The sedimentary record of mud areas is an important carrier of information on the Holocene evolution of marine environments. Based on fine interpretations of the shallow stratigraphic section data, a small mud deposit...The sedimentary record of mud areas is an important carrier of information on the Holocene evolution of marine environments. Based on fine interpretations of the shallow stratigraphic section data, a small mud deposit area has been found in the southern coastal waters off Shandong Peninsula. This mud area is mainly distributed in coastal waters north of Laoshantou to the vicinity of Rushan Estuary. Overall, it is parallel to the coastline and spreads in a banded pattern, gradually thinning from offshore to the sea. The isopach map of depth distribution is parallel with the shoreline, and the depocenter lies in coastal waters of the Aoshan Bay where the maximum thickness is up to 22.5 m. Accelerator mass spectrometry(AMS) ^(14)C dating shows that the mud area was formed in the Holocene. The test data of surface sediments from the mud area, including particle size, mineral characteristics, and rare earth element contents, are used in comparisons with the composition of materials from the major surrounding medium and small rivers flowing into the sea and the Huanghe(Yellow) River. In this paper, the sedimentary characteristics and provenance of the mud deposit area are discussed. The results show that the formation of this mud area resulted from the joint action of the Huanghe River and surrounding rivers flowing into the sea.展开更多
The main task of provenance analysis is to determine the source of sediments and the position of parent rocks.Provenance analysis may find out the relationship between erosion districts and sediment zone,between the u...The main task of provenance analysis is to determine the source of sediments and the position of parent rocks.Provenance analysis may find out the relationship between erosion districts and sediment zone,between the uplift and the depression in the process of basin development.The authors use the method of heavy mineral clustering analysis and estimate the provenance direction of Huanghua Depression in the Paleogene Kong 2 Member.Research shows that there were five provenance areas of Kong 2 Member in Kongnan area.They are western(Shenusi),northwestern(Cangzhou),eastern(Ganhuatun),northeastern and southeastern.The main provenance areas were northwestern and western,while the southern provenance could not be ruled out.And these areas are consistent with the known provenance areas.展开更多
Detrital U-bearing minerals(e.g.,zircon,apatite)U-Pb ages with specific trace-element geochemistry,are frequently used in provenance analyses.In this study,we focus on the Yarlung River drainage in South Tibet,charact...Detrital U-bearing minerals(e.g.,zircon,apatite)U-Pb ages with specific trace-element geochemistry,are frequently used in provenance analyses.In this study,we focus on the Yarlung River drainage in South Tibet,characterized by two distinct lithologic units:The Gangdese batholith to the north(mainly granitoids)and the Tethyan Himalaya(mainly sedimentary rocks)to the south,which plays a crucial role in the erosion of the Tibetan Plateau.To constrain the provenance of the Yarlung River Basin,we performed trace-element and U-Pb age analyses of detrital apatite from the river sands of the Yarlung River and its tributaries.Our findings indicate that the detrital apatite U-Pb age patterns of the north tributaries exhibit main peaks at approximately 40 and 60 Ma,consistent with the corresponding U-Pb age patterns of detrital zircon published.Further,their trace element casts fall mainly in the Type I granite region,also indicating the Gangdese arc-dominated source.However,those of the south tributaries(∼60–20 Ma)exhibit a different age distribution from the detrital zircon U-Pb groups(∼110–150,∼500,and 1100 Ma),suggesting that the detailed apatite U-Pb signals can provide excellent constraints on the provenance of igneous and metamorphic rock sources but less so for sedimentary rock sources.Combined with previous detrital zircon data in the study area,our detrital apatite information can highlight young metamorphic events from a complex background(i.e.,Niyang and Nianchu rivers),which offers additional constraints on the provenance of the Yarlung River Basin.Generally,a combination of geochemistry and geochronology of multi-detrital heavy minerals,such as zircon and apatite,can provide powerful tools for provenance analysis.展开更多
Huhehu Sag is a new battlefield for the future oil and gas exploration in the Hailar Basin. At present, exploration of this area stays at a low level and the understanding of the provenance system of the Nantun Format...Huhehu Sag is a new battlefield for the future oil and gas exploration in the Hailar Basin. At present, exploration of this area stays at a low level and the understanding of the provenance system of the Nantun Formation is comparatively weak. So, to carry out the detailed depiction of the provenance system in the study area is significant for the sedimentary system reconstruction, for the prediction of reservoir distribution and favorable areas. Based on comprehensive analysis of paleogeomorphy, light-heavy mineral and seismic reflection features, sandstone thickness and sandstone percentage, this paper analyzes in detail the provenance system of the Nantun Formation in Huhehu Sag from various angles and levels. It shows that provenances of the Huhehu Sag mainly originated from the eastern Xilinbeier Salient and western Bayan Mountain Uplift. The provenances surrounding the lake basin converged to the center of the basin, among which, the steep slope belt and the gentle slope belt are the main provenances, and the southern uplift is a secondary one. The distribution framework of the provenance fundamentally determines the distribution rules of the depositional system and its sand body developing during the Nantun period.展开更多
The Early-Middle Devonian Shugouzi Formation in the Quruqtagh block consists mainly of clastic rocks.However,their provenance has been scarcely studied since it was named.Geochemistry of clastic rocks was commonly use...The Early-Middle Devonian Shugouzi Formation in the Quruqtagh block consists mainly of clastic rocks.However,their provenance has been scarcely studied since it was named.Geochemistry of clastic rocks was commonly used to interpret the provenance.Detrital heavy mineral analyses help frame the U-Pb age from zircon grains,integrated with geochemical data from detrital tourmaline and spinels.These techniques were used to characterize components of the sediment flux and define erosion areas in the Qurugtagh block,further providing evidence about the tectonic evolution of the South Tianshan and Tarim plate.The maximum depositional age constrained by detrital zircon dating was Early-Middle Devonian.Multiple diagrams for sedimentary provenance using major and trace elements indicate that continental island arc-related felsic rocks were the major source rocks for the Shugouzi Formation.Detrital tourmalines are dravite and schorl.The results of detrital tourmaline electron probe microanalysis(EPMA)show that the source rocks are mainly metasedimentary rocks and granitoids.The detrital chromian spinels within the sediments are characterized by high chroumium(Cr^(#))and varying magnesium(Mg^(#)).The discrimination plots reveal that these spinels were sourced from island arc magmatic rocks.The laser ablation inductively-coupled plasma mass spectrometry(LA-ICP-MS)U-Pb chronology of detrital zircons suggests that the sediments were derived mainly from 414-491 Ma and 744-996 Ma magmatic rocks.Paleocurrent restoration,sandstone geochemistry,EPMA,and detrital zircon geochronology indicate that the source rocks were predominantly derived from Late Ordovician and Devonian magmatic rocks and subordinately from recycled Neoproterozoic magmatic rocks.Comprehensive analyses of the source areas suggest that a remnant arc still existed in the Early Devonian and the Shugouzi Formation was deposited in a passive continental margin.展开更多
The quantitative analysis of sediment sources in a sink is an important scientific topic and challenge in provenance research.The characteristics of heavy minerals,combined with the geochemical constituents of detrita...The quantitative analysis of sediment sources in a sink is an important scientific topic and challenge in provenance research.The characteristics of heavy minerals,combined with the geochemical constituents of detrital grains,provide a reliable provenance-tracing approach.We developed a mineral identification method to analyze the multiple grain-size fraction of sediments,from which the elemental geochemistry of hornblende was used to compare the characteristics of sediments from the Huaihe River and Huanghe(Yellow)River in eastern China.Elements that were statistically identified as being able to discriminate sediment provenance were employed to perform a quantitative analysis of the sources of sediments of the abandoned Huanghe River.Results reveal that the Huaihe River is characterized by a high amphibole content of>60%and that the Huanghe and abandoned Huanghe rivers have greater abundances of limonite and carbonate minerals compared with those of the Huaihe River.The contents of trace elements and rare earth elements in hornblende show that the sediments of the abandoned Huanghe River are similar to those of the Huanghe River but different from those of the Huaihe River.Furthermore,chemical mass balance was used to calculate the relative contributions of different provenances of sediment from the abandoned Huanghe River,and nine trace elements of hornblende were identified as discriminators of provenance.Approximately 2%of the hornblende in the abandoned Huanghe River is derived from the Huaihe River and 98%from the Huanghe River.Considering the proportion of hornblende in the total sediment,it is inferred that the contribution of Huaihe River sediment to the abandoned Huanghe River is approximately 0.5%.This study shows that mineral analysis using multiple grain-size fractions(within the wide range of 1Φto 6Φ)with assessment in elemental geochemistry of hornblende can characterize the provenance of fluvial material in coastal zones.展开更多
