The submerged propeller is an efficient diving mix device,which is applicable for oxidation ditch treatment in industry,city and village wastewater-treatment plant. The impeller structure and reasonable rotating speed...The submerged propeller is an efficient diving mix device,which is applicable for oxidation ditch treatment in industry,city and village wastewater-treatment plant. The impeller structure and reasonable rotating speed are important factors that determine flow field distribution and energy conversion efficiency. So it is necessary to use modern design methods to develop new kinds of high efficiency submerged propellers,and research the flow field characteristics of submerged propellers. On the basis of the existing form drawing,three-dimensional model of submerged propellers and unstructured tetrahedral mesh were generated. Based on Navier- Stokes equations and standard k- ε turbulence model,the flow was simulated by using a simple algorithm. Through changing some design parameters of propellers,the corresponding numerical simulation results reveal that for the same impeller diameter and service area of submerged propellers,the power consumption could be reduced effectively by optimizing blade mounting angle,which can determine the best blade mounting angle and most suitable rotational speed under given conditions. The study can provide theoretical and project guidance for submerged propellers design.展开更多
This paper describes the design and development of a Semi-Automatic Precision Caliper System to measure the thickness of an outboard marine engine propeller blade.Several commonly used methods for measuring the thickn...This paper describes the design and development of a Semi-Automatic Precision Caliper System to measure the thickness of an outboard marine engine propeller blade.Several commonly used methods for measuring the thickness of a propeller blade are reviewed in this paper.These include the P rops Scan,3D Vision System and Black Dog.However,the operating practices and availability of different facilities in industry necessitate a more cost-effect ive approach.An alternative method using a Semi-Automatic Precision Caliper S ystem is therefore proposed.Details of the design criteria,principles of oper ation as well as the testing and verification of the system are presented.The paper concludes that the Semi-Automatic Precision Caliper System is a low cost and effective method for measuring the thickness of a propeller.展开更多
Tidal stream power units with horizontal-axis propellers are one of promising technologies for generating the renewable green energy. The ebb and flow require that the power unit must operate in bidirectional tidal st...Tidal stream power units with horizontal-axis propellers are one of promising technologies for generating the renewable green energy. The ebb and flow require that the power unit must operate in bidirectional tidal streams. Hence a tidal stream power unit with counter-rotating type horizontal-axis bidirectional propellers is proposed in this paper. The blades with fully-symmetrical hydrofoils were optimized numerically. The output and flow conditions predicted by the computational fluid dynamics simulations are compared with the results of the wind tunnel experiments at the higher tip speed ratios, which are of expected usual operating conditions of this unit. The numerical and experimental results show good agreements. It is also confirmed that the flow discharged from the counter-rotating type propellers has no swirling component, though the single propeller generates the unacceptable swirling component.展开更多
Ocean energy has a potential of providing a large amount of renewable energy around the world. One of the forms of ocean energy, tidal stream power is widely recognized as the continuous, predictable and eco-friendly ...Ocean energy has a potential of providing a large amount of renewable energy around the world. One of the forms of ocean energy, tidal stream power is widely recognized as the continuous, predictable and eco-friendly ocean energy source. Unique tandem propellers that can counter-rotate have been designed to generate electric power effectively from a tidal stream. This type of power unit has several advantages compare to the conventional unit with a single propeller. At the design of the tidal stream power unit, it is important to investigate the structure of the tip vortex tubes shedding to predict the load of the propeller. In this research, we investigated the tip vortex shedding using the CFD method for the conventional single propeller and counter-rotating type tandem propellers and estimated the performance efficiency using RANS (Reynolds Averaged Navier-Stokes) model and we confirmed the limitation of RANS model on the calculation of the tip vortex stretching.展开更多
A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibrati...A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.展开更多
A new numerical method was developed for predicting the steady hydrodynamic performance of ducted propellers. A potential based surface panel method was applied both to the duct and the propeller, and the interaction ...A new numerical method was developed for predicting the steady hydrodynamic performance of ducted propellers. A potential based surface panel method was applied both to the duct and the propeller, and the interaction between them was solved by an induced velocity potential iterative method. Compared with the induced velocity iterative method, the method presented can save programming and calculating time. Numerical results for a JD simplified ducted propeller series showed that the method presented is effective for predicting the steady hydrodynamic performance of ducted propellers.展开更多
