BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorecta...BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorectal cancer(CRC).METHODS This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis.After overexpression and knockdown of MOB3B expression were induced in CRC cell lines,changes in cell viability,migration,invasion,and gene expression were assayed.Tumor cell autophagy was detected using transmission electron microscopy,while nude mouse xenograft experiments were performed to confirm the in-vitro results.RESULTS MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis.Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells,whereas knockdown of MOB3B expression had the opposite effects in CRC cells.At the molecular level,microtubule-associated protein light chain 3 II/I expression was elevated,whereas the expression of matrix metalloproteinase(MMP)2,MMP9,sequestosome 1,and phosphorylated mechanistic target of rapamycin kinase(mTOR)was downregulated in MOB3B-overexpressing RKO cells.In contrast,the opposite results were observed in tumor cells with MOB3B knockdown.The nude mouse data confirmed these in-vitro findings,i.e.,MOB3B expression suppressed CRC cell xenograft growth,whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts.CONCLUSION Loss of MOB3B expression promotes CRC development and malignant behaviors,suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling.展开更多
AIM:To explore the effect of epidermal growth factor receptor(EGFR)inhibition by erlotinib and EGFR siRNA on epidermal growth factor(EGF)-induced activation of retinal pigment epithelium(RPE)cells.METHODS:Human RPE ce...AIM:To explore the effect of epidermal growth factor receptor(EGFR)inhibition by erlotinib and EGFR siRNA on epidermal growth factor(EGF)-induced activation of retinal pigment epithelium(RPE)cells.METHODS:Human RPE cell line(ARPE-19 cells)was activated by 100 ng/mL EGF.Erlotinib and EGFR siRNA were used to intervene EGF treatment.Cellular viability,proliferation,and migration were detected by methyl thiazolyl tetrazolium(MTT)assay,bromodeoxyuridine(BrdU)staining assay and wound healing assay,respectively.EGFR/protein kinase B(AKT)pathway proteins and N-cadherin,α-smooth muscle actin(α-SMA),and vimentin were tested by Western blot assay.EGFR was also determined by immunofluorescence staining.RESULTS:EGF treatment for 24h induced a significant increase of ARPE-19 cells’viability,proliferation and migration,phosphorylation of EGFR/AKT proteins,and decreased total EGFR expression.Erlotinib suppressed ARPE-19 cells’viability,proliferation and migration through down regulating total EGFR and AKT protein expressions.Erlotinib also inhibited EGF-induced an increase of proliferative and migrative ability in ARPE-19 cells and clearly suppressed EGF-induced EGFR/AKT proteins phosphorylation and decreased expression of N-cadherin,α-SMA,and vimentin proteins.Similarly,EGFR inhibition by EGFR siRNA significantly affected EGF-induced an increase of cell proliferation,viability,and migration,phosphorylation of EGFR/AKT proteins,and up-regulation of N-cadherin,α-SMA,and vimentin proteins.CONCLUSION:Erlotinib and EGFR-knockdown suppress EGF-induced cell viability,proliferation,and migration via EGFR/AKT pathway in RPE cells.EGFR inhibition may be a possible therapeutic approach for proliferative vitreoretinopathy(PVR).展开更多
Objective:To investigate the effects of stilbene glycoside(TSG)on okadaic acid-induced apoptosis in human neuroblastoma cells(SH-SY5Y)via the PI3K/AKT pathway.Methods:The optimal concentration of OA was screened by CC...Objective:To investigate the effects of stilbene glycoside(TSG)on okadaic acid-induced apoptosis in human neuroblastoma cells(SH-SY5Y)via the PI3K/AKT pathway.Methods:The optimal concentration of OA was screened by CCK-8 assay,and SH-SY5Y cells were divided into control group,model group,TSG group,LY294002 group and LY294002+TSG group.The proliferation and apoptosis in each group were detected by CCK-8 and TUNEL assays;Western blotting method and real-time fluorescence quantitative polymerase chain reaction was used to detect the expression of PI3K,P-PI3K(Y607),AKT,P-AKT(Ser473),Bcl-2 and Bax proteins.The