An enriched environment protects dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced neuronal injury, but the underlying mechanism for this is not clear. Growth associated protein-43...An enriched environment protects dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced neuronal injury, but the underlying mechanism for this is not clear. Growth associated protein-43(GAP-43) is closely associated with neurite outgrowth and axon regeneration during neural development. We speculate that an enriched environment can reduce damage to dopaminergic neurons by affecting the expression of GAP-43. This study is designed to test this hypothesis. Three-month-old female senescence-accelerated mouse prone 8(SAMP8) mice were housed for 3 months in an enriched environment or a standard environment. These mice were then subcutaneously injected in the abdomen with 14 mg/kg MPTP four times at 2-hour intervals. Morris water maze testing demonstrated that learning and memory abilities were better in the enriched environment group than in the standard environment group. Reverse-transcription polymerase chain reaction, immunohistochemistry and western blot assays showed that m RNA and protein levels of GAP-43 in the substantia nigra were higher after MPTP application in the enriched environment group compared with the standard environment group. These findings indicate that an enriched environment can increase GAP-43 expression in SAMP8 mice. The upregulation of GAP-43 may be a mechanism by which an enriched environment protects against MPTP-induced neuronal damage.展开更多
BACKGROUND: The main clinical treatments for optic nerve injury are optic canal decompression and systemic administration of hormones, but both treatments have disadvantages. OBJECTIVE: To observe the pathological c...BACKGROUND: The main clinical treatments for optic nerve injury are optic canal decompression and systemic administration of hormones, but both treatments have disadvantages. OBJECTIVE: To observe the pathological changes in the retina and growth associated protein-43 (GAP-43) expression, to compare the treatment of optic canal decompression, hormones, and their combination with the intracanalicular optic nerve injury.DESIGN, TIME AND SETTING: A randomized, controlled animal study was performed at the Department of Anatomy, Weifang Medical University, China, from September 2007 to November 2008.MATERIALS: Dexamethasone (Shandong Huaxin Pharmaceutical, China) and rabbit anti-GAP-43 polyclonal antibody (Boster, China) were used.METHODS: All 36 healthy adult rabbits were randomly assigned to control group (n = 4), simple injury group (n = 20), and treatment group (n = 12). Intracanalicular optic nerve injury models were established using the metal cylinder free-fall impact method. The control group was left intact. The treatment group (four rabbits in each subgroup) was treated by optic nerve decompression, dexamethasone treatment (1 mg/kg daily via two intravenous infusions, 1/5 total dose reduction every 3 days, for 14 days), and simultaneously giving surgery and hormone treatment.MAIN OUTCOME MEASURES: Pathological changes in the retina were determined using hematoxylin-eosin staining. GAP-43 expression was detected using immunohistochemistry in the retina.RESULTS: Retina injury induced obvious pathological changes in the retina. With prolonged time after optic nerve injury, the number of retinal ganglion cells was gradually decreased, and reached the minimum on day 14 (P〈0.01). All three treatments increased the number of retinal ganglion cells (P〈0.01), but surgery + hormone treatment was most effective. No GAP-43 cells were present in the normal retinal, but they appeared 3 days after injury, peaked 7 days after injury, and then began to decline.CONCLUSION: Intracanalicular optic nerve injury induced obvious pathological changes in the retina, including increased GAP-43 expression. Optic canal decompression and hormones improved nerve repair after injury, and their combination produced better outcomes.展开更多