The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheele...The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheeled movement. In order to study the interactional principle between the hull and the wheel propellers while the AUV navigating in water, the computational fluid dynamics (CFD) method is used to simulate numerically the unsteady viscous flow around AUV with propellers by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and pressure with splitting of operators (PISO) algorithm based on sliding mesh. The hydrodynamic parameters of AUV with propellers such as resistance, pressure and velocity are got, which reflect well the real ambient flow field of AUV with propellers. Then, the semi-implicit method for pressure-linked equations (SIMPLE) algorithm is used to compute the steady viscous flow field of AUV hull and propellers, respectively. The computational results agree well with the experimental data, which shows that the numerical method has good accuracy in the prediction of hydrodynamic performance. The interaction between AUV hull and wheel propellers is predicted qualitatively and quantitatively by comparing the hydrodynamic parameters such as resistance, pressure and velocity with those from integral computation and partial computation of the viscous flow around AUV with propellers, which provides an effective reference to the shady on noise and vibration of AUV hull and propellers in real environment. It also provides technical support for the design of new AUVs.展开更多
Tip vortex cavitation is the first type of cavita- tion to take place around most marine propellers. But the numerical prediction of tip vortex cavitation is one of the challenges for propeller wake because of turbule...Tip vortex cavitation is the first type of cavita- tion to take place around most marine propellers. But the numerical prediction of tip vortex cavitation is one of the challenges for propeller wake because of turbulence dis- sipation during the numerical simulation. Several parame- ters of computational mesh and numerical algorithm are tested by mean of the predicted length of tip vortex cav- tiation to validate a developed method. The predicted length of tip vortex cavtiation is on the increase about 0.4 propeller diameters using the developed numerical method. The predicted length of tip vortex cavtiation by RNG k - e model is about 3 times of that by SST k - ~o model. Therefore, based on the validation of the present approach, the cavitating flows generated by two rotating propellers under a non-uniform inflow are calculated further. The distributions of axial velocity, total pressure and vapor volume fraction in the transversal planes across tip vortex region are shown to be useful in analyzing the feature of the cavitating flow. The strongest kemel of tip vortex cavitation is not at the position most close to blade tip but slightly far away from the region. During the growth of tip vortex cavitation extension, it appears short and thick, and then it becomes long and thin. The pressure fluctuations at the positions inside tip vortex region also validates the conclusion. A key finding of the study is that the grids constructed especially for tip vortex flows by usingseparated computational domain is capable of decreasing the turbulence dissipation and correctly capturing the fea- ture of propeller tip vortex cavitation under uniform and non-uniform inflows. The turbulence model and advanced grids is important to predict tip vortex cavitation.展开更多
In this study,a series of numerical calculations are carried out in ANSYS Workbench based on the unidirectional fluid–solid coupling theory.Using the DTMB 4119 propeller as the research object,a numerical simulation ...In this study,a series of numerical calculations are carried out in ANSYS Workbench based on the unidirectional fluid–solid coupling theory.Using the DTMB 4119 propeller as the research object,a numerical simulation is set up to analyze the open water performance of the propeller,and the equivalent stress distribution of the propeller acting in the flow field and the axial strain of the blade are analyzed.The results show that FLUENT calculations can provide accurate and reliable calculations of the hydrodynamic load for the propeller structure.The maximum equivalent stress was observed in the blade near the hub,and the tip position of the blade had the largest stress.With the increase in speed,the stress and deformation showed a decreasing trend.展开更多