relative protein expression was represented by P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax gray ratio.Results:CCK-8 screened the optimal concentration of OA as 40 nmol/L.Compared with the control group,the model group increased relative cell viability,decreased apoptosis rate,the pathway and apoptotic proteins expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were decreased,and the mRNA expression levels of PI3K,AKT and Bcl-2 were decreased.Bax mRNA expression level increased(P<0.05);Compared with model group,TSG group increased relative cell viability,decreased apoptosis rate,increased protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT,Bcl-2/Bax,and increased mRNA expression levels of PI3K,AKT,and Bcl-2.Bax mRNA expression decreased(P<0.05),LY294002 group decreased relative cell viability,increased apoptosis rate,P-PI3K(Y607)/PI3K protein expression levels were significantly decreased(P<0.05),P-AKT(Ser473)/AKT and Bcl-2/Bax protein expression levels were significantly decreased,but there was no statistical significance,PI3K,AKT and Bcl-2 mRNA expression levels were decreased,and Bax mRNA expression levels were increased(all P<0.05);Compared with LY294002 group,LY294002+TSG group increased relative cell viability,decreased apoptosis rate,and the protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were increased.The mRNA expression levels of PI3K,AKT,Bcl-2 were increased,Bax was decreased(all P<0.05).Conclusion:Stilbene glycoside may alleviate okadaic acid-induced apoptosis in SH-SY5Y cells by interfering with the PI3K/AKT signaling pathway,which in turn regulates the expression of apoptotic factors such as Bcl-2 and Bax.展开更多
BACKGROUND:This study aims to explore whether Xuebijing(XBJ) can improve intestinal microcirculation dysfunction in sepsis and its mechanism.METHODS:A rat model of sepsis was established by cecal ligation and puncture...BACKGROUND:This study aims to explore whether Xuebijing(XBJ) can improve intestinal microcirculation dysfunction in sepsis and its mechanism.METHODS:A rat model of sepsis was established by cecal ligation and puncture(CLP).A total of 30 male SD rats were divided into four groups:sham group,CLP group,XBJ + axitinib group,and XBJ group.XBJ was intraperitoneally injected 2 h before CLP.Hemodynamic data(blood pressure and heart rate) were recorded.The intestinal microcirculation data of the rats were analyzed via microcirculation imaging.Enzyme-linked immunosorbent assay(ELISA) kits were used to detect the serum levels of interleukin-6(IL-6),C-reactive protein(CRP),and tumor necrosis factor-α(TNF-α) in the rats.Histological analysis and transmission electron microscopy were used to analyze the injury of small intestinal microvascular endothelial cells and small intestinal mucosa in rats.The expression of vascular endothelial growth factor A(VEGF-A),phosphoinositide 3-kinase(PI3K),phosphorylated PI3K(p-PI3K),protein kinase B(Akt),and phosphorylated Akt(p-Akt) in the small intestine was analyzed via Western blotting.RESULTS:XBJ improved intestinal microcirculation dysfunction in septic rats,alleviated the injury of small intestinal microvascular endothelial cells and small intestinal mucosa,and reduced the systemic inflammatory response.Moreover,XBJ upregulated the expression of VEGF-A,p-PI3K/total PI3K,and p-Akt/total Akt in the rat small intestine.CONCLUSION:XBJ may improve intestinal microcirculation dysfunction in septic rats possibly through the VEGF-A/PI3K/Akt signaling pathway.展开更多
Objective Proprionibacterium acnes(P.acnes)-induced inflammatory responses,proliferation and differentiation of keratinocytes contribute to the progression of acne vulgaris(AV).P.acnes was found to enhance the product...Objective Proprionibacterium acnes(P.acnes)-induced inflammatory responses,proliferation and differentiation of keratinocytes contribute to the progression of acne vulgaris(AV).P.acnes was found to enhance the production of interleukin-8(IL-8)by keratinocytes.This study aimed to investigate the role of IL-8 in P.acnes-induced proliferation and differentiation of keratinocytes and the underlying mechanism.Methods The P.acnes-stimulated HaCaT cell(a human