface,and fracturing execution parameters. 展开更多
关键词 Formation interface fracture propagation Stress field Failure criterion STABILITY
下载PDF
HIGH TEMPERATURE CRACK PROPAGATION AND FRACTURE OF SUPERALLOYS 被引量:2
19
作者 X.S. Xie, Z.C. Xu and J.X. Dong High Temperature Materials Research Laboratory,University of Science and Technology Beijing,Beijing 100083, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第1期54-61,共8页
High temperature crack propagation and fracture behavior of disks produced by six superalloys have been studied. Crack propagation rates were determined at 650 creep, fatigue and creep/fatigue interaction conditions. ... High temperature crack propagation and fracture behavior of disks produced by six superalloys have been studied. Crack propagation rates were determined at 650 creep, fatigue and creep/fatigue interaction conditions. The crack propagation rate is raised with increasing strength of superalloy and is also increased with the dwelling time at maximum stress level of cyclic creep test condition. Crack propagation behavior is closely related to high temperature ductility (such as creep strain and stress rupture elongation). Ductility improvement can increase crack propagation resistance by means of softening heat treatment, controlling grain boundary precipitate and microalloying treatment (such as Mg addition to superalloy). \= 展开更多
关键词 CRACK propagation fracturE SUPERALLOY MAGNESIUM
下载PDF
Visualization and characterization of experimental hydraulic fractures interacting with karst fracture-cavity distributions
20
作者 Hanzhi Yang Xin Chang +4 位作者 Chunhe Yang Wuhao Guo Lei Wang Guokai Zhao Yintong Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1667-1683,共17页
Karst fracture-cavity carbonate reservoirs,in which natural cavities are connected by natural fractures to form cavity clusters in many circumstances,have become significant fields of oil and gas exploration and explo... Karst fracture-cavity carbonate reservoirs,in which natural cavities are connected by natural fractures to form cavity clusters in many circumstances,have become significant fields of oil and gas exploration and exploitation.Proppant fracturing is considered as the best method for exploiting carbonate reservoirs;however,previous studies primarily focused on the effects of individual types of geological formations,such as natural fractures or cavities,on fracture propagation.In this study,true-triaxial physical simulation experiments were systematically performed under four types of stress difference conditions after the accurate prefabrication of four types of different fracture-cavity distributions in artificial samples.Subsequently,the interaction mechanism between the hydraulic fractures and fracture-cavity structures was systematically analyzed in combination with the stress distribution,cross-sectional morphology of the main propagation path,and three-dimensional visualization of the overall fracture network.It was found that the propagation of hydraulic fractures near the cavity was inhibited by the stress concentration surrounding the cavity.In contrast,a natural fracture with a smaller approach angle(0°and 30°)around the cavity can alleviate the stress concentration and significantly facilitate the connection with the cavity.In addition,the hydraulic fracture crossed the natural fracture at the 45°approach angle and bypassed the cavity under higher stress difference conditions.A new stimulation effectiveness evaluation index was established based on the stimulated reservoir area(SRA),tortuosity of the hydraulic fractures(T),and connectivity index(CI)of the cavities.These findings provide new insights into the fracturing design of carbonate reservoirs. 展开更多
关键词 Karst fracture-cavity reservoir fracturing experiment fracture propagation Cross-sectional morphology Stimulation effectiveness
下载PDF
上一页 1 2 79 下一页 到第
使用帮助 返回顶部