In this study,the performance of a twin-screw propeller under the influence of the wake field of a fully appended ship was investigated using a coupled Reynolds-averaged Navier–Stokes(RANS)/boundary element method(BE...In this study,the performance of a twin-screw propeller under the influence of the wake field of a fully appended ship was investigated using a coupled Reynolds-averaged Navier–Stokes(RANS)/boundary element method(BEM)code.The unsteady BEM is an efficient approach to predicting propeller performance.By applying the time-stepping method in the BEM solver,the trailing vortex sheet pattern of the propeller can be accurately captured at each time step.This is the main innovation of the coupled strategy.Furthermore,to ascertain the effect of the wake field of the ship with acceptable accuracy,a RANS solver was developed.A finite volume method was used to discretize the Navier–Stokes equations on fully unstructured grids.To simulate ship motions,the volume of the fluid method was applied to the RANS solver.The validation of each solver(BEM/RANS)was separately performed,and the results were compared with experimental data.Ultimately,the BEM and RANS solvers were coupled to estimate the performance of a twin-screw propeller,which was affected by the wake field of the fully appended hull.The proposed model was applied to a twin-screw oceanography research vessel.The results demonstrated that the presented model can estimate the thrust coefficient of a propeller with good accuracy as compared to an experimental self-propulsion test.The wake sheet pattern of the propeller in open water(uniform flow)was also compared with the propeller in a real wake field.展开更多
Demand for high-speed marine vehicles (HSMVs) is high among both commercial and naval users. It is the duty of the marine vessel's designer to provide a hull and propulsion system that diminishes drag, improves pr...Demand for high-speed marine vehicles (HSMVs) is high among both commercial and naval users. It is the duty of the marine vessel's designer to provide a hull and propulsion system that diminishes drag, improves propulsive efficiency, increases safety and improves maneuverability. From the propulsor side, surface piercing propellers (SPPs) should improve performance. Unlike immersed propellers, behavior of the SPP is affected by depth of immersion, Weber number and shaft inclination angle. This paper uses a practical numerical method to predict the hydrodynamic characteristics of an SPP. The critical advance velocity ratio is derived using the Weber number and pitch ratio in the transition mode, then the potential based boundary element method (BEM) is used on the engaged surfaces. Two models of three and six-bladed SPPs (SPP-1 and SPP-2) were selected and some results are shown.展开更多
The potential based low order surface panel method is used to predict the hydrodynamic performance of marine propellers. In present method the hyperboloidal quadrilateral panels are employed to avoid the gap between t...The potential based low order surface panel method is used to predict the hydrodynamic performance of marine propellers. In present method the hyperboloidal quadrilateral panels are employed to avoid the gap between the panels. The influence coefficients of panels are calculated by Morino’s analytical formulations for increasing numerically calculating speed. The pressure Kutta condition is satisfied on the trailing edge of propeller blade by Newton-Raphson iterative procedure. Therefore the pressure coefficients of the suction and pressure faces of blade are equal on trailing edge. The method developed by Yanagizawa is used to determine the velocities on propeller surface, and to avoid the singularity in the numerical differentiation. The predicted pressure distributions and open water performances of general propellers and highly skewed propellers have a good agreement with experimental dat and other calculation results.展开更多
Methodological issues associated with the determination of the vertical take-off and landing aerodynamic parameters equipped with two rotary propellers during take-off and hovering, descent and landing are studied in ...Methodological issues associated with the determination of the vertical take-off and landing aerodynamic parameters equipped with two rotary propellers during take-off and hovering, descent and landing are studied in the proposed article. During the computer simulation process, kinematics parameters diagrams were made, aerodynamic coefficients and propellers thrust components at all stages of aircraft take-off were estimated. That numerical data can be used in a preliminary stage of aerodynamic design for the vertical take-off and landing aircraft and electric drones at the determination of control and equalization elements geometric and kinematic parameters.展开更多
Marine propellers are important propulsion devices for both surface ships and underwater vehicles.Increasingly severe environmental problems have required further performance enhancement for propellers.Nowadays,tradit...Marine propellers are important propulsion devices for both surface ships and underwater vehicles.Increasingly severe environmental problems have required further performance enhancement for propellers.Nowadays,traditional methods to improve propeller performances through geometrical and structural optimizations have been extensively investigated,while the underlying mechanisms of the effects of surface and interface properties on marine propellers are still far from being fully understood.This paper presented a comprehensive review of recent advances in the effects of surface and interface properties,such as surface roughness and surface wettability,on marine propellers with an emphasis on the significant improvements in both hydrodynamic and cavitation performances,hoping to arouse more in-depth investigations in the field of surface/interface science and technologies on marine propellers,and also promote the state-of-the-art technologies,such as superlubricity technology,into practical applications.展开更多