keratinocyte cell line)model was established.Western blotting and immunofluorescence were performed to detect the expression of the IL-8 receptors C-X-C motif chemokine receptor 1(CXCR1)and C-X-C motif chemokine receptor 2(CXCR2)on HaCaT cells.Cell counting kit-8(CCK-8)assay,5-ethynyl-20-deoxyuridine(EdU)assay and Western blotting were performed to examine the effects of IL-8/CXCR2 axis on the proliferation and differentiation of HaCaT cells treated with P.acnes,the IL-8 neutralizing antibody,the CXCR2 antagonist(SB225002),or the CXCR1/CXCR2 antagonist(G31P).Western blotting,nuclear and cytoplasmic separation,CCK-8 assay,and EdU assay were employed to determine the downstream pathway of CXCR2 after P.acnes-stimulated HaCaT cells were treated with the CXCR2 antagonist,the protein kinase B(AKT)antagonist(AZD5363),or the constitutively active forkhead box O1(FOXO1)mutant.Finally,autophagy markers were measured in HaCaT cells following the transfection of the FOXO1 mutant or treatment with the autophagy inhibitor 3-methyladenine(3-MA).Results The expression levels of CXCR1 and CXCR2 were significantly increased on the membrane of HaCaT cells following P.acnes stimulation.The IL-8/CXCR2 axis predominantly promoted the proliferation and differentiation of P.acnes-induced HaCaT cells by activating AKT/FOXO1/autophagy signaling.In brief,IL-8 bound to its receptor CXCR2 on the membrane of keratinocytes to activate the AKT/FOXO1 axis.Subsequently,phosphorylated FOXO1 facilitated autophagy to promote the proliferation and differentiation of P.acnes-induced keratinocytes.Conclusion This study demonstrated the novel autocrine effect of IL-8 on the proliferation and differentiation of P.acnes-induced keratinocytes,suggesting a potential therapeutic target for AV.展开更多
Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory p...Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance.展开更多
BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effect...BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.展开更多
The aim of this study was to investigate the possible beneficial effects of Fenofibrate on renal ischemia-reperfusion injury(IRI) in mice and its potential mechanism. IRI was induced by bilateral renal ischemia for ...The aim of this study was to investigate the possible beneficial effects of Fenofibrate on renal ischemia-reperfusion injury(IRI) in mice and its potential mechanism. IRI was induced by bilateral renal ischemia for 60 min followed by reperfusion for 24 h. Eighteen male C57BL/6 mice were randomly divided into three groups: sham-operated group(sham), IRI+saline group(IRI group), IRI+Fenofibrate(FEN) group. Normal saline or Fenofibrate(3 mg/kg) was intravenously injected 60 min before renal ischemia in IRI group and FEN group, respectively. Blood samples and renal tissues were collected at the end of reperfusion. The renal function, histopathologic changes, and the expression levels of pro-inflammatory cytokines [interleukin-8(IL-8), tumor necrosis factor alpha(TNF-α) and IL-6] in serum and renal tissue homogenate were assessed. Moreover, the effects of Fenofibrate on activating phosphoinositide 3 kinase/protein kinase B(PI3K/Akt) signaling and peroxisome proliferator-activated receptor-α(PPAR-α) were also measured in renal IRI. The results showed that plasma levels of blood urea nitrogen and creatinine, histopathologic scores and the expression levels of TNF-α, IL-8 and IL-6 were significantly lower in FEN group than in IRI group. Moreover, Fenofibrate pretreatment could further induce PI3K/Akt signal pathway and PPAR-α activation following renal IRI. These findings indicated PPAR-α activation by Fenofibrate exerts protective effects on renal IRI in mice by suppressing inflammation via PI3K/Akt activation. Thus, Fenofibrate could be a novel therapeutic alternative in renal IRI.展开更多
基金Supported by National Natural Science Foundation of China,No.81760516Natural Science Foundation of Guangxi,China,No.2019GXNSFAA185030+1 种基金Self-Financed Scientific Research Projects of Guangxi Zhuang Autonomous Region Health and Family Planning Commission,China,No.Z20181003Guangxi Medical University Youth Science Fund Project,China,No.GXMUYSF202221.