During the Late Carboniferous to Early Permian,a rift was formed by post-collisional extension after ocean closure or an island arc-related basin formed by Paleo-Asian Ocean(PAO)subduction in the Xi Ujimqin area.Never...During the Late Carboniferous to Early Permian,a rift was formed by post-collisional extension after ocean closure or an island arc-related basin formed by Paleo-Asian Ocean(PAO)subduction in the Xi Ujimqin area.Nevertheless,the closure time of the PAO is still under debate.Thus,to identify the origin of the PAO,the geochemistry and U-Pb age of zircons were analyzed for the extra-large deep marine,polymict clastic boulders and sandstones in the Shoushangou Formation within the basin.The analyses revealed magmatic activity and tectonic evolution.The conglomerates include megaclasts of granite(298.8±9.1 Ma)and granodiorite porphyry(297.1±3.1 Ma),which were deposited by muddy debris flow.Results of this study demonstrated that the boulders of granitoids have the geochemistry of typical I-type granite,characterized by low Zr+Nb+Ce+Y and low Ga/Al values.The granitoid boulders were formed in island arc setting,indicating the presence of arc magmatism in the area that is composed of the Late Carboniferous to Early Permian subduction-related granitoid in southern Xi Ujimqin.Multiple diagrams for determining sedimentary provenance using major and trace elements indicate that Shoushangou sediments originated from continental island arc-related felsic rocks.Detrital zircon U-Pb age cluster of 330–280 Ma was obtained,indicating input from granite,ophiolite,Xilin Gol complex,and Carboniferous sources to the south.The basin was geographically developed behind the arc during the Early Permian period because the outcropped intrusive rocks in the Late Carboniferous to Early Permian form a volcanic arc.The comprehensive analyses of source areas suggest that Shoushangou sediments developed in a backarc basin in response to the northward subduction of the PAO.The backarc basin and intrusive rocks,in addition to previously published Late Carboniferous to Early Permian magmatic rocks of arc unit in Xilin Gol,confirm the presence of an Early Permian trencharc-basin system in the region,represented by the Baolidao arc and Xi Ujimqin backarc basin.This study highlights the importance and potential of combined geochemical and geochronological studies of conglomerates and sandstone for reconstructing the geodynamic setting of a basin.展开更多
Petrographic and geochemical characteristics of the Upper Triassic sandstones in the western Ordos Basin were studied to provide insight into weathering characteristics,provenance,and tectonic implications.Petrographi...Petrographic and geochemical characteristics of the Upper Triassic sandstones in the western Ordos Basin were studied to provide insight into weathering characteristics,provenance,and tectonic implications.Petrographic features show that the sandstones are characterized by low-medium compositional maturity and textural maturity.The CIA and CIW values reveal weak and moderate weathering history in the source area.The geochemical characteristics together with palaeocurrent data show that the northwestern sediments were mainly derived from the Alxa Block with a typical recycled nature,while the provenance of the western and southwestern sediments were mainly from the Qinling-Qilian Orogenic Belt.The tectonic setting discrimination diagrams signify that the parent rocks of sandstones in the western and southern Ordos Basin were mainly developed from continental island arc,which is closely related to the evolution of the QinlingQilian Orogenic Belt.However,the sandstones in the northwestern Ordos Basin show complex features,which may be resulted from a typical recycling process.Overall evidence from petrography,geochemistry and sedimentology,together with previous researches suggest the Kongtongshan and Helanshan areas were the southwestern and northwestern boundary of the Ordos Basin,respectively,and there was no clear boundary between the Hexi Corridor Belt and Ordos Basin,where a large,uniform sediment dispersal system developed during the Late Triassic.展开更多
A combined inorganic and organic geochemical study was carried out on marls and mudstones collected from the Lower Miocene Lopare Basin,Bosnia and Herzegovina.A total of 46 samples collected from two boreholes,Pot 1(d...A combined inorganic and organic geochemical study was carried out on marls and mudstones collected from the Lower Miocene Lopare Basin,Bosnia and Herzegovina.A total of 46 samples collected from two boreholes,Pot 1(depth of 193 m)and Pot 3(depth of 344 m),showed that element abundances like boron(B),lithium(Li),strontium(Sr),uranium(U),chromium(Cr),nickel(Ni),magnesium(Mg),sodium(Na)and calcium(Ca)are much higher than average than in the upper continental crust(UCC).Chemical composition indicates at least two sources:(i)Mesozoic ophiolites occurring in the north of the investigated area,and(ii)dacito-andesitic pyroclastics(Mesozoic to Cenozoic).Lopare Basin sedimentation was influenced by strong evaporation resulting in a partly hypersaline lake,which formed during a warm climatic period,probably during the Miocene Climatic Optimum.A brief episode of humid climate conditions resulted in the basin fillingup and deposition of felsic sediments enriched in thorium(Th).Organic geochemistry shows that the majority of studied sediments contains predominantly immature to marginally mature algal organic matter(OM).The biomarker patterns are generally in agreement with the geological history of the Lopare Basin and inorganic and mineralogical data.Conversely,the molecular distribution of n-alkanes as reliable climatic andδ-MTTC as paleosalinity indicators do not support this conclusion.展开更多
Xuanwei Formation is composed of mudstone,siltstone,and sandstone,with local conglomerate.However,its provenance and tectonic setting have been scarcely studied.In this paper,we use sedimentology,electron probe microa...Xuanwei Formation is composed of mudstone,siltstone,and sandstone,with local conglomerate.However,its provenance and tectonic setting have been scarcely studied.In this paper,we use sedimentology,electron probe microanalysis(EPMA),and detrital zircon dating to investigate its source area and depositional tectonic setting.The facies assemblages indicate that it formed in alluvial fan and fluvial river sedimentary environments.The strata thicknesses and facies distribution indicate that the sediment supply was from the west.The results of EPMA show that chromian spinels within the sediments are characterized by high Cr#and varying Mg#.Discrimination plots suggest that these spinels were sourced from large igneous province(LIP)magmatic rocks.The laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)U–Pb chronology of detrital zircons suggests that the sediments were derived from intermediate–acid igneous rocks dating back to 251–260?Ma.We could,therefore,conclude that the provenance of the Xuanwei Formation is from Emeishan basalt and synchronous felsic igneous rocks,which is consistent with the composition of the detrital framework.The detrital zircon dates also suggest that felsic magmatism occurred during the Late Permian,not after the eruption of the Emeishan basalt.Based on the sedimentary successions and provenance analysis,the tectonic setting for Xuanwei Formation deposition was a volcanic rifted margin.展开更多
Well CSDP-2 is a fully coring deep drilling hole, penetrating the thick Paleozoic marine strata in the South Yellow Sea Basin(SYSB) in the lower Yangtze Block(LYB). Based on the petrological and geochemical analysis o...Well CSDP-2 is a fully coring deep drilling hole, penetrating the thick Paleozoic marine strata in the South Yellow Sea Basin(SYSB) in the lower Yangtze Block(LYB). Based on the petrological and geochemical analysis of 40 sandstone samples from the core CSDP-2, the provenance and tectonic features of Paleozoic detrital rocks from SYSB are analyzed and systematically delineated in this article. The results show that the Silurian – Carboniferous sandstones are mature sublitharenite, while the Permian sandstones are unstable feldspathic litharenite. The average CIA(chemical index of alteration) is 74.61, which reflects these sediments were derived from source rocks with moderate chemical weathering. The REE(rare earth element) patterns are characterized by LREE enrichment, flat HREE and obviously negative Eu anomaly, which are similar to that of the upper continental crust. Dickinson QFL discrimination results indicate the recycled orogeny provenance. Various diagrams for the discrimination of sedimentary provenance based on major and trace element data show all the sediments were derived predominantly from quartz sedimentary rocks, of which the Permian strata contain more felsic sedimentary rocks. Geochemical data for these detrital rocks suggest they occur at the passive continental margin and island arc settings, and the Permian sandstone presents active continental margin setting.展开更多