The authors have invented the unique counter-rotating type tidal stream power unit composed of the tandem pro- peUers and the double rotational armature type peculiar generator without the traditional stator. The fron...The authors have invented the unique counter-rotating type tidal stream power unit composed of the tandem pro- peUers and the double rotational armature type peculiar generator without the traditional stator. The front and the rear propellers counter-drive the inner and the outer armatures of the peculiar generator, respectively. The unit has the fixftful advantages that not only the output is sufficiently higher without supplementary equipment such as a gearbox, but also the rotational moment hardly act on the pillar because the rotational torque of both propel- lers/armatures are counter-balanced in the unit. This paper discusses experimentally the performances of the power unit and the effects of the propeller rotation on the sea surface. The axial force acting on the pillar in- creases naturally with the increase of not only the stream velocity but also the drag of the tandem propellers. Be- sides, the force vertical to the stream also acts on the pillar, which is induced from the Karman vortex street and the dominant frequencies appear owing to the front and the rear propeller rotations. The propeller rotating in close to the sea surface brings the abnormal wave and the amplitude increases as the stream velocity is faster and/or the drag is stronger.展开更多
Numerical simulations of the flow around two bidirectional staggered propellers are conducted in uniform flow. The computed open water performance of the fore-propeller is compared with the corresponding experimental ...Numerical simulations of the flow around two bidirectional staggered propellers are conducted in uniform flow. The computed open water performance of the fore-propeller is compared with the corresponding experimental results, and the influence of the fore-propeller on the aft one is carefully investigated. It is found that the inflow around the aft propeller close to the side of the fore is especially affected by the fore one, leading to abnormal circumferential distribution of force on the blade in the shade region. For either forces or velocity distributions, the abnormal changes behave contrarily for cases with the rotating speed larger or smaller than the idle. Moreover, the more the rotating speed of the fore differs from the idle, the larger the abnormal values become.展开更多
Line-Spectrum noise of counter-rotation propellers has constructed the main part of the radiated noise of high speed vehicles in water. The line-spectrum noise of the counter-rotation propellers is due to the interact...Line-Spectrum noise of counter-rotation propellers has constructed the main part of the radiated noise of high speed vehicles in water. The line-spectrum noise of the counter-rotation propellers is due to the interaction between fore or aft propeller and wake of the vehicle,and the interaction between fore and aft propeller. Based on a combination of the lifting surface theory and acoustic method, the prediction of line-spectrum noise is presented in this paper.Theoretical calculation method, characteristics and numerical prediction of the line-spectrum noise are detailed too. The effect of different wake and different distance between fore and aft propeller on the propeller noise is also studied by numerical method. The agreement of predicted results compared with existing experimental data is quite satisfactory.展开更多
The cavitation performance of propellers is studied based on viscous multiphase flow theories. With a hybrid grid based on Navier-Stokes (N-S) and bubble dynamics equations, some recent validation results are presen...The cavitation performance of propellers is studied based on viscous multiphase flow theories. With a hybrid grid based on Navier-Stokes (N-S) and bubble dynamics equations, some recent validation results are presented in this paper in the predictions of the thrust, the torque and the vapor volume fraction on the back side of propeller blade for a uniform inflow. The numerical predictions of the hydrodynamic performance and the sheet cavitation under several operating conditions for two propellers agree with the corresponding measured data in general. The thrust and the torque are plotted with respect to the advance rate and the cavitation number. The cavitation performance breakdown is closely related to the strong sheet cavitation around propellers. The models with parameters modified are shown to predict the propeller cavitation well.展开更多
In this article, the flow field around an airship with propellers blowing is calculated on the basis of the Reynolds-averaged Navier-Stokes equations with SST turbulent models. Modeled each as an actuator disk, the pr...In this article, the flow field around an airship with propellers blowing is calculated on the basis of the Reynolds-averaged Navier-Stokes equations with SST turbulent models. Modeled each as an actuator disk, the propellers are arranged at different positions around the body of airship in the flow direction. The numerical results show that the blowing propellers produce open outer flows. They drive the separated vortexes off the body thus reducing the drag coefficients. The results also show that the position after leading sucking peak is the best place for a propeller to blow. When the propellers are positioned after sucking peak, the longer the area which the propellers work on, the more the profile drag coefficients can be reduced. If the working position of propeller moves from the sucking peak forward to the leading edge, the friction drag coefficient will increase. The bigger the diameter of the propellers and the stronger the pressure jump, the more the drag coefficient will be reduced. The re- suits also reveal that for the design of circularly-positioned propellers with space intervals, the more drag coefficient reduction results, the smaller the space interval is specified.展开更多