文摘BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorectal cancer(CRC).METHODS This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis.After overexpression and knockdown of MOB3B expression were induced in CRC cell lines,changes in cell viability,migration,invasion,and gene expression were assayed.Tumor cell autophagy was detected using transmission electron microscopy,while nude mouse xenograft experiments were performed to confirm the in-vitro results.RESULTS MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis.Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells,whereas knockdown of MOB3B expression had the opposite effects in CRC cells.At the molecular level,microtubule-associated protein light chain 3 II/I expression was elevated,whereas the expression of matrix metalloproteinase(MMP)2,MMP9,sequestosome 1,and phosphorylated mechanistic target of rapamycin kinase(mTOR)was downregulated in MOB3B-overexpressing RKO cells.In contrast,the opposite results were observed in tumor cells with MOB3B knockdown.The nude mouse data confirmed these in-vitro findings,i.e.,MOB3B expression suppressed CRC cell xenograft growth,whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts.CONCLUSION Loss of MOB3B expression promotes CRC development and malignant behaviors,suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling.
基金Supported by the Natural Science Foundation of Shaanxi Province,China(No.2022JM-521).
文摘AIM:To explore the effect of epidermal growth factor receptor(EGFR)inhibition by erlotinib and EGFR siRNA on epidermal growth factor(EGF)-induced activation of retinal pigment epithelium(RPE)cells.METHODS:Human RPE cell line(ARPE-19 cells)was activated by 100 ng/mL EGF.Erlotinib and EGFR siRNA were used to intervene EGF treatment.Cellular viability,proliferation,and migration were detected by methyl thiazolyl tetrazolium(MTT)assay,bromodeoxyuridine(BrdU)staining assay and wound healing assay,respectively.EGFR/protein kinase B(AKT)pathway proteins and N-cadherin,α-smooth muscle actin(α-SMA),and vimentin were tested by Western blot assay.EGFR was also determined by immunofluorescence staining.RESULTS:EGF treatment for 24h induced a significant increase of ARPE-19 cells’viability,proliferation and migration,phosphorylation of EGFR/AKT proteins,and decreased total EGFR expression.Erlotinib suppressed ARPE-19 cells’viability,proliferation and migration through down regulating total EGFR and AKT protein expressions.Erlotinib also inhibited EGF-induced an increase of proliferative and migrative ability in ARPE-19 cells and clearly suppressed EGF-induced EGFR/AKT proteins phosphorylation and decreased expression of N-cadherin,α-SMA,and vimentin proteins.Similarly,EGFR inhibition by EGFR siRNA significantly affected EGF-induced an increase of cell proliferation,viability,and migration,phosphorylation of EGFR/AKT proteins,and up-regulation of N-cadherin,α-SMA,and vimentin proteins.CONCLUSION:Erlotinib and EGFR-knockdown suppress EGF-induced cell viability,proliferation,and migration via EGFR/AKT pathway in RPE cells.EGFR inhibition may be a possible therapeutic approach for proliferative vitreoretinopathy(PVR).
