Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini...Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini-cage cable bolts.The diameter of the tested bolts was between 16 mm and 26 mm.The bolts were grouted in a sandstone sample using resin or cement grouts.The tests were conducted under either constant radial stiffness or constant confining pressure boundary conditions applied on the outer surface of the rock sample.In most tests,the rate of displacement was about 0.02 mm/s.The tests were performed using a pull-out bench that allows testing a wide range of parameters.This paper provides an extensive database of laboratory pull-out test results and confirms the influence of the confining pressure and the embedment length on the pull-out response(rock bolts and cable bolts).It also highlights the sensitivity of the results to the operating conditions and to the behavior of the sample as a whole,which cannot be neglected when the test results are used to assess the bolt-grout or the grouterock interface.展开更多
The reaction of earth to pull-out process of frictional rock bolts was here modeled by the distinct element method (DEM). Ten frictional bolts were prepared;the expanding shells of five bolts included convex edges and...The reaction of earth to pull-out process of frictional rock bolts was here modeled by the distinct element method (DEM). Ten frictional bolts were prepared;the expanding shells of five bolts included convex edges and the others had the shells with concave bits. The strength of bolts was measured by applying a standard pull-out test;the results confirmed that the strength of shells with convex edges was remarkably more than the strength of other shells. Furthermore, a two-dimensional DEM model of the test was developed by a particle flow code;the obtained results showed that the reaction of rock particles to the contacts occurring between the convex edges and earth was considerably more than those of the concave bits. In the other words, the convex edges transferred the pull-out force into a large area of the surrounded rock, causing these bolts to have the highest resistance against earth movements.展开更多
基金supported by the European Research Fund for Coal and Steel in the AMSSTED Programme RFCR-CT-2013-00001
文摘Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini-cage cable bolts.The diameter of the tested bolts was between 16 mm and 26 mm.The bolts were grouted in a sandstone sample using resin or cement grouts.The tests were conducted under either constant radial stiffness or constant confining pressure boundary conditions applied on the outer surface of the rock sample.In most tests,the rate of displacement was about 0.02 mm/s.The tests were performed using a pull-out bench that allows testing a wide range of parameters.This paper provides an extensive database of laboratory pull-out test results and confirms the influence of the confining pressure and the embedment length on the pull-out response(rock bolts and cable bolts).It also highlights the sensitivity of the results to the operating conditions and to the behavior of the sample as a whole,which cannot be neglected when the test results are used to assess the bolt-grout or the grouterock interface.
文摘The reaction of earth to pull-out process of frictional rock bolts was here modeled by the distinct element method (DEM). Ten frictional bolts were prepared;the expanding shells of five bolts included convex edges and the others had the shells with concave bits. The strength of bolts was measured by applying a standard pull-out test;the results confirmed that the strength of shells with convex edges was remarkably more than the strength of other shells. Furthermore, a two-dimensional DEM model of the test was developed by a particle flow code;the obtained results showed that the reaction of rock particles to the contacts occurring between the convex edges and earth was considerably more than those of the concave bits. In the other words, the convex edges transferred the pull-out force into a large area of the surrounded rock, causing these bolts to have the highest resistance against earth movements.