The provenance of the lower Es2 in the Shanghe area was determined from an approach incorporating analysis, elemental ratios,paleocurrent direction,the typomorphic characteristics of detritus and the distribution of c...The provenance of the lower Es2 in the Shanghe area was determined from an approach incorporating analysis, elemental ratios,paleocurrent direction,the typomorphic characteristics of detritus and the distribution of conglomerate and gritstone in the peripheral basin.Typical elemental ratios characteristic of the sedimentary area were compared with those from the source areas as abstracted from sediments of the Huimin sag using cluster analysis.The results show that the distribution pattern focuses on Mg/Mn,Fe/K,Al/Na,Ba/Mn and Al/Mg.Mg/Mn is the highest ratio,from 25 to 45.This is similar to the pattern from the Precambrian.Furthermore,paleocurrent direction was used to determine provenance by examining the distribution of gritstone and the seismic progradational reflections.The research results indicate that the provenance is to the northwest in the Precambrian strata where the sand grain size is rough.To the east there is siltstone,fine sandstone and mudstone.This is significant for the exploration of oil and gas within the study area.展开更多
Located on the south of the Gangdese,the Qiuwu Formation has traditionally been considered as Eocene coal-bearing clastic sediments consisting of sandstone,mudstone and conglomerate,unconformably on top of Gangdese ba...Located on the south of the Gangdese,the Qiuwu Formation has traditionally been considered as Eocene coal-bearing clastic sediments consisting of sandstone,mudstone and conglomerate,unconformably on top of Gangdese batholith.However,its precise age and depositional environment remain ambiguous.Here,we present a newly measured stratigraphic section near the Ngamring County,western Xigaze.Detrital zircon U-Pb ages were also applied to trace the provenance of sediments and to constrain the maximum depositional age of the Qiuwu Formation.Sedimentary facies analyses indicate subaqueous fan and alluvial fan depositional environments.Clast composition of the conglomerate is dominated by magmatic rocks at the lower part,while chert and mafic detritus occur in the upper part,suggesting a southern source.Sandstone modal analyses indicate that the compositions of quartz,feldspar and lithic grains changed from transitional arc to dissected arc,implying the unroofing of the Gangdese arc.Detrital zircon U-Pb ages of the Qiuwu Formation are compared with those from Gangdese magmatic rocks and Yarlung-Zangbo ophiolites,suggesting that the Gangdese arc is a main source of the Qiuwu detritus and that the southern source played a role during the later stage.The major peak of detrital zircon ages is at 45-55 Ma,which corresponds to Linzizong volcanic rocks in southern Gangdese arc.The weighted mean age of the five youngest zircons from the lower part of the section is 21.0 ± 2.2 Ma,suggesting that the Qiuwu Formation was deposited in early Miocene,coeval with other conglomerates exposed along the southern margin of Gangdese.Combining new observations with previously published data,we propose that the provenance of the Qiuwu Formation had shifted from a single northern source to double sources from both the north and the south.Activities of Great Counter Thrust were primarily responsible for the shift by making the south area a high elevation to provide sediments for the Qiuwu Formation.展开更多
The characteristics of sedimentary petrology are significant in determining geological provenance. By using field outcrop observation and indoor identification of thin sections, the characteristics of Jurassic system ...The characteristics of sedimentary petrology are significant in determining geological provenance. By using field outcrop observation and indoor identification of thin sections, the characteristics of Jurassic system Tuchengzi Formation clastic rocks exposed in the Beijing Yanqing “flowerpot” basin, which include rock types, clastic composition and cement type, etc. have been analyzed systematically to identify the provenance direction and tectonic setting and nature of the provenance. Research shows that the sedimentary rocks in this area belong to analluvial fan and braided river sedimentary rock system and include mainly conglomerates, lithic sandstone, and feldspathic lithic sandstone. The main compositions of the conglomerate are dolomite and limestone. Nearly 50% to 70% of the sandstones are mainly polycrystalline quartz;10% to 15% are feldspar;and 40% to 55% are composed of debris from mainly magmatic and metamorphic rocks. A Dickinson triangular diagram indicates that the provenance type in this area is recycled orogny evolving from clastic recycled orogeny such as a collisional orogenic belt to a transitional recycled orogeny. On the basis of the geographic position and tectonic setting, three types of provenance can be identified in the Jurassic system Tuchengzi Formation. The far source provenances are Archean erathem basement metamorphic rocks in the northern basin and granite or adamellite that intruded rocks of the Late Jurassic epoch of the Yanshanian period in the northeast. The nearby provenance is the Mesoproterozoic erathem Changchengian system and Jixianianian system dolomite in both the east and west.展开更多
The study of sedimentary mélanges holds pivotal importance in understanding orogenic processes and unveiling geodynamic mechanisms.In this study,we present findings on zircon U-Pb isotopes and whole-rock elementa...The study of sedimentary mélanges holds pivotal importance in understanding orogenic processes and unveiling geodynamic mechanisms.In this study,we present findings on zircon U-Pb isotopes and whole-rock elemental data concerning the recently uncovered Zongzhuo Formation sedimentary mélanges within the Dingri area.Field observations reveal the predominant composition of the Zongzhuo Formation,characterized by a matrix of sandstone-mudstone mixed with sand-conglomerates within native blocks exhibiting soft sediment deformation.Moreover,exotic blocks originating from littoral-neritic seas display evidence of landslide deformation.Our study identifies the depositional environment of the Zongzhuo Formation in Dingri as a slope turbidite fan,with its provenance traced back to the passive continental margin.Notably,this contrasts with the Zongzhuo Formation found in the Jiangzi-Langkazi area.Based on existing data,we conclude that the Zongzhuo Formation in the Dingri area was influenced by the Dingri-Gamba fault and emerged within a fault basin of the passive continental margin due to Neo-Tethys oceanic subduction during the Late Cretaceous period.Its provenance can be attributed to the littoral-neritic sea of the northern Tethys Himalaya region.This study holds significant implications for understanding the tectonic evolution of Tethys Himalaya and for reevaluating the activity of the Dingri-Gamba fault,as it controls the active deposition of the Zongzhuo Formation.展开更多
The Northern Qaidam Basin is located at the northeastern part of the Qinghai-Tibetan Plateau. It contains very thick Cenozoic terrestrial clastic sediments, which records the formation of the northern Qaidam Basin due...The Northern Qaidam Basin is located at the northeastern part of the Qinghai-Tibetan Plateau. It contains very thick Cenozoic terrestrial clastic sediments, which records the formation of the northern Qaidam Basin due to compressional deformation during the Indo-Asian collision. In this paper, we used detrital apatite fission-track thermochronology, including 4 sandstones and 2 conglomerates samples from the Lulehe section, to reveal the Cenozoic evolution of the northern Qaidam Basin. Fission-track dating indicated the source region of the Lulehe section has experiencedimportant cooling and uplifting in the Late Cretaceous(at ~85.1 Ma and ~65 Ma) and the Eocene(~52 Ma), respectively. The AFT age distribution on the section suggested that the provenance of Lulehe section sediments were mainly derived from the south Qilian Shan(Qilian Mountains) and Altun Shan(Altun Mountains), and two significantly provenance changes may occur at 43.4-46.1 Ma and ~37.8 Ma, respectively. The results may have strong constrains on the Cenozoic deformation and tectonic evolution of the northern Qaidam Basin and Qinghai-Tibet Plateau.展开更多