BACKGROUND: Peripheral nerve injury may lead to neuropathic pain and cause a markedly increase expression of growth associated protein-43 (GAP-43) in the spinal cord and dorsal root ganglion, local anesthetics bloc...BACKGROUND: Peripheral nerve injury may lead to neuropathic pain and cause a markedly increase expression of growth associated protein-43 (GAP-43) in the spinal cord and dorsal root ganglion, local anesthetics blocking electrical impulse propagation of nerve fibers may also affect the expression of GAP-43 in the spinal cord and dorsal root ganglion. OBJECTIVE: To determine the effects of continuous peripheral nerve block by tetrodotoxin before and after nerve injury on GAP-43 expression in the dorsal root ganglion during the development of neuropathic pain. DESIGN: A randomized controlled animal experiment. SETTINGS: Department of Anesthesiology, the Second Hospital of Xiamen City; Department of Anesthesiology, the Second Affiliated Hospital of Shantou University Medical College. MATERIALS: Thirty-five Spragne Dawley (SD) rats, weighing 200 - 250 g, were randomly divided into four groups: control group (n =5), simple sciatic nerve transection group (n =10), peripheral nerve block before and after sciatic nerve transection groups (n =10). All the sciatic nerve transection groups were divided into two subgroups according to the different postoperative survival periods: 3 and 7 days (n =5) respectively. Mouse anti-GAP-43 monoclonal antibody (Sigma Co., Ltd.), supervision TM anti-mouse reagent (HRP, Changdao antibody diagnosis reagent Co., Ltd., Shanghai), and HMIAS-100 image analysis system (Qianping Image Engineering Company, Tongji Medical University) were employed in this study. METHODS: This experiment was carried out in the Department of Surgery and Pathological Laboratory, the Second Affiliated Hospital of Shantou University Medical College from April 2005 to April 2006. ①The animals were anesthetized and the right sciatic nerve was exposed and transected at 1 cm distal to sciatic notch. ② Tetrodotoxin 10 μg/kg was injected percutaneously between the greater trochanter and the posterior superior iliac spine of fight hind limb to block the sciatic nerve proximally at 1 hour before or 4 hours after nerve injury respectively, the injection was repeated in all the rats every 12 hours.③ At 3 or 7 days after nerve injury, immunohistochemistry and image analysis were used to evaluate the expression of GAP-43 in the dorsal root ganglions of L5 to the transected sciatic nerve, and quantitative analysis was also performed. ④ Statistical analysis was performed using one way analysis of variance followed by t test. MAIN OUTCOME MEASURE: Expression of GAP-43 in the fight dorsal root ganglions of L5. RESULTS: All the 35 SD rats were involved in the final analysis of results. In normal rats, there were very low expressions of GAP-43 in the dorsal root ganglions. In simple sciatic nerve transection rats 3 and 7 days after sciatic nerve transection, the average absorbance value of GAP-43 immunopositive neurons were significantly different from that in normal rats (t =8.806, 6.771, P 〈 0.01). Whereas 3 and 7 days after sciatic nerve transection in rats with peripheral nerve block before and after nerve injury, the average absorbance value of GAP-43 immunopositive neurons were not significantly different from that in normal rats (P 〉 0.05). CONCLUSION: Local anesthetic continuous peripheral nerve block before or after nerve injury can suppress nerve injury induced high expression of GAP-43 during the development of neuropathic pain.展开更多
BACKGROUND: Growth-associated protein-43 (GAP-43) expression in the nervous system has been demonstrated to promote neural regeneration, neuronal growth and development, as well as synaptic reconstruction. Neurofil...BACKGROUND: Growth-associated protein-43 (GAP-43) expression in the nervous system has been demonstrated to promote neural regeneration, neuronal growth and development, as well as synaptic reconstruction. Neurofilament 200 (NF200) expression could reflect degree of injury and repair in injured spinal axons. OBJECTIVE: To observe NF200 expression changes in a rat model of complete spinal cord injury following GAP-43 treatment and to explore the effects of GAP-43 following spinal cord injury. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Laboratory of Histology and Embryology of Kunming Medical University between March 2007 and October 2008. MATERIALS: GAP-43 and GAP-43 antibody were provided by Beijing Boao Biology, China; mouse anti-rat NF200 antibody was purchased from Chemicon, USA. METHODS: Female, 8-week-old, Sprague Dawley rats were randomly assigned into three groups following complete spinal cord injury, with 20 animals in each group: GAP-43 antibody, GAP-43, and model groups. In addition, each group was subdivided into four subgroups according to sampling time after modeling, Le., 3-, 5-, 9-, and 15-day groups, with 5 rats in each group. GAP-43 antibody or GAP-43 was injected into injury sites of the spinal cord, 5 μg/0.2 mL, respectively, twice daily for three consecutive days, followed by three additional days of injection, once daily. The model group did not receive any treatment following injury. MAIN OUTCOME MEASURES: NF200 expression in the damaged spinal area at different stages was detected by immunohistochemistry; lower limb motion function following injury was evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. RESULTS: NF200 expression was significantly reduced in the GAP-43 antibody group, compared with GAP-43 and model groups, at 3 and 5 days after spinal cord injury (P 〈 0.05). In addition, the model group expressed significantly less NF200 than the GAP-43 group (P 〈 0.05). BBB scores from the GAP-43 antibody and model groups were remarkably less than the GAP-43 group (P 〈 0.05). At 9 and 15 days of injury after drug withdrawal, NF200 expression was increased in the GAP-43 antibody group, and NF200 expression and BBB scores in the GAP-43 antibody and GAP-43 groups were significantly greater than in the model group (P 〈 0.05). In particular, the GAP-43 group exhibited greater BBB scores than the GAP-43 antibody group at day 9 (P 〈 0.05). CONCLUSION: GAP-43 promoted NF200 expression and recovery of lower limb function. Early administration of GAP-43 antibody produced reversible nerve inhibition, which was rapidly restored following withdrawal.展开更多
Growth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling.We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upreg...Growth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling.We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upregulation to promote growth cone formation.Conversely,the limited regenerative capacity of the central nervous system due to an inhibitory environment prevents major changes in neurite outgrowth and should be presumably associated with low levels of growth-associated protein 43 expression.However,central alterations due to peripheral nerve damage have never been assessed using the growthassociated protein 43 marker.In this study,we used the tubulization technique to repair 1 cm-long nerve gaps in the rat nerve injury/repair model and detected growth-associated protein 43 expression in the peripheral and central nervous systems.First,histological analysis of the regeneration process confirmed an active regeneration process of the nerve gaps through the conduit from 10 days onwards.The growth-associated protein 43 expression profile varied across regions and follow-up times,from a localized expression to an abundant and consistent expression throughout the regeneration tissue,confirming the presence of an active nerve regeneration process.Second,spinal cord changes were also histologically assessed,and no apparent changes in the structural and cellular organization were observed using routine staining methods.Surprisingly,remarkable differences and local changes appeared in growth-associated protein 43 expression at the spinal cord level,in particular at 20 days post-repair and beyond.Growth-associated protein 43 protein was first localized in the gracile fasciculus and was homogeneously distributed in the left posterior cord.These findings differed from the growth-associated protein 43 pattern observed in the healthy control,which did not express growth-associated protein 43 at these levels.Our results revealed a differential expression in growth-associated protein 43 protein not only in the regenerating nerve tissue but also in the spinal cord after peripheral nerve transection.These findings open the possibility of using this marker to monitor changes in the central nervous system after peripheral nerve injury.展开更多