Cavitating flows around skewed propellers are investigated numerically by means of the unsteady Reynolds Averaged Navier-Stokes (RANS) Equation method. The standard k - c turbulence and the modified Z-G-B cavitation...Cavitating flows around skewed propellers are investigated numerically by means of the unsteady Reynolds Averaged Navier-Stokes (RANS) Equation method. The standard k - c turbulence and the modified Z-G-B cavitation models are employed. A measured nominal wake is used for the inlet velocity boundary condition. Predicted cavitating evolution processes and tip cavity patterns are compared with experimental observations. In addition, the influence of the skew angles on the cavitation and unsteadiness performances of propellers operating in a non-uniform wake is also studied. Results show that the modified Z-G-B cavitation model performs better to simulate the cavitating flow cases studied in this paper. Comparisons demonstrate that the skewed propeller with a skew angle of 20~ is the best choice for a given stern wake with a assigned thrust and the minimum force fluctuations.展开更多
基金The support of College of Energy and Electrical Engineering,Hohai University,ChinaNational Natural Science Foundation of China ( No.51106042)
文摘The submerged propeller is an efficient diving mix device,which is applicable for oxidation ditch treatment in industry,city and village wastewater-treatment plant. The impeller structure and reasonable rotating speed are important factors that determine flow field distribution and energy conversion efficiency. So it is necessary to use modern design methods to develop new kinds of high efficiency submerged propellers,and research the flow field characteristics of submerged propellers. On the basis of the existing form drawing,three-dimensional model of submerged propellers and unstructured tetrahedral mesh were generated. Based on Navier- Stokes equations and standard k- ε turbulence model,the flow was simulated by using a simple algorithm. Through changing some design parameters of propellers,the corresponding numerical simulation results reveal that for the same impeller diameter and service area of submerged propellers,the power consumption could be reduced effectively by optimizing blade mounting angle,which can determine the best blade mounting angle and most suitable rotational speed under given conditions. The study can provide theoretical and project guidance for submerged propellers design.
文摘This paper describes the design and development of a Semi-Automatic Precision Caliper System to measure the thickness of an outboard marine engine propeller blade.Several commonly used methods for measuring the thickness of a propeller blade are reviewed in this paper.These include the P rops Scan,3D Vision System and Black Dog.However,the operating practices and availability of different facilities in industry necessitate a more cost-effect ive approach.An alternative method using a Semi-Automatic Precision Caliper S ystem is therefore proposed.Details of the design criteria,principles of oper ation as well as the testing and verification of the system are presented.The paper concludes that the Semi-Automatic Precision Caliper System is a low cost and effective method for measuring the thickness of a propeller.
文摘Tidal stream power units with horizontal-axis propellers are one of promising technologies for generating the renewable green energy. The ebb and flow require that the power unit must operate in bidirectional tidal streams. Hence a tidal stream power unit with counter-rotating type horizontal-axis bidirectional propellers is proposed in this paper. The blades with fully-symmetrical hydrofoils were optimized numerically. The output and flow conditions predicted by the computational fluid dynamics simulations are compared with the results of the wind tunnel experiments at the higher tip speed ratios, which are of expected usual operating conditions of this unit. The numerical and experimental results show good agreements. It is also confirmed that the flow discharged from the counter-rotating type propellers has no swirling component, though the single propeller generates the unacceptable swirling component.
文摘Ocean energy has a potential of providing a large amount of renewable energy around the world. One of the forms of ocean energy, tidal stream power is widely recognized as the continuous, predictable and eco-friendly ocean energy source. Unique tandem propellers that can counter-rotate have been designed to generate electric power effectively from a tidal stream. This type of power unit has several advantages compare to the conventional unit with a single propeller. At the design of the tidal stream power unit, it is important to investigate the structure of the tip vortex tubes shedding to predict the load of the propeller. In this research, we investigated the tip vortex shedding using the CFD method for the conventional single propeller and counter-rotating type tandem propellers and estimated the performance efficiency using RANS (Reynolds Averaged Navier-Stokes) model and we confirmed the limitation of RANS model on the calculation of the tip vortex stretching.