Based on the data of outcrops, seismic sections, thin sections, heavy mineral assemblages and detrital zircon U-Pb dating, the sedimentary characteristics, lake level fluctuation and provenance characteristics of the ...Based on the data of outcrops, seismic sections, thin sections, heavy mineral assemblages and detrital zircon U-Pb dating, the sedimentary characteristics, lake level fluctuation and provenance characteristics of the Middle Jurassic Lianggaoshan Formation(J_(2)l) in eastern Sichuan Basin, SW China, were investigated to reveal the control of tectonic movements of the surrounding orogenic belts on the sedimentary systems. The J_(2)lmainly developed a delta–lake sedimentary system, which contained a complete third-order sequence that was subdivided into four lake level up-down cycles(fourth-order sequence).The lake basins of cycles Ⅰ and Ⅱ were mainly distributed in eastern Sichuan Basin, while the lake basins of cycles Ⅲ and Ⅳ migrated to central Sichuan Basin, resulting in the significant difference in sedimentary characteristics between the north and the south of eastern Sichuan Basin. The provenance analysis shows that there were three types of provenances for J_(2)l. Specifically, the parent rocks of Type Ⅰ were mainly acidic igneous rocks and from the proximal northern margin of the Yangtze Plate;the parent rocks of Type Ⅱ were intermediate-acid igneous rocks and metamorphic rocks and from the central parts of the southern and northern Qinling orogenic belts;the parent rocks of Type Ⅲ were mainly metamorphic rocks followed by intermediate–acid igneous rocks, and from the North Daba Mountain area. It is recognized from the changes of sedimentary system and provenance characteristics that the sedimentary evolution of J_(2)lin eastern Sichuan Basin was controlled by the tectonic compression of the Qinling orogenic belt. In the early stage, the lake basin was restricted to the east of the study area, and Type Ⅰ provenance was dominant. With the intensifying north-south compression of the Qinling orogenic belt, the lake basin expanded rapidly and migrated northward, and the supply of Type Ⅱ provenance increased. In the middle and late stages, the uplift of the North Daba Mountain led to the lake basin migration and the gradual increase in the supply of Type Ⅲ provenance.展开更多
During the Late Paleozoic-Early Mesozoic Era,the sediment transport system and tectonic regime in the southeastern margin of the South China Block(SESCB)all changed,significantly affected by the Paleo-Pacific subducti...During the Late Paleozoic-Early Mesozoic Era,the sediment transport system and tectonic regime in the southeastern margin of the South China Block(SESCB)all changed,significantly affected by the Paleo-Pacific subduction.However,controversy exists about the Paleo-Pacific subduction's initiation time.This study uses detrital zircon U-Pb ages to discuss the Late Triassic source-tosink system in the SESCB.It provides some references for the Paleo-Pacific subduction process based on crucial age information and zircons'trace elements.The paleogeography and similarity of detrital zircon age distribution indicate that three sinks were found in the SESCB during the Late Triassic:1.the Yangchun-Kaiping-Gaoming area,comprising major age ranges of 260-220,460-400,and 1200-800 Ma,which might be sourced from the Yunkai terrane;2.the Jiexi-Kanshi-Nanjing area,characterized by the significant age component of 2000-1800 Ma,which corresponded to the Wuyi terrane;3.the Xinan area,consisting of significant age groups of 290-250 and 380-320 Ma,which might be sourced from the magmatic rocks formed by the Huinan Movement and Paleo-Pacific subduction.Note that 290-250 Ma zircons were widely distributed in the Upper Triassic strata,and their trace elements suggested the existence of a magmatic arc near the SESCB during the 290-250 Ma.Thus,we propose that the Paleo-Pacific subduction might have begun in the Early Permian.展开更多
In order to determine the provenance and variation characteristics of sandstone-type uranium deposits located in the southwest Ordos Basin,U-Pb geochronology and Hf isotope analyses were conducted on detrital zircons ...In order to determine the provenance and variation characteristics of sandstone-type uranium deposits located in the southwest Ordos Basin,U-Pb geochronology and Hf isotope analyses were conducted on detrital zircons from the Late Mesozoic strata of the SD01 well in the Zhenyuan area.The detrital zircon U-Pb ages of four samples exhibited four main peaks at 250–330,420–500,1720–2000,and 2340–2580 Ma,with a small number of zircons dated at 770–1100 Ma.The detrital zircon age spectrum and further restriction provided by the in-situ Hf isotopic data suggest that the provenance of each stratum was mainly derived from the crystalline basement rock series(Khondalites,intermediate-acidic intrusive rocks,and metamorphic rocks)of the Alxa Block to the northwest and the Yinshan Block to the north,with minor amounts of Caledonian magmatic rocks and Jingning Period rocks from the western part of the northern Qilian orogenic belt to the west and the northern Qinling orogenic belt to the south.The provenance of the sandbody has not changed significantly and is of the Middle Jurassic–Early Cretaceous.The clear variations in the zircon ages of the samples from the Zhiluo and Anding formations were likely influenced by climate change during the Middle–Late Jurassic.The Triassic zircon age(<250 Ma)first appeared in Early Cretaceous strata,suggesting that tectonic activity was relatively strong in the northern Qinling orogenic belt during the Late Jurassic and produced extensive outcrops of Indo-Chinese granite,which were a source of basin sediments.展开更多
ABSTRACT: As one of the major exploration objects of marine deposit in Tarim basin, Silurian has been paid more attention from oil/gas exploration and geologists. However, due to the widely deposit and later erosion,...ABSTRACT: As one of the major exploration objects of marine deposit in Tarim basin, Silurian has been paid more attention from oil/gas exploration and geologists. However, due to the widely deposit and later erosion, it is difficult to restore the original basin. The surrounding tectonic activity and provenance systems of Silurian Tarim basin have a lot of controversy. Aid of detrital zircons U-Pb dating data obtained from well drilling of Tabei (塔北) and Tazhong (塔中) areas and Sishichang (四十场) and Xiangyangcun (向阳村) outcrop profiles, integrated with other geological and geophysical data, the tectothermal evolution and provenance nature of Silurian deposit have been revealed. Zircons U-Pb dating shows Tarim basin has experienced 5-6 significant tectothermal events: 3 500-3 000 Ma Paleo-Mesoarchean, around 2 500 and 1 800 Ma Paleoproterozoic, around 1 000 and 800 Ma Neoproterozoic, and 500--400 Ma Eopaleozoic tectothermal events. These tectothermal events reflected the evolution of Tarim microplates and Tarim basin, respectively, corresponded to the forming and spilitting process of Ur supercontinent, Kenorland, Columbia and Rodinia supercontinent. Differencebetween the samples of Tazhong and Tabei areas indicated that North and South Tarim microplates were different in Paleo-Mesoarchean, and later evolutions were more synchronous after Paleoproterozoic. Integrated with seismic data and outcrop interpretation, the U-Pb dating results also revealed that the surrounding tectonic activities were still very active during Silurian, and indicated different regions had different source systems. At Tadong (塔东) and Manjiaer (满加尔) depressions, major source systems came from Ordovician Altyn orogenic belts. At Tabei area and northwest of Tarim basin, majorsource systems came from recycling orogenic zone (the activity of South Tianshan (天山) Mountain) and Precambrian stable basement (local paleo-uplifts at north of Tabei). The Ordovician uplift and orogenic zone at the south of Tarim basin and Precambrian granite basement provided lots of source systems to Tazhong area.展开更多
基金The National Natural Science Foundation of China(NSFC)under contract Nos 41376079 and 41276060the Marine Geology Survey Project under contract Nos GZH200900501 and GZH201400204the Foundation of the Shandong Provincial Key Laboratory of Marine Ecology and Environment&Disaster Prevention under contract No.201304
文摘The sedimentary record of mud areas is an important carrier of information on the Holocene evolution of marine environments. Based on fine interpretations of the shallow stratigraphic section data, a small mud deposit area has been found in the southern coastal waters off Shandong Peninsula. This mud area is mainly distributed in coastal waters north of Laoshantou to the vicinity of Rushan Estuary. Overall, it is parallel to the coastline and spreads in a banded pattern, gradually thinning from offshore to the sea. The isopach map of depth distribution is parallel with the shoreline, and the depocenter lies in coastal waters of the Aoshan Bay where the maximum thickness is up to 22.5 m. Accelerator mass spectrometry(AMS) ^(14)C dating shows that the mud area was formed in the Holocene. The test data of surface sediments from the mud area, including particle size, mineral characteristics, and rare earth element contents, are used in comparisons with the composition of materials from the major surrounding medium and small rivers flowing into the sea and the Huanghe(Yellow) River. In this paper, the sedimentary characteristics and provenance of the mud deposit area are discussed. The results show that the formation of this mud area resulted from the joint action of the Huanghe River and surrounding rivers flowing into the sea.