Growth associated protein-43 (GAP-43) is considered to be one of the most useful molecular markers for the neural development, nerve regeneration, and neuroplasticity. In most mature neurons, the expression of GAP-4...Growth associated protein-43 (GAP-43) is considered to be one of the most useful molecular markers for the neural development, nerve regeneration, and neuroplasticity. In most mature neurons, the expression of GAP-43 is at very low or negative level; its expression is triggered in response to the interruption of axonal transport. The purpose of this study was to examine whether continuous sciatic nerve block by tetrodotoxin (TTX) affects GAP-43 expression in the dorsal root ganglion (DRG) of normal and sciatic nerve injury rats.展开更多
BACKGROUND Previous cellular studies have demonstrated that elevated expression of Cx43 promotes the degradation of cyclin E1 and inhibits cell proliferation through ubiquitination.Conversely,reduced expression result...BACKGROUND Previous cellular studies have demonstrated that elevated expression of Cx43 promotes the degradation of cyclin E1 and inhibits cell proliferation through ubiquitination.Conversely,reduced expression results in a loss of this capacity to facilitate cyclin E degradation.The ubiquitination and degradation of cyclin E1 may be associated with phosphorylation at specific sites on the protein,with Cx43 potentially enhancing this process by facilitating the phosphorylation of these critical residues.AIM To investigate the correlation between expression of Cx43,SKP1/Cullin1/F-box(SCF)FBXW7,p-cyclin E1(ser73,thr77,thr395)and clinicopathological indexes in colon cancer.METHODS Expression levels of Cx43,SCFFBXW7,p-cyclin E1(ser73,thr77,thr395)in 38 clinical colon cancer samples were detected by immunohistochemistry and were analyzed by statistical methods to discuss their correlations.RESULTS Positive rate of Cx43,SCFFBXW7,p-cyclin E1(Ser73),p-cyclin E1(Thr77)and p-cyclin E1(Thr395)in detected samples were 76.32%,76.32%,65.79%,5.26%and 55.26%respectively.Positive expressions of these proteins were not related to the tissue type,degree of tissue differentiation or lymph node metastasis.Cx43 and SCFFBXW7(r=0.749),p-cyclin E1(Ser73)(r=0.667)and p-cyclin E1(Thr395)(r=0.457),SCFFBXW7 and p-cyclin E1(Ser73)(r=0.703)and p-cyclin E1(Thr395)(0.415)were correlated in colon cancer(P<0.05),and expressions of the above proteins were positively correlated in colon cancer.CONCLUSION Cx43 may facilitate the phosphorylation of cyclin E1 at the Ser73 and Thr195 sites through its interaction with SCFFBXW7,thereby influencing the ubiquitination and degradation of cyclin E1.展开更多
基金supported by a grant from the Health Department of Hebei Province of China,No.20120056,20140314the Funding Project for Introduced Abroad Study Personnel of Hebei Province of China,No.C2011003039
文摘An enriched environment protects dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced neuronal injury, but the underlying mechanism for this is not clear. Growth associated protein-43(GAP-43) is closely associated with neurite outgrowth and axon regeneration during neural development. We speculate that an enriched environment can reduce damage to dopaminergic neurons by affecting the expression of GAP-43. This study is designed to test this hypothesis. Three-month-old female senescence-accelerated mouse prone 8(SAMP8) mice were housed for 3 months in an enriched environment or a standard environment. These mice were then subcutaneously injected in the abdomen with 14 mg/kg MPTP four times at 2-hour intervals. Morris water maze testing demonstrated that learning and memory abilities were better in the enriched environment group than in the standard environment group. Reverse-transcription polymerase chain reaction, immunohistochemistry and western blot assays showed that m RNA and protein levels of GAP-43 in the substantia nigra were higher after MPTP application in the enriched environment group compared with the standard environment group. These findings indicate that an enriched environment can increase GAP-43 expression in SAMP8 mice. The upregulation of GAP-43 may be a mechanism by which an enriched environment protects against MPTP-induced neuronal damage.