基金supported by the National Natural Science Foundation of China(Grant No.51079157)
文摘A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.
基金Supported by the Open Research Foundation of State Key Laboratory of AUV,HEU under Grant No.2007015
文摘A new numerical method was developed for predicting the steady hydrodynamic performance of ducted propellers. A potential based surface panel method was applied both to the duct and the propeller, and the interaction between them was solved by an induced velocity potential iterative method. Compared with the induced velocity iterative method, the method presented can save programming and calculating time. Numerical results for a JD simplified ducted propeller series showed that the method presented is effective for predicting the steady hydrodynamic performance of ducted propellers.
基金Project(2006AA09Z235) supported by National High Technology Research and Development Program of ChinaProject(CX2009B003) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheeled movement. In order to study the interactional principle between the hull and the wheel propellers while the AUV navigating in water, the computational fluid dynamics (CFD) method is used to simulate numerically the unsteady viscous flow around AUV with propellers by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and pressure with splitting of operators (PISO) algorithm based on sliding mesh. The hydrodynamic parameters of AUV with propellers such as resistance, pressure and velocity are got, which reflect well the real ambient flow field of AUV with propellers. Then, the semi-implicit method for pressure-linked equations (SIMPLE) algorithm is used to compute the steady viscous flow field of AUV hull and propellers, respectively. The computational results agree well with the experimental data, which shows that the numerical method has good accuracy in the prediction of hydrodynamic performance. The interaction between AUV hull and wheel propellers is predicted qualitatively and quantitatively by comparing the hydrodynamic parameters such as resistance, pressure and velocity with those from integral computation and partial computation of the viscous flow around AUV with propellers, which provides an effective reference to the shady on noise and vibration of AUV hull and propellers in real environment. It also provides technical support for the design of new AUVs.
基金Supported by Anhui Provincial Natural Science Foundation of China(Grant No.1608085MA05)National Natural Science Foundation of China(Grant No.51307003 and 61601004)
文摘Tip vortex cavitation is the first type of cavita- tion to take place around most marine propellers. But the numerical prediction of tip vortex cavitation is one of the challenges for propeller wake because of turbulence dis- sipation during the numerical simulation. Several parame- ters of computational mesh and numerical algorithm are tested by mean of the predicted length of tip vortex cav- tiation to validate a developed method. The predicted length of tip vortex cavtiation is on the increase about 0.4 propeller diameters using the developed numerical method. The predicted length of tip vortex cavtiation by RNG k - e model is about 3 times of that by SST k - ~o model. Therefore, based on the validation of the present approach, the cavitating flows generated by two rotating propellers under a non-uniform inflow are calculated further. The distributions of axial velocity, total pressure and vapor volume fraction in the transversal planes across tip vortex region are shown to be useful in analyzing the feature of the cavitating flow. The strongest kemel of tip vortex cavitation is not at the position most close to blade tip but slightly far away from the region. During the growth of tip vortex cavitation extension, it appears short and thick, and then it becomes long and thin. The pressure fluctuations at the positions inside tip vortex region also validates the conclusion. A key finding of the study is that the grids constructed especially for tip vortex flows by usingseparated computational domain is capable of decreasing the turbulence dissipation and correctly capturing the fea- ture of propeller tip vortex cavitation under uniform and non-uniform inflows. The turbulence model and advanced grids is important to predict tip vortex cavitation.
文摘In this study,a series of numerical calculations are carried out in ANSYS Workbench based on the unidirectional fluid–solid coupling theory.Using the DTMB 4119 propeller as the research object,a numerical simulation is set up to analyze the open water performance of the propeller,and the equivalent stress distribution of the propeller acting in the flow field and the axial strain of the blade are analyzed.The results show that FLUENT calculations can provide accurate and reliable calculations of the hydrodynamic load for the propeller structure.The maximum equivalent stress was observed in the blade near the hub,and the tip position of the blade had the largest stress.With the increase in speed,the stress and deformation showed a decreasing trend.