基金Supported by Project of Dagang Branch of Petroleum Group Company Ltd,CNPC No TJDG-JZHT-2005-JSFW-0000-00339
文摘The main task of provenance analysis is to determine the source of sediments and the position of parent rocks.Provenance analysis may find out the relationship between erosion districts and sediment zone,between the uplift and the depression in the process of basin development.The authors use the method of heavy mineral clustering analysis and estimate the provenance direction of Huanghua Depression in the Paleogene Kong 2 Member.Research shows that there were five provenance areas of Kong 2 Member in Kongnan area.They are western(Shenusi),northwestern(Cangzhou),eastern(Ganhuatun),northeastern and southeastern.The main provenance areas were northwestern and western,while the southern provenance could not be ruled out.And these areas are consistent with the known provenance areas.
基金supported financially by the National Natural Science Foundation of China(No.42272111)the Second Tibetan Plateau Scientific Expedition Program(Nos.2019QZKK0204,2019QZKK0205).
文摘Detrital U-bearing minerals(e.g.,zircon,apatite)U-Pb ages with specific trace-element geochemistry,are frequently used in provenance analyses.In this study,we focus on the Yarlung River drainage in South Tibet,characterized by two distinct lithologic units:The Gangdese batholith to the north(mainly granitoids)and the Tethyan Himalaya(mainly sedimentary rocks)to the south,which plays a crucial role in the erosion of the Tibetan Plateau.To constrain the provenance of the Yarlung River Basin,we performed trace-element and U-Pb age analyses of detrital apatite from the river sands of the Yarlung River and its tributaries.Our findings indicate that the detrital apatite U-Pb age patterns of the north tributaries exhibit main peaks at approximately 40 and 60 Ma,consistent with the corresponding U-Pb age patterns of detrital zircon published.Further,their trace element casts fall mainly in the Type I granite region,also indicating the Gangdese arc-dominated source.However,those of the south tributaries(∼60–20 Ma)exhibit a different age distribution from the detrital zircon U-Pb groups(∼110–150,∼500,and 1100 Ma),suggesting that the detailed apatite U-Pb signals can provide excellent constraints on the provenance of igneous and metamorphic rock sources but less so for sedimentary rock sources.Combined with previous detrital zircon data in the study area,our detrital apatite information can highlight young metamorphic events from a complex background(i.e.,Niyang and Nianchu rivers),which offers additional constraints on the provenance of the Yarlung River Basin.Generally,a combination of geochemistry and geochronology of multi-detrital heavy minerals,such as zircon and apatite,can provide powerful tools for provenance analysis.
基金supported by the National Basic Research Program of China(NO.2009CB219306)the New Century Excellent Talent Program of Ministry of Education of China(NCET-04-0345)
文摘Huhehu Sag is a new battlefield for the future oil and gas exploration in the Hailar Basin. At present, exploration of this area stays at a low level and the understanding of the provenance system of the Nantun Formation is comparatively weak. So, to carry out the detailed depiction of the provenance system in the study area is significant for the sedimentary system reconstruction, for the prediction of reservoir distribution and favorable areas. Based on comprehensive analysis of paleogeomorphy, light-heavy mineral and seismic reflection features, sandstone thickness and sandstone percentage, this paper analyzes in detail the provenance system of the Nantun Formation in Huhehu Sag from various angles and levels. It shows that provenances of the Huhehu Sag mainly originated from the eastern Xilinbeier Salient and western Bayan Mountain Uplift. The provenances surrounding the lake basin converged to the center of the basin, among which, the steep slope belt and the gentle slope belt are the main provenances, and the southern uplift is a secondary one. The distribution framework of the provenance fundamentally determines the distribution rules of the depositional system and its sand body developing during the Nantun period.
基金financially supported by Deep Resources Exploration and Mining Project(Grant No.2019YFC0605202)Chinese Geological Survey(Grant No.DD20221684)。
文摘The Early-Middle Devonian Shugouzi Formation in the Quruqtagh block consists mainly of clastic rocks.However,their provenance has been scarcely studied since it was named.Geochemistry of clastic rocks was commonly used to interpret the provenance.Detrital heavy mineral analyses help frame the U-Pb age from zircon grains,integrated with geochemical data from detrital tourmaline and spinels.These techniques were used to characterize components of the sediment flux and define erosion areas in the Qurugtagh block,further providing evidence about the tectonic evolution of the South Tianshan and Tarim plate.The maximum depositional age constrained by detrital zircon dating was Early-Middle Devonian.Multiple diagrams for sedimentary provenance using major and trace elements indicate that continental island arc-related felsic rocks were the major source rocks for the Shugouzi Formation.Detrital tourmalines are dravite and schorl.The results of detrital tourmaline electron probe microanalysis(EPMA)show that the source rocks are mainly metasedimentary rocks and granitoids.The detrital chromian spinels within the sediments are characterized by high chroumium(Cr^(#))and varying magnesium(Mg^(#)).The discrimination plots reveal that these spinels were sourced from island arc magmatic rocks.The laser ablation inductively-coupled plasma mass spectrometry(LA-ICP-MS)U-Pb chronology of detrital zircons suggests that the sediments were derived mainly from 414-491 Ma and 744-996 Ma magmatic rocks.Paleocurrent restoration,sandstone geochemistry,EPMA,and detrital zircon geochronology indicate that the source rocks were predominantly derived from Late Ordovician and Devonian magmatic rocks and subordinately from recycled Neoproterozoic magmatic rocks.Comprehensive analyses of the source areas suggest that a remnant arc still existed in the Early Devonian and the Shugouzi Formation was deposited in a passive continental margin.