基金the Educational Commission of Shandong Province of China,No. J06L23
文摘BACKGROUND: The main clinical treatments for optic nerve injury are optic canal decompression and systemic administration of hormones, but both treatments have disadvantages. OBJECTIVE: To observe the pathological changes in the retina and growth associated protein-43 (GAP-43) expression, to compare the treatment of optic canal decompression, hormones, and their combination with the intracanalicular optic nerve injury.DESIGN, TIME AND SETTING: A randomized, controlled animal study was performed at the Department of Anatomy, Weifang Medical University, China, from September 2007 to November 2008.MATERIALS: Dexamethasone (Shandong Huaxin Pharmaceutical, China) and rabbit anti-GAP-43 polyclonal antibody (Boster, China) were used.METHODS: All 36 healthy adult rabbits were randomly assigned to control group (n = 4), simple injury group (n = 20), and treatment group (n = 12). Intracanalicular optic nerve injury models were established using the metal cylinder free-fall impact method. The control group was left intact. The treatment group (four rabbits in each subgroup) was treated by optic nerve decompression, dexamethasone treatment (1 mg/kg daily via two intravenous infusions, 1/5 total dose reduction every 3 days, for 14 days), and simultaneously giving surgery and hormone treatment.MAIN OUTCOME MEASURES: Pathological changes in the retina were determined using hematoxylin-eosin staining. GAP-43 expression was detected using immunohistochemistry in the retina.RESULTS: Retina injury induced obvious pathological changes in the retina. With prolonged time after optic nerve injury, the number of retinal ganglion cells was gradually decreased, and reached the minimum on day 14 (P〈0.01). All three treatments increased the number of retinal ganglion cells (P〈0.01), but surgery + hormone treatment was most effective. No GAP-43 cells were present in the normal retinal, but they appeared 3 days after injury, peaked 7 days after injury, and then began to decline.CONCLUSION: Intracanalicular optic nerve injury induced obvious pathological changes in the retina, including increased GAP-43 expression. Optic canal decompression and hormones improved nerve repair after injury, and their combination produced better outcomes.
基金the Natural Science Foundation of Guangdong Province, No.034628
文摘BACKGROUND: Peripheral nerve injury may lead to neuropathic pain and cause a markedly increase expression of growth associated protein-43 (GAP-43) in the spinal cord and dorsal root ganglion, local anesthetics blocking electrical impulse propagation of nerve fibers may also affect the expression of GAP-43 in the spinal cord and dorsal root ganglion. OBJECTIVE: To determine the effects of continuous peripheral nerve block by tetrodotoxin before and after nerve injury on GAP-43 expression in the dorsal root ganglion during the development of neuropathic pain. DESIGN: A randomized controlled animal experiment. SETTINGS: Department of Anesthesiology, the Second Hospital of Xiamen City; Department of Anesthesiology, the Second Affiliated Hospital of Shantou University Medical College. MATERIALS: Thirty-five Spragne Dawley (SD) rats, weighing 200 - 250 g, were randomly divided into four groups: control group (n =5), simple sciatic nerve transection group (n =10), peripheral nerve block before and after sciatic nerve transection groups (n =10). All the sciatic nerve transection groups were divided into two subgroups according to the different postoperative survival periods: 3 and 7 days (n =5) respectively. Mouse anti-GAP-43 monoclonal antibody (Sigma Co., Ltd.), supervision TM anti-mouse reagent (HRP, Changdao antibody diagnosis reagent Co., Ltd., Shanghai), and HMIAS-100 image analysis system (Qianping Image Engineering Company, Tongji Medical University) were employed in this study. METHODS: This experiment was carried out in the Department of Surgery and Pathological Laboratory, the Second Affiliated Hospital of Shantou University Medical College from April 2005 to April 2006. ①The animals were anesthetized and the right sciatic nerve was exposed and transected at 1 cm distal to sciatic notch. ② Tetrodotoxin 10 μg/kg was injected percutaneously between the greater trochanter and the posterior superior iliac spine of fight hind limb to block the sciatic nerve proximally at 1 hour before or 4 hours after nerve injury respectively, the injection was repeated in all the rats every 12 hours.③ At 3 or 7 days after nerve injury, immunohistochemistry and image analysis were used to evaluate the expression of GAP-43 in the dorsal root ganglions of L5 to the transected sciatic nerve, and quantitative analysis was also performed. ④ Statistical analysis was performed using one way analysis of variance followed by t test. MAIN OUTCOME MEASURE: Expression of GAP-43 in the fight dorsal root ganglions of L5. RESULTS: All the 35 SD rats were involved in the final analysis of results. In normal rats, there were very low expressions of GAP-43 in the dorsal root ganglions. In simple sciatic nerve transection rats 3 and 7 days after sciatic nerve transection, the average absorbance value of GAP-43 immunopositive neurons were significantly different from that in normal rats (t =8.806, 6.771, P 〈 0.01). Whereas 3 and 7 days after sciatic nerve transection in rats with peripheral nerve block before and after nerve injury, the average absorbance value of GAP-43 immunopositive neurons were not significantly different from that in normal rats (P 〉 0.05). CONCLUSION: Local anesthetic continuous peripheral nerve block before or after nerve injury can suppress nerve injury induced high expression of GAP-43 during the development of neuropathic pain.