文摘In this study,the performance of a twin-screw propeller under the influence of the wake field of a fully appended ship was investigated using a coupled Reynolds-averaged Navier–Stokes(RANS)/boundary element method(BEM)code.The unsteady BEM is an efficient approach to predicting propeller performance.By applying the time-stepping method in the BEM solver,the trailing vortex sheet pattern of the propeller can be accurately captured at each time step.This is the main innovation of the coupled strategy.Furthermore,to ascertain the effect of the wake field of the ship with acceptable accuracy,a RANS solver was developed.A finite volume method was used to discretize the Navier–Stokes equations on fully unstructured grids.To simulate ship motions,the volume of the fluid method was applied to the RANS solver.The validation of each solver(BEM/RANS)was separately performed,and the results were compared with experimental data.Ultimately,the BEM and RANS solvers were coupled to estimate the performance of a twin-screw propeller,which was affected by the wake field of the fully appended hull.The proposed model was applied to a twin-screw oceanography research vessel.The results demonstrated that the presented model can estimate the thrust coefficient of a propeller with good accuracy as compared to an experimental self-propulsion test.The wake sheet pattern of the propeller in open water(uniform flow)was also compared with the propeller in a real wake field.
文摘Demand for high-speed marine vehicles (HSMVs) is high among both commercial and naval users. It is the duty of the marine vessel's designer to provide a hull and propulsion system that diminishes drag, improves propulsive efficiency, increases safety and improves maneuverability. From the propulsor side, surface piercing propellers (SPPs) should improve performance. Unlike immersed propellers, behavior of the SPP is affected by depth of immersion, Weber number and shaft inclination angle. This paper uses a practical numerical method to predict the hydrodynamic characteristics of an SPP. The critical advance velocity ratio is derived using the Weber number and pitch ratio in the transition mode, then the potential based boundary element method (BEM) is used on the engaged surfaces. Two models of three and six-bladed SPPs (SPP-1 and SPP-2) were selected and some results are shown.
文摘The potential based low order surface panel method is used to predict the hydrodynamic performance of marine propellers. In present method the hyperboloidal quadrilateral panels are employed to avoid the gap between the panels. The influence coefficients of panels are calculated by Morino’s analytical formulations for increasing numerically calculating speed. The pressure Kutta condition is satisfied on the trailing edge of propeller blade by Newton-Raphson iterative procedure. Therefore the pressure coefficients of the suction and pressure faces of blade are equal on trailing edge. The method developed by Yanagizawa is used to determine the velocities on propeller surface, and to avoid the singularity in the numerical differentiation. The predicted pressure distributions and open water performances of general propellers and highly skewed propellers have a good agreement with experimental dat and other calculation results.
文摘Methodological issues associated with the determination of the vertical take-off and landing aerodynamic parameters equipped with two rotary propellers during take-off and hovering, descent and landing are studied in the proposed article. During the computer simulation process, kinematics parameters diagrams were made, aerodynamic coefficients and propellers thrust components at all stages of aircraft take-off were estimated. That numerical data can be used in a preliminary stage of aerodynamic design for the vertical take-off and landing aircraft and electric drones at the determination of control and equalization elements geometric and kinematic parameters.
基金financially supported by the National Natural Science Foundation of China(No.51922058).
文摘Marine propellers are important propulsion devices for both surface ships and underwater vehicles.Increasingly severe environmental problems have required further performance enhancement for propellers.Nowadays,traditional methods to improve propeller performances through geometrical and structural optimizations have been extensively investigated,while the underlying mechanisms of the effects of surface and interface properties on marine propellers are still far from being fully understood.This paper presented a comprehensive review of recent advances in the effects of surface and interface properties,such as surface roughness and surface wettability,on marine propellers with an emphasis on the significant improvements in both hydrodynamic and cavitation performances,hoping to arouse more in-depth investigations in the field of surface/interface science and technologies on marine propellers,and also promote the state-of-the-art technologies,such as superlubricity technology,into practical applications.