基金Supported by the National Natural Science Foundation of China(Nos.41576057,41876092)。
文摘The quantitative analysis of sediment sources in a sink is an important scientific topic and challenge in provenance research.The characteristics of heavy minerals,combined with the geochemical constituents of detrital grains,provide a reliable provenance-tracing approach.We developed a mineral identification method to analyze the multiple grain-size fraction of sediments,from which the elemental geochemistry of hornblende was used to compare the characteristics of sediments from the Huaihe River and Huanghe(Yellow)River in eastern China.Elements that were statistically identified as being able to discriminate sediment provenance were employed to perform a quantitative analysis of the sources of sediments of the abandoned Huanghe River.Results reveal that the Huaihe River is characterized by a high amphibole content of>60%and that the Huanghe and abandoned Huanghe rivers have greater abundances of limonite and carbonate minerals compared with those of the Huaihe River.The contents of trace elements and rare earth elements in hornblende show that the sediments of the abandoned Huanghe River are similar to those of the Huanghe River but different from those of the Huaihe River.Furthermore,chemical mass balance was used to calculate the relative contributions of different provenances of sediment from the abandoned Huanghe River,and nine trace elements of hornblende were identified as discriminators of provenance.Approximately 2%of the hornblende in the abandoned Huanghe River is derived from the Huaihe River and 98%from the Huanghe River.Considering the proportion of hornblende in the total sediment,it is inferred that the contribution of Huaihe River sediment to the abandoned Huanghe River is approximately 0.5%.This study shows that mineral analysis using multiple grain-size fractions(within the wide range of 1Φto 6Φ)with assessment in elemental geochemistry of hornblende can characterize the provenance of fluvial material in coastal zones.
基金Funding for this project was provided by the China Geological Survey Project(Grant Nos.DD20230316 and DD20190099)Deep Resources Exploration and Mining Project(Grant No.2019YFC0605202).
文摘During the Late Carboniferous to Early Permian,a rift was formed by post-collisional extension after ocean closure or an island arc-related basin formed by Paleo-Asian Ocean(PAO)subduction in the Xi Ujimqin area.Nevertheless,the closure time of the PAO is still under debate.Thus,to identify the origin of the PAO,the geochemistry and U-Pb age of zircons were analyzed for the extra-large deep marine,polymict clastic boulders and sandstones in the Shoushangou Formation within the basin.The analyses revealed magmatic activity and tectonic evolution.The conglomerates include megaclasts of granite(298.8±9.1 Ma)and granodiorite porphyry(297.1±3.1 Ma),which were deposited by muddy debris flow.Results of this study demonstrated that the boulders of granitoids have the geochemistry of typical I-type granite,characterized by low Zr+Nb+Ce+Y and low Ga/Al values.The granitoid boulders were formed in island arc setting,indicating the presence of arc magmatism in the area that is composed of the Late Carboniferous to Early Permian subduction-related granitoid in southern Xi Ujimqin.Multiple diagrams for determining sedimentary provenance using major and trace elements indicate that Shoushangou sediments originated from continental island arc-related felsic rocks.Detrital zircon U-Pb age cluster of 330–280 Ma was obtained,indicating input from granite,ophiolite,Xilin Gol complex,and Carboniferous sources to the south.The basin was geographically developed behind the arc during the Early Permian period because the outcropped intrusive rocks in the Late Carboniferous to Early Permian form a volcanic arc.The comprehensive analyses of source areas suggest that Shoushangou sediments developed in a backarc basin in response to the northward subduction of the PAO.The backarc basin and intrusive rocks,in addition to previously published Late Carboniferous to Early Permian magmatic rocks of arc unit in Xilin Gol,confirm the presence of an Early Permian trencharc-basin system in the region,represented by the Baolidao arc and Xi Ujimqin backarc basin.This study highlights the importance and potential of combined geochemical and geochronological studies of conglomerates and sandstone for reconstructing the geodynamic setting of a basin.
基金the National Natural Science Foundation of China [Grant No. 41802119 and 41602212]Natural Science Foundation of Shaanxi [Grant No. 2019JQ-088]+1 种基金Special Projects of China Geological Survey [Grant No. 12120113039900 and 12120114009201]Doctor’s fund of Xi’an University of Science and Technology [Grant No. 2017QDJ051]
文摘Petrographic and geochemical characteristics of the Upper Triassic sandstones in the western Ordos Basin were studied to provide insight into weathering characteristics,provenance,and tectonic implications.Petrographic features show that the sandstones are characterized by low-medium compositional maturity and textural maturity.The CIA and CIW values reveal weak and moderate weathering history in the source area.The geochemical characteristics together with palaeocurrent data show that the northwestern sediments were mainly derived from the Alxa Block with a typical recycled nature,while the provenance of the western and southwestern sediments were mainly from the Qinling-Qilian Orogenic Belt.The tectonic setting discrimination diagrams signify that the parent rocks of sandstones in the western and southern Ordos Basin were mainly developed from continental island arc,which is closely related to the evolution of the QinlingQilian Orogenic Belt.However,the sandstones in the northwestern Ordos Basin show complex features,which may be resulted from a typical recycling process.Overall evidence from petrography,geochemistry and sedimentology,together with previous researches suggest the Kongtongshan and Helanshan areas were the southwestern and northwestern boundary of the Ordos Basin,respectively,and there was no clear boundary between the Hexi Corridor Belt and Ordos Basin,where a large,uniform sediment dispersal system developed during the Late Triassic.
基金partly financed by the Ministry of Education,Science and Technological Development,Republic of Serbia(Grant No.451-03-68/2020-14/200026 and Project 176006)。
文摘A combined inorganic and organic geochemical study was carried out on marls and mudstones collected from the Lower Miocene Lopare Basin,Bosnia and Herzegovina.A total of 46 samples collected from two boreholes,Pot 1(depth of 193 m)and Pot 3(depth of 344 m),showed that element abundances like boron(B),lithium(Li),strontium(Sr),uranium(U),chromium(Cr),nickel(Ni),magnesium(Mg),sodium(Na)and calcium(Ca)are much higher than average than in the upper continental crust(UCC).Chemical composition indicates at least two sources:(i)Mesozoic ophiolites occurring in the north of the investigated area,and(ii)dacito-andesitic pyroclastics(Mesozoic to Cenozoic).Lopare Basin sedimentation was influenced by strong evaporation resulting in a partly hypersaline lake,which formed during a warm climatic period,probably during the Miocene Climatic Optimum.A brief episode of humid climate conditions resulted in the basin fillingup and deposition of felsic sediments enriched in thorium(Th).Organic geochemistry shows that the majority of studied sediments contains predominantly immature to marginally mature algal organic matter(OM).The biomarker patterns are generally in agreement with the geological history of the Lopare Basin and inorganic and mineralogical data.Conversely,the molecular distribution of n-alkanes as reliable climatic andδ-MTTC as paleosalinity indicators do not support this conclusion.
基金supported by the National Science Foundation of China (No. 41302080)the fundamental research funds for central public welfare research institutes(No:K1613)Chinese Geological Survey (No. DD20190099, DD20190437)
文摘Xuanwei Formation is composed of mudstone,siltstone,and sandstone,with local conglomerate.However,its provenance and tectonic setting have been scarcely studied.In this paper,we use sedimentology,electron probe microanalysis(EPMA),and detrital zircon dating to investigate its source area and depositional tectonic setting.The facies assemblages indicate that it formed in alluvial fan and fluvial river sedimentary environments.The strata thicknesses and facies distribution indicate that the sediment supply was from the west.The results of EPMA show that chromian spinels within the sediments are characterized by high Cr#and varying Mg#.Discrimination plots suggest that these spinels were sourced from large igneous province(LIP)magmatic rocks.The laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)U–Pb chronology of detrital zircons suggests that the sediments were derived from intermediate–acid igneous rocks dating back to 251–260?Ma.We could,therefore,conclude that the provenance of the Xuanwei Formation is from Emeishan basalt and synchronous felsic igneous rocks,which is consistent with the composition of the detrital framework.The detrital zircon dates also suggest that felsic magmatism occurred during the Late Permian,not after the eruption of the Emeishan basalt.Based on the sedimentary successions and provenance analysis,the tectonic setting for Xuanwei Formation deposition was a volcanic rifted margin.
