Mass spectrometry(MS)-based proteomics has developed into a battery of approaches that is exceedingly adept at identifying with high mass accuracy and precision any of the following:oxidative damage to proteins(redox ...Mass spectrometry(MS)-based proteomics has developed into a battery of approaches that is exceedingly adept at identifying with high mass accuracy and precision any of the following:oxidative damage to proteins(redox proteomics),phosphorylation(phosphoproteomics),ubiquitination(diglycine remnant proteomics),protein fragmentation(degradomics),and other posttranslational modifications(PTMs).Many studies have linked these PTMs to pathogenic mechanisms of neurodegeneration.To date,identifying PTMs on specific pathology-associated proteins has proven to be a valuable step in the evaluation of functional alteration of proteins and also elucidates biochemical and structural explanations for possible pathophysiological mechanisms of neurodegenerative diseases.This review provides an overview of methods applicable to the identification and quantification of PTMs on proteins and enumerates historic,recent,and potential future research endeavours in the field of proteomics furthering the understanding of PTM roles in the pathogenesis of neurodegeneration.展开更多
Proteomics focuses on the systematic identification and quantification of entire proteomes and interpretation of proteins’biological functions.During the last decade,proteomics in China has grown much faster than oth...Proteomics focuses on the systematic identification and quantification of entire proteomes and interpretation of proteins’biological functions.During the last decade,proteomics in China has grown much faster than other research fields in life sciences.At the beginning of the second decade of the 21st century,the rapid development of high-resolution and high-speed mass spectrometry makes proteomics a powerful tool to study the mechanisms underlying physiological/pathological processes in organisms.This article provides a brief overview of proteomics technology development and representative scientific progress of the Human Liver Proteome Project in China over the past three years.展开更多
Chaperone-mediated autophagy(CMA)selectively delivers cytosolic proteins with an exposed CMA-targeting motif to lysosomes for degradation and plays an important role in protein quality control and cellular homeostasis...Chaperone-mediated autophagy(CMA)selectively delivers cytosolic proteins with an exposed CMA-targeting motif to lysosomes for degradation and plays an important role in protein quality control and cellular homeostasis.A growing body of evidence supports the hypothesis that CMA dysfunction may be involved in the pathogenic process of neurodegenerative diseases.Both down-regulation and compensatory up-regulation in CMA activities have been observed in association with neurodegenerative conditions.Recent studies have revealed several new mechanisms by which CMA function may be involved in the regulation of factors critical for neuronal viability and homeostasis.Here,we summarize these recent advances in the understanding of the relationship between CMA dysfunction and neurodegeneration and discuss the therapeutic potential of targeting CMA in the treatment of neurodegenerative diseases.展开更多
基金by the National Natural Science Foundation of China(No.81200842)the National Institutes of Health(U01 AG046161,AIL).
文摘Mass spectrometry(MS)-based proteomics has developed into a battery of approaches that is exceedingly adept at identifying with high mass accuracy and precision any of the following:oxidative damage to proteins(redox proteomics),phosphorylation(phosphoproteomics),ubiquitination(diglycine remnant proteomics),protein fragmentation(degradomics),and other posttranslational modifications(PTMs).Many studies have linked these PTMs to pathogenic mechanisms of neurodegeneration.To date,identifying PTMs on specific pathology-associated proteins has proven to be a valuable step in the evaluation of functional alteration of proteins and also elucidates biochemical and structural explanations for possible pathophysiological mechanisms of neurodegenerative diseases.This review provides an overview of methods applicable to the identification and quantification of PTMs on proteins and enumerates historic,recent,and potential future research endeavours in the field of proteomics furthering the understanding of PTM roles in the pathogenesis of neurodegeneration.
基金funded by the Chinese National Basic Research Program grants(2011CB910600,2013CB911201)to Xu Ping and Li Ning respectivelythe grants of National Natural Science Foundation of China(31070673,31170780)to Xu Ping
文摘Proteomics focuses on the systematic identification and quantification of entire proteomes and interpretation of proteins’biological functions.During the last decade,proteomics in China has grown much faster than other research fields in life sciences.At the beginning of the second decade of the 21st century,the rapid development of high-resolution and high-speed mass spectrometry makes proteomics a powerful tool to study the mechanisms underlying physiological/pathological processes in organisms.This article provides a brief overview of proteomics technology development and representative scientific progress of the Human Liver Proteome Project in China over the past three years.
基金This work was in part supported by grants to Z.M(NIH AG023695,NSO79858,and ES015317).
文摘Chaperone-mediated autophagy(CMA)selectively delivers cytosolic proteins with an exposed CMA-targeting motif to lysosomes for degradation and plays an important role in protein quality control and cellular homeostasis.A growing body of evidence supports the hypothesis that CMA dysfunction may be involved in the pathogenic process of neurodegenerative diseases.Both down-regulation and compensatory up-regulation in CMA activities have been observed in association with neurodegenerative conditions.Recent studies have revealed several new mechanisms by which CMA function may be involved in the regulation of factors critical for neuronal viability and homeostasis.Here,we summarize these recent advances in the understanding of the relationship between CMA dysfunction and neurodegeneration and discuss the therapeutic potential of targeting CMA in the treatment of neurodegenerative diseases.