文摘BACKGROUND: Growth-associated protein-43 (GAP-43) expression in the nervous system has been demonstrated to promote neural regeneration, neuronal growth and development, as well as synaptic reconstruction. Neurofilament 200 (NF200) expression could reflect degree of injury and repair in injured spinal axons. OBJECTIVE: To observe NF200 expression changes in a rat model of complete spinal cord injury following GAP-43 treatment and to explore the effects of GAP-43 following spinal cord injury. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Laboratory of Histology and Embryology of Kunming Medical University between March 2007 and October 2008. MATERIALS: GAP-43 and GAP-43 antibody were provided by Beijing Boao Biology, China; mouse anti-rat NF200 antibody was purchased from Chemicon, USA. METHODS: Female, 8-week-old, Sprague Dawley rats were randomly assigned into three groups following complete spinal cord injury, with 20 animals in each group: GAP-43 antibody, GAP-43, and model groups. In addition, each group was subdivided into four subgroups according to sampling time after modeling, Le., 3-, 5-, 9-, and 15-day groups, with 5 rats in each group. GAP-43 antibody or GAP-43 was injected into injury sites of the spinal cord, 5 μg/0.2 mL, respectively, twice daily for three consecutive days, followed by three additional days of injection, once daily. The model group did not receive any treatment following injury. MAIN OUTCOME MEASURES: NF200 expression in the damaged spinal area at different stages was detected by immunohistochemistry; lower limb motion function following injury was evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. RESULTS: NF200 expression was significantly reduced in the GAP-43 antibody group, compared with GAP-43 and model groups, at 3 and 5 days after spinal cord injury (P 〈 0.05). In addition, the model group expressed significantly less NF200 than the GAP-43 group (P 〈 0.05). BBB scores from the GAP-43 antibody and model groups were remarkably less than the GAP-43 group (P 〈 0.05). At 9 and 15 days of injury after drug withdrawal, NF200 expression was increased in the GAP-43 antibody group, and NF200 expression and BBB scores in the GAP-43 antibody and GAP-43 groups were significantly greater than in the model group (P 〈 0.05). In particular, the GAP-43 group exhibited greater BBB scores than the GAP-43 antibody group at day 9 (P 〈 0.05). CONCLUSION: GAP-43 promoted NF200 expression and recovery of lower limb function. Early administration of GAP-43 antibody produced reversible nerve inhibition, which was rapidly restored following withdrawal.