基金financially supported by the National Natural Science Foundation of China (Nos.41776081, 41210005)the China Geological Survey Project (No.DD20160147)Aoshan Science and Technology Innovation Project of Qingdao Pilot National Laboratory for Marine Science and Technology (No.2015ASKJ03)。
文摘Well CSDP-2 is a fully coring deep drilling hole, penetrating the thick Paleozoic marine strata in the South Yellow Sea Basin(SYSB) in the lower Yangtze Block(LYB). Based on the petrological and geochemical analysis of 40 sandstone samples from the core CSDP-2, the provenance and tectonic features of Paleozoic detrital rocks from SYSB are analyzed and systematically delineated in this article. The results show that the Silurian – Carboniferous sandstones are mature sublitharenite, while the Permian sandstones are unstable feldspathic litharenite. The average CIA(chemical index of alteration) is 74.61, which reflects these sediments were derived from source rocks with moderate chemical weathering. The REE(rare earth element) patterns are characterized by LREE enrichment, flat HREE and obviously negative Eu anomaly, which are similar to that of the upper continental crust. Dickinson QFL discrimination results indicate the recycled orogeny provenance. Various diagrams for the discrimination of sedimentary provenance based on major and trace element data show all the sediments were derived predominantly from quartz sedimentary rocks, of which the Permian strata contain more felsic sedimentary rocks. Geochemical data for these detrital rocks suggest they occur at the passive continental margin and island arc settings, and the Permian sandstone presents active continental margin setting.
基金supported by the National Natural Science Foundation of China(No.40972043)
文摘The provenance of the lower Es2 in the Shanghe area was determined from an approach incorporating analysis, elemental ratios,paleocurrent direction,the typomorphic characteristics of detritus and the distribution of conglomerate and gritstone in the peripheral basin.Typical elemental ratios characteristic of the sedimentary area were compared with those from the source areas as abstracted from sediments of the Huimin sag using cluster analysis.The results show that the distribution pattern focuses on Mg/Mn,Fe/K,Al/Na,Ba/Mn and Al/Mg.Mg/Mn is the highest ratio,from 25 to 45.This is similar to the pattern from the Precambrian.Furthermore,paleocurrent direction was used to determine provenance by examining the distribution of gritstone and the seismic progradational reflections.The research results indicate that the provenance is to the northwest in the Precambrian strata where the sand grain size is rough.To the east there is siltstone,fine sandstone and mudstone.This is significant for the exploration of oil and gas within the study area.
基金The 111 Project of China(Grant No.B07011)the Geological Survey project(No.1212011221072) provide funding for this research
文摘Located on the south of the Gangdese,the Qiuwu Formation has traditionally been considered as Eocene coal-bearing clastic sediments consisting of sandstone,mudstone and conglomerate,unconformably on top of Gangdese batholith.However,its precise age and depositional environment remain ambiguous.Here,we present a newly measured stratigraphic section near the Ngamring County,western Xigaze.Detrital zircon U-Pb ages were also applied to trace the provenance of sediments and to constrain the maximum depositional age of the Qiuwu Formation.Sedimentary facies analyses indicate subaqueous fan and alluvial fan depositional environments.Clast composition of the conglomerate is dominated by magmatic rocks at the lower part,while chert and mafic detritus occur in the upper part,suggesting a southern source.Sandstone modal analyses indicate that the compositions of quartz,feldspar and lithic grains changed from transitional arc to dissected arc,implying the unroofing of the Gangdese arc.Detrital zircon U-Pb ages of the Qiuwu Formation are compared with those from Gangdese magmatic rocks and Yarlung-Zangbo ophiolites,suggesting that the Gangdese arc is a main source of the Qiuwu detritus and that the southern source played a role during the later stage.The major peak of detrital zircon ages is at 45-55 Ma,which corresponds to Linzizong volcanic rocks in southern Gangdese arc.The weighted mean age of the five youngest zircons from the lower part of the section is 21.0 ± 2.2 Ma,suggesting that the Qiuwu Formation was deposited in early Miocene,coeval with other conglomerates exposed along the southern margin of Gangdese.Combining new observations with previously published data,we propose that the provenance of the Qiuwu Formation had shifted from a single northern source to double sources from both the north and the south.Activities of Great Counter Thrust were primarily responsible for the shift by making the south area a high elevation to provide sediments for the Qiuwu Formation.
文摘The characteristics of sedimentary petrology are significant in determining geological provenance. By using field outcrop observation and indoor identification of thin sections, the characteristics of Jurassic system Tuchengzi Formation clastic rocks exposed in the Beijing Yanqing “flowerpot” basin, which include rock types, clastic composition and cement type, etc. have been analyzed systematically to identify the provenance direction and tectonic setting and nature of the provenance. Research shows that the sedimentary rocks in this area belong to analluvial fan and braided river sedimentary rock system and include mainly conglomerates, lithic sandstone, and feldspathic lithic sandstone. The main compositions of the conglomerate are dolomite and limestone. Nearly 50% to 70% of the sandstones are mainly polycrystalline quartz;10% to 15% are feldspar;and 40% to 55% are composed of debris from mainly magmatic and metamorphic rocks. A Dickinson triangular diagram indicates that the provenance type in this area is recycled orogny evolving from clastic recycled orogeny such as a collisional orogenic belt to a transitional recycled orogeny. On the basis of the geographic position and tectonic setting, three types of provenance can be identified in the Jurassic system Tuchengzi Formation. The far source provenances are Archean erathem basement metamorphic rocks in the northern basin and granite or adamellite that intruded rocks of the Late Jurassic epoch of the Yanshanian period in the northeast. The nearby provenance is the Mesoproterozoic erathem Changchengian system and Jixianianian system dolomite in both the east and west.
基金supported by the Geological Survey Project of the China Geological Survey(Grant No.DD20211547)the Basic Survey Project of the Command Center of Natural Resources Comprehensive Survey(Grant No.ZD20220508)。
文摘The study of sedimentary mélanges holds pivotal importance in understanding orogenic processes and unveiling geodynamic mechanisms.In this study,we present findings on zircon U-Pb isotopes and whole-rock elemental data concerning the recently uncovered Zongzhuo Formation sedimentary mélanges within the Dingri area.Field observations reveal the predominant composition of the Zongzhuo Formation,characterized by a matrix of sandstone-mudstone mixed with sand-conglomerates within native blocks exhibiting soft sediment deformation.Moreover,exotic blocks originating from littoral-neritic seas display evidence of landslide deformation.Our study identifies the depositional environment of the Zongzhuo Formation in Dingri as a slope turbidite fan,with its provenance traced back to the passive continental margin.Notably,this contrasts with the Zongzhuo Formation found in the Jiangzi-Langkazi area.Based on existing data,we conclude that the Zongzhuo Formation in the Dingri area was influenced by the Dingri-Gamba fault and emerged within a fault basin of the passive continental margin due to Neo-Tethys oceanic subduction during the Late Cretaceous period.Its provenance can be attributed to the littoral-neritic sea of the northern Tethys Himalaya region.This study holds significant implications for understanding the tectonic evolution of Tethys Himalaya and for reevaluating the activity of the Dingri-Gamba fault,as it controls the active deposition of the Zongzhuo Formation.
基金funded by the Natural Science Foundation of China (Grants No. 41501209 and 41571177)the Fundamental Research Funds for the Central Universities (862457, lzujbky-2016-22)
文摘The Northern Qaidam Basin is located at the northeastern part of the Qinghai-Tibetan Plateau. It contains very thick Cenozoic terrestrial clastic sediments, which records the formation of the northern Qaidam Basin due to compressional deformation during the Indo-Asian collision. In this paper, we used detrital apatite fission-track thermochronology, including 4 sandstones and 2 conglomerates samples from the Lulehe section, to reveal the Cenozoic evolution of the northern Qaidam Basin. Fission-track dating indicated the source region of the Lulehe section has experiencedimportant cooling and uplifting in the Late Cretaceous(at ~85.1 Ma and ~65 Ma) and the Eocene(~52 Ma), respectively. The AFT age distribution on the section suggested that the provenance of Lulehe section sediments were mainly derived from the south Qilian Shan(Qilian Mountains) and Altun Shan(Altun Mountains), and two significantly provenance changes may occur at 43.4-46.1 Ma and ~37.8 Ma, respectively. The results may have strong constrains on the Cenozoic deformation and tectonic evolution of the northern Qaidam Basin and Qinghai-Tibet Plateau.