基金National Natural Science Foundation of China(No.81860709)Baise City Science and Technology Plan Project(No.Encyclopedia 20224139,Encyclopedia 20211807)2023 Youjiang Ethnic Medical College Graduate Innovation Program Project(No.YXCXJH2023013)。
文摘Objective:To investigate the effects of stilbene glycoside(TSG)on okadaic acid-induced apoptosis in human neuroblastoma cells(SH-SY5Y)via the PI3K/AKT pathway.Methods:The optimal concentration of OA was screened by CCK-8 assay,and SH-SY5Y cells were divided into control group,model group,TSG group,LY294002 group and LY294002+TSG group.The proliferation and apoptosis in each group were detected by CCK-8 and TUNEL assays;Western blotting method and real-time fluorescence quantitative polymerase chain reaction was used to detect the expression of PI3K,P-PI3K(Y607),AKT,P-AKT(Ser473),Bcl-2 and Bax proteins.The relative protein expression was represented by P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax gray ratio.Results:CCK-8 screened the optimal concentration of OA as 40 nmol/L.Compared with the control group,the model group increased relative cell viability,decreased apoptosis rate,the pathway and apoptotic proteins expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were decreased,and the mRNA expression levels of PI3K,AKT and Bcl-2 were decreased.Bax mRNA expression level increased(P<0.05);Compared with model group,TSG group increased relative cell viability,decreased apoptosis rate,increased protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT,Bcl-2/Bax,and increased mRNA expression levels of PI3K,AKT,and Bcl-2.Bax mRNA expression decreased(P<0.05),LY294002 group decreased relative cell viability,increased apoptosis rate,P-PI3K(Y607)/PI3K protein expression levels were significantly decreased(P<0.05),P-AKT(Ser473)/AKT and Bcl-2/Bax protein expression levels were significantly decreased,but there was no statistical significance,PI3K,AKT and Bcl-2 mRNA expression levels were decreased,and Bax mRNA expression levels were increased(all P<0.05);Compared with LY294002 group,LY294002+TSG group increased relative cell viability,decreased apoptosis rate,and the protein expression levels of P-PI3K(Y607)/PI3K,P-AKT(Ser473)/AKT and Bcl-2/Bax were increased.The mRNA expression levels of PI3K,AKT,Bcl-2 were increased,Bax was decreased(all P<0.05).Conclusion:Stilbene glycoside may alleviate okadaic acid-induced apoptosis in SH-SY5Y cells by interfering with the PI3K/AKT signaling pathway,which in turn regulates the expression of apoptotic factors such as Bcl-2 and Bax.
基金supported by a grant from National Natural Science Foundation of China (82272196)。
文摘BACKGROUND:This study aims to explore whether Xuebijing(XBJ) can improve intestinal microcirculation dysfunction in sepsis and its mechanism.METHODS:A rat model of sepsis was established by cecal ligation and puncture(CLP).A total of 30 male SD rats were divided into four groups:sham group,CLP group,XBJ + axitinib group,and XBJ group.XBJ was intraperitoneally injected 2 h before CLP.Hemodynamic data(blood pressure and heart rate) were recorded.The intestinal microcirculation data of the rats were analyzed via microcirculation imaging.Enzyme-linked immunosorbent assay(ELISA) kits were used to detect the serum levels of interleukin-6(IL-6),C-reactive protein(CRP),and tumor necrosis factor-α(TNF-α) in the rats.Histological analysis and transmission electron microscopy were used to analyze the injury of small intestinal microvascular endothelial cells and small intestinal mucosa in rats.The expression of vascular endothelial growth factor A(VEGF-A),phosphoinositide 3-kinase(PI3K),phosphorylated PI3K(p-PI3K),protein kinase B(Akt),and phosphorylated Akt(p-Akt) in the small intestine was analyzed via Western blotting.RESULTS:XBJ improved intestinal microcirculation dysfunction in septic rats,alleviated the injury of small intestinal microvascular endothelial cells and small intestinal mucosa,and reduced the systemic inflammatory response.Moreover,XBJ upregulated the expression of VEGF-A,p-PI3K/total PI3K,and p-Akt/total Akt in the rat small intestine.CONCLUSION:XBJ may improve intestinal microcirculation dysfunction in septic rats possibly through the VEGF-A/PI3K/Akt signaling pathway.
基金supported by the National Natural Science Foundation of China(No.82103756).
