In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is o...In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is on the increase. The operation and working principle of heat pumps must be well understood in the investigations of their impacts on the grid and the grid assets, especially distribution transformers which could be overloaded due to higher peak load demand. This work develops an operational model of heat pumps as combined space heating and domestic hot water provider implemented in MATLAB. The developed operational model of heat pumps is adaptable and repeatable for different input parameters. The developed model is used to generate daily average demand profiles of heat pumps for a typical winter weekday and a typical summer weekday. The generated demand profiles of heat pumps by the developed model compared well with the demand profiles of heat pumps generated from actual field projects which are usually expensive and time-tasking.展开更多
This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this m...This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this material loss on the volumetric efficiency. The results are combined with an established backflow model to implement a backflow calculation procedure that is adaptive to wear. We use a laboratory test setup with a highly abrasive fluid and operate