基金Supported by the Scientific Research and Technology Development Project of PetroChina (2021DJ04,2021DJ0401)。
文摘Based on the data of outcrops, seismic sections, thin sections, heavy mineral assemblages and detrital zircon U-Pb dating, the sedimentary characteristics, lake level fluctuation and provenance characteristics of the Middle Jurassic Lianggaoshan Formation(J_(2)l) in eastern Sichuan Basin, SW China, were investigated to reveal the control of tectonic movements of the surrounding orogenic belts on the sedimentary systems. The J_(2)lmainly developed a delta–lake sedimentary system, which contained a complete third-order sequence that was subdivided into four lake level up-down cycles(fourth-order sequence).The lake basins of cycles Ⅰ and Ⅱ were mainly distributed in eastern Sichuan Basin, while the lake basins of cycles Ⅲ and Ⅳ migrated to central Sichuan Basin, resulting in the significant difference in sedimentary characteristics between the north and the south of eastern Sichuan Basin. The provenance analysis shows that there were three types of provenances for J_(2)l. Specifically, the parent rocks of Type Ⅰ were mainly acidic igneous rocks and from the proximal northern margin of the Yangtze Plate;the parent rocks of Type Ⅱ were intermediate-acid igneous rocks and metamorphic rocks and from the central parts of the southern and northern Qinling orogenic belts;the parent rocks of Type Ⅲ were mainly metamorphic rocks followed by intermediate–acid igneous rocks, and from the North Daba Mountain area. It is recognized from the changes of sedimentary system and provenance characteristics that the sedimentary evolution of J_(2)lin eastern Sichuan Basin was controlled by the tectonic compression of the Qinling orogenic belt. In the early stage, the lake basin was restricted to the east of the study area, and Type Ⅰ provenance was dominant. With the intensifying north-south compression of the Qinling orogenic belt, the lake basin expanded rapidly and migrated northward, and the supply of Type Ⅱ provenance increased. In the middle and late stages, the uplift of the North Daba Mountain led to the lake basin migration and the gradual increase in the supply of Type Ⅲ provenance.
基金supported by the National Natural Science Foundation of China(No.41872101)the Graduate Innovation Fund of Jilin University(No.2022046)。
文摘During the Late Paleozoic-Early Mesozoic Era,the sediment transport system and tectonic regime in the southeastern margin of the South China Block(SESCB)all changed,significantly affected by the Paleo-Pacific subduction.However,controversy exists about the Paleo-Pacific subduction's initiation time.This study uses detrital zircon U-Pb ages to discuss the Late Triassic source-tosink system in the SESCB.It provides some references for the Paleo-Pacific subduction process based on crucial age information and zircons'trace elements.The paleogeography and similarity of detrital zircon age distribution indicate that three sinks were found in the SESCB during the Late Triassic:1.the Yangchun-Kaiping-Gaoming area,comprising major age ranges of 260-220,460-400,and 1200-800 Ma,which might be sourced from the Yunkai terrane;2.the Jiexi-Kanshi-Nanjing area,characterized by the significant age component of 2000-1800 Ma,which corresponded to the Wuyi terrane;3.the Xinan area,consisting of significant age groups of 290-250 and 380-320 Ma,which might be sourced from the magmatic rocks formed by the Huinan Movement and Paleo-Pacific subduction.Note that 290-250 Ma zircons were widely distributed in the Upper Triassic strata,and their trace elements suggested the existence of a magmatic arc near the SESCB during the 290-250 Ma.Thus,we propose that the Paleo-Pacific subduction might have begun in the Early Permian.
基金supported by the National Key Research and Development Program of China (No.2018YFC604201)the International Geoscience Programme (No.IGCP675)
文摘In order to determine the provenance and variation characteristics of sandstone-type uranium deposits located in the southwest Ordos Basin,U-Pb geochronology and Hf isotope analyses were conducted on detrital zircons from the Late Mesozoic strata of the SD01 well in the Zhenyuan area.The detrital zircon U-Pb ages of four samples exhibited four main peaks at 250–330,420–500,1720–2000,and 2340–2580 Ma,with a small number of zircons dated at 770–1100 Ma.The detrital zircon age spectrum and further restriction provided by the in-situ Hf isotopic data suggest that the provenance of each stratum was mainly derived from the crystalline basement rock series(Khondalites,intermediate-acidic intrusive rocks,and metamorphic rocks)of the Alxa Block to the northwest and the Yinshan Block to the north,with minor amounts of Caledonian magmatic rocks and Jingning Period rocks from the western part of the northern Qilian orogenic belt to the west and the northern Qinling orogenic belt to the south.The provenance of the sandbody has not changed significantly and is of the Middle Jurassic–Early Cretaceous.The clear variations in the zircon ages of the samples from the Zhiluo and Anding formations were likely influenced by climate change during the Middle–Late Jurassic.The Triassic zircon age(<250 Ma)first appeared in Early Cretaceous strata,suggesting that tectonic activity was relatively strong in the northern Qinling orogenic belt during the Late Jurassic and produced extensive outcrops of Indo-Chinese granite,which were a source of basin sediments.
基金supported by the Fundamental Research Funds for the Central Universities of China(No.2010ZD07)the Key National Natural Science Foundation of China(No.41130422)+1 种基金the National Natural Science Foundation of China(No. 40372056)the State Key Development Program for Basic Research of China(Nos.2011CB201103,2006CB202302)
文摘ABSTRACT: As one of the major exploration objects of marine deposit in Tarim basin, Silurian has been paid more attention from oil/gas exploration and geologists. However, due to the widely deposit and later erosion, it is difficult to restore the original basin. The surrounding tectonic activity and provenance systems of Silurian Tarim basin have a lot of controversy. Aid of detrital zircons U-Pb dating data obtained from well drilling of Tabei (塔北) and Tazhong (塔中) areas and Sishichang (四十场) and Xiangyangcun (向阳村) outcrop profiles, integrated with other geological and geophysical data, the tectothermal evolution and provenance nature of Silurian deposit have been revealed. Zircons U-Pb dating shows Tarim basin has experienced 5-6 significant tectothermal events: 3 500-3 000 Ma Paleo-Mesoarchean, around 2 500 and 1 800 Ma Paleoproterozoic, around 1 000 and 800 Ma Neoproterozoic, and 500--400 Ma Eopaleozoic tectothermal events. These tectothermal events reflected the evolution of Tarim microplates and Tarim basin, respectively, corresponded to the forming and spilitting process of Ur supercontinent, Kenorland, Columbia and Rodinia supercontinent. Differencebetween the samples of Tazhong and Tabei areas indicated that North and South Tarim microplates were different in Paleo-Mesoarchean, and later evolutions were more synchronous after Paleoproterozoic. Integrated with seismic data and outcrop interpretation, the U-Pb dating results also revealed that the surrounding tectonic activities were still very active during Silurian, and indicated different regions had different source systems. At Tadong (塔东) and Manjiaer (满加尔) depressions, major source systems came from Ordovician Altyn orogenic belts. At Tabei area and northwest of Tarim basin, majorsource systems came from recycling orogenic zone (the activity of South Tianshan (天山) Mountain) and Precambrian stable basement (local paleo-uplifts at north of Tabei). The Ordovician uplift and orogenic zone at the south of Tarim basin and Precambrian granite basement provided lots of source systems to Tazhong area.