阶梯式碳交易机制以及优化调度模型求解算法是进行园区综合能源系统(community integrated energy system,CIES)优化调度的重要因素,现有文献对这两个因素的考虑不够全面。为此,文中在考虑阶梯式碳交易机制的基础上,提出采用近端策略优...阶梯式碳交易机制以及优化调度模型求解算法是进行园区综合能源系统(community integrated energy system,CIES)优化调度的重要因素,现有文献对这两个因素的考虑不够全面。为此,文中在考虑阶梯式碳交易机制的基础上,提出采用近端策略优化(proximal policy optimization,PPO)算法求解CIES低碳优化调度问题。该方法基于低碳优化调度模型搭建强化学习交互环境,利用设备状态参数及运行参数定义智能体的状态、动作空间及奖励函数,再通过离线训练获取可生成最优策略的智能体。算例分析结果表明,采用PPO算法得到的CIES低碳优化调度方法能够充分发挥阶梯式碳交易机制减少碳排放量和提高能源利用率方面的优势。展开更多
随着空间目标的数量逐渐增多、空中目标动态性日趋提升,对目标的观测定位问题变得愈发重要.由于需同时观测的目标多且目标动态性强,而星座观测资源有限,为了更高效地调用星座观测资源,需要动态调整多目标协同观测方案,使各目标均具有较...随着空间目标的数量逐渐增多、空中目标动态性日趋提升,对目标的观测定位问题变得愈发重要.由于需同时观测的目标多且目标动态性强,而星座观测资源有限,为了更高效地调用星座观测资源,需要动态调整多目标协同观测方案,使各目标均具有较好的定位精度,因此需解决星座协同观测多目标的任务规划问题.建立星座姿态轨道模型、目标飞行模型、目标协同探测及定位模型,提出基于几何精度衰减因子(geometric dilution of precision, GDOP)的目标观测定位误差预估模型及目标观测优先级模型,建立基于强化学习的协同观测任务规划框架,采用多头自注意力机制建立策略网络,以及近端策略优化算法开展任务规划算法训练.仿真验证论文提出的方法相比传统启发式方法提升了多目标观测精度和有效跟踪时间,相比遗传算法具有更快的计算速度.展开更多
文摘随着空间目标的数量逐渐增多、空中目标动态性日趋提升,对目标的观测定位问题变得愈发重要.由于需同时观测的目标多且目标动态性强,而星座观测资源有限,为了更高效地调用星座观测资源,需要动态调整多目标协同观测方案,使各目标均具有较好的定位精度,因此需解决星座协同观测多目标的任务规划问题.建立星座姿态轨道模型、目标飞行模型、目标协同探测及定位模型,提出基于几何精度衰减因子(geometric dilution of precision, GDOP)的目标观测定位误差预估模型及目标观测优先级模型,建立基于强化学习的协同观测任务规划框架,采用多头自注意力机制建立策略网络,以及近端策略优化算法开展任务规划算法训练.仿真验证论文提出的方法相比传统启发式方法提升了多目标观测精度和有效跟踪时间,相比遗传算法具有更快的计算速度.