基金financed by the Spanish"Plan Nacional de Investigación Cientifica,Desorrollo e Innovación Tecnológica,Ministerio de Economíay Competitividod(Instituto de Solud CarlosⅢ)",grant Nos:FIS PI17-0393,FIS PI20-0318co-financed by the"Fondo Europeo de Desorrollo Regional ERDF-FEDER European Union",grant No.P18-RT-5059+2 种基金by"Plan Andaluz de Investigación,Desarrollo e Innovación(PAIDI 2020)Consejerio de Transformoción Económico,Industria,Conocimiento y Universidades,Junta de Andolucío,Espa?a",and grant No.A-CTS-498-UGR18by"Programa Operotivo FEDER Andalucía 2014-2020,Universidod de Granada,Junta de Andalucía,Espa?a",ca-funded by ERDF-FEDER,the European Union(all to VC)。
文摘Growth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling.We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upregulation to promote growth cone formation.Conversely,the limited regenerative capacity of the central nervous system due to an inhibitory environment prevents major changes in neurite outgrowth and should be presumably associated with low levels of growth-associated protein 43 expression.However,central alterations due to peripheral nerve damage have never been assessed using the growthassociated protein 43 marker.In this study,we used the tubulization technique to repair 1 cm-long nerve gaps in the rat nerve injury/repair model and detected growth-associated protein 43 expression in the peripheral and central nervous systems.First,histological analysis of the regeneration process confirmed an active regeneration process of the nerve gaps through the conduit from 10 days onwards.The growth-associated protein 43 expression profile varied across regions and follow-up times,from a localized expression to an abundant and consistent expression throughout the regeneration tissue,confirming the presence of an active nerve regeneration process.Second,spinal cord changes were also histologically assessed,and no apparent changes in the structural and cellular organization were observed using routine staining methods.Surprisingly,remarkable differences and local changes appeared in growth-associated protein 43 expression at the spinal cord level,in particular at 20 days post-repair and beyond.Growth-associated protein 43 protein was first localized in the gracile fasciculus and was homogeneously distributed in the left posterior cord.These findings differed from the growth-associated protein 43 pattern observed in the healthy control,which did not express growth-associated protein 43 at these levels.Our results revealed a differential expression in growth-associated protein 43 protein not only in the regenerating nerve tissue but also in the spinal cord after peripheral nerve transection.These findings open the possibility of using this marker to monitor changes in the central nervous system after peripheral nerve injury.
基金Supported by the Guangdong Provincal Natural Sciences Foundation (034628)
文摘Growth associated protein-43 (GAP-43) is considered to be one of the most useful molecular markers for the neural development, nerve regeneration, and neuroplasticity. In most mature neurons, the expression of GAP-43 is at very low or negative level; its expression is triggered in response to the interruption of axonal transport. The purpose of this study was to examine whether continuous sciatic nerve block by tetrodotoxin (TTX) affects GAP-43 expression in the dorsal root ganglion (DRG) of normal and sciatic nerve injury rats.
基金Supported by Innovative Practice Platform for Undergraduate Students,School of Public Health Xiamen University,No.2021001.
文摘BACKGROUND Previous cellular studies have demonstrated that elevated expression of Cx43 promotes the degradation of cyclin E1 and inhibits cell proliferation through ubiquitination.Conversely,reduced expression results in a loss of this capacity to facilitate cyclin E degradation.The ubiquitination and degradation of cyclin E1 may be associated with phosphorylation at specific sites on the protein,with Cx43 potentially enhancing this process by facilitating the phosphorylation of these critical residues.AIM To investigate the correlation between expression of Cx43,SKP1/Cullin1/F-box(SCF)FBXW7,p-cyclin E1(ser73,thr77,thr395)and clinicopathological indexes in colon cancer.METHODS Expression levels of Cx43,SCFFBXW7,p-cyclin E1(ser73,thr77,thr395)in 38 clinical colon cancer samples were detected by immunohistochemistry and were analyzed by statistical methods to discuss their correlations.RESULTS Positive rate of Cx43,SCFFBXW7,p-cyclin E1(Ser73),p-cyclin E1(Thr77)and p-cyclin E1(Thr395)in detected samples were 76.32%,76.32%,65.79%,5.26%and 55.26%respectively.Positive expressions of these proteins were not related to the tissue type,degree of tissue differentiation or lymph node metastasis.Cx43 and SCFFBXW7(r=0.749),p-cyclin E1(Ser73)(r=0.667)and p-cyclin E1(Thr395)(r=0.457),SCFFBXW7 and p-cyclin E1(Ser73)(r=0.703)and p-cyclin E1(Thr395)(0.415)were correlated in colon cancer(P<0.05),and expressions of the above proteins were positively correlated in colon cancer.CONCLUSION Cx43 may facilitate the phosphorylation of cyclin E1 at the Ser73 and Thr195 sites through its interaction with SCFFBXW7,thereby influencing the ubiquitination and degradation of cyclin E1.