文摘The authors have invented the unique counter-rotating type tidal stream power unit composed of the tandem pro- peUers and the double rotational armature type peculiar generator without the traditional stator. The front and the rear propellers counter-drive the inner and the outer armatures of the peculiar generator, respectively. The unit has the fixftful advantages that not only the output is sufficiently higher without supplementary equipment such as a gearbox, but also the rotational moment hardly act on the pillar because the rotational torque of both propel- lers/armatures are counter-balanced in the unit. This paper discusses experimentally the performances of the power unit and the effects of the propeller rotation on the sea surface. The axial force acting on the pillar in- creases naturally with the increase of not only the stream velocity but also the drag of the tandem propellers. Be- sides, the force vertical to the stream also acts on the pillar, which is induced from the Karman vortex street and the dominant frequencies appear owing to the front and the rear propeller rotations. The propeller rotating in close to the sea surface brings the abnormal wave and the amplitude increases as the stream velocity is faster and/or the drag is stronger.
文摘Numerical simulations of the flow around two bidirectional staggered propellers are conducted in uniform flow. The computed open water performance of the fore-propeller is compared with the corresponding experimental results, and the influence of the fore-propeller on the aft one is carefully investigated. It is found that the inflow around the aft propeller close to the side of the fore is especially affected by the fore one, leading to abnormal circumferential distribution of force on the blade in the shade region. For either forces or velocity distributions, the abnormal changes behave contrarily for cases with the rotating speed larger or smaller than the idle. Moreover, the more the rotating speed of the fore differs from the idle, the larger the abnormal values become.
文摘Line-Spectrum noise of counter-rotation propellers has constructed the main part of the radiated noise of high speed vehicles in water. The line-spectrum noise of the counter-rotation propellers is due to the interaction between fore or aft propeller and wake of the vehicle,and the interaction between fore and aft propeller. Based on a combination of the lifting surface theory and acoustic method, the prediction of line-spectrum noise is presented in this paper.Theoretical calculation method, characteristics and numerical prediction of the line-spectrum noise are detailed too. The effect of different wake and different distance between fore and aft propeller on the propeller noise is also studied by numerical method. The agreement of predicted results compared with existing experimental data is quite satisfactory.
基金supported by the Open Foundation of Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education,Southeast University(Grant No.UASP1102)the National Key Basic Research Program of China(973Program Grant No.6131222)
文摘The cavitation performance of propellers is studied based on viscous multiphase flow theories. With a hybrid grid based on Navier-Stokes (N-S) and bubble dynamics equations, some recent validation results are presented in this paper in the predictions of the thrust, the torque and the vapor volume fraction on the back side of propeller blade for a uniform inflow. The numerical predictions of the hydrodynamic performance and the sheet cavitation under several operating conditions for two propellers agree with the corresponding measured data in general. The thrust and the torque are plotted with respect to the advance rate and the cavitation number. The cavitation performance breakdown is closely related to the strong sheet cavitation around propellers. The models with parameters modified are shown to predict the propeller cavitation well.
基金National High-tech Research and Development Program of China (2007AA11Z243)
文摘In this article, the flow field around an airship with propellers blowing is calculated on the basis of the Reynolds-averaged Navier-Stokes equations with SST turbulent models. Modeled each as an actuator disk, the propellers are arranged at different positions around the body of airship in the flow direction. The numerical results show that the blowing propellers produce open outer flows. They drive the separated vortexes off the body thus reducing the drag coefficients. The results also show that the position after leading sucking peak is the best place for a propeller to blow. When the propellers are positioned after sucking peak, the longer the area which the propellers work on, the more the profile drag coefficients can be reduced. If the working position of propeller moves from the sucking peak forward to the leading edge, the friction drag coefficient will increase. The bigger the diameter of the propellers and the stronger the pressure jump, the more the drag coefficient will be reduced. The re- suits also reveal that for the design of circularly-positioned propellers with space intervals, the more drag coefficient reduction results, the smaller the space interval is specified.
文摘Cavitating flows around skewed propellers are investigated numerically by means of the unsteady Reynolds Averaged Navier-Stokes (RANS) Equation method. The standard k - c turbulence and the modified Z-G-B cavitation models are employed. A measured nominal wake is used for the inlet velocity boundary condition. Predicted cavitating evolution processes and tip cavity patterns are compared with experimental observations. In addition, the influence of the skew angles on the cavitation and unsteadiness performances of propellers operating in a non-uniform wake is also studied. Results show that the modified Z-G-B cavitation model performs better to simulate the cavitating flow cases studied in this paper. Comparisons demonstrate that the skewed propeller with a skew angle of 20~ is the best choice for a given stern wake with a assigned thrust and the minimum force fluctuations.