文摘Objective Proprionibacterium acnes(P.acnes)-induced inflammatory responses,proliferation and differentiation of keratinocytes contribute to the progression of acne vulgaris(AV).P.acnes was found to enhance the production of interleukin-8(IL-8)by keratinocytes.This study aimed to investigate the role of IL-8 in P.acnes-induced proliferation and differentiation of keratinocytes and the underlying mechanism.Methods The P.acnes-stimulated HaCaT cell(a human keratinocyte cell line)model was established.Western blotting and immunofluorescence were performed to detect the expression of the IL-8 receptors C-X-C motif chemokine receptor 1(CXCR1)and C-X-C motif chemokine receptor 2(CXCR2)on HaCaT cells.Cell counting kit-8(CCK-8)assay,5-ethynyl-20-deoxyuridine(EdU)assay and Western blotting were performed to examine the effects of IL-8/CXCR2 axis on the proliferation and differentiation of HaCaT cells treated with P.acnes,the IL-8 neutralizing antibody,the CXCR2 antagonist(SB225002),or the CXCR1/CXCR2 antagonist(G31P).Western blotting,nuclear and cytoplasmic separation,CCK-8 assay,and EdU assay were employed to determine the downstream pathway of CXCR2 after P.acnes-stimulated HaCaT cells were treated with the CXCR2 antagonist,the protein kinase B(AKT)antagonist(AZD5363),or the constitutively active forkhead box O1(FOXO1)mutant.Finally,autophagy markers were measured in HaCaT cells following the transfection of the FOXO1 mutant or treatment with the autophagy inhibitor 3-methyladenine(3-MA).Results The expression levels of CXCR1 and CXCR2 were significantly increased on the membrane of HaCaT cells following P.acnes stimulation.The IL-8/CXCR2 axis predominantly promoted the proliferation and differentiation of P.acnes-induced HaCaT cells by activating AKT/FOXO1/autophagy signaling.In brief,IL-8 bound to its receptor CXCR2 on the membrane of keratinocytes to activate the AKT/FOXO1 axis.Subsequently,phosphorylated FOXO1 facilitated autophagy to promote the proliferation and differentiation of P.acnes-induced keratinocytes.Conclusion This study demonstrated the novel autocrine effect of IL-8 on the proliferation and differentiation of P.acnes-induced keratinocytes,suggesting a potential therapeutic target for AV.
基金supported by the National Natural Science Foundation of ChinaNos.81971047 (to WTL) and 82073910 (to XFW)+2 种基金the Natural Science Foundation of Jiangsu Province,No.BK20191253 (to XFW)Key R&D Program (Social Development) Project of Jiangsu Province,No.BE2019 732 (to WTL)Jiangsu Province Hospital (the First Affiliated Hospital of Nanjing Medical University) Clinical Capacity Enhancement Project,No.JSPH-511B2018-8 (to YBP)。
文摘Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance.
文摘BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.
基金supported by the National Natural Science Foundation of China(No.81070557)
文摘The aim of this study was to investigate the possible beneficial effects of Fenofibrate on renal ischemia-reperfusion injury(IRI) in mice and its potential mechanism. IRI was induced by bilateral renal ischemia for 60 min followed by reperfusion for 24 h. Eighteen male C57BL/6 mice were randomly divided into three groups: sham-operated group(sham), IRI+saline group(IRI group), IRI+Fenofibrate(FEN) group. Normal saline or Fenofibrate(3 mg/kg) was intravenously injected 60 min before renal ischemia in IRI group and FEN group, respectively. Blood samples and renal tissues were collected at the end of reperfusion. The renal function, histopathologic changes, and the expression levels of pro-inflammatory cytokines [interleukin-8(IL-8), tumor necrosis factor alpha(TNF-α) and IL-6] in serum and renal tissue homogenate were assessed. Moreover, the effects of Fenofibrate on activating phosphoinositide 3 kinase/protein kinase B(PI3K/Akt) signaling and peroxisome proliferator-activated receptor-α(PPAR-α) were also measured in renal IRI. The results showed that plasma levels of blood urea nitrogen and creatinine, histopathologic scores and the expression levels of TNF-α, IL-8 and IL-6 were significantly lower in FEN group than in IRI group. Moreover, Fenofibrate pretreatment could further induce PI3K/Akt signal pathway and PPAR-α activation following renal IRI. These findings indicated PPAR-α activation by Fenofibrate exerts protective effects on renal IRI in mice by suppressing inflammation via PI3K/Akt activation. Thus, Fenofibrate could be a novel therapeutic alternative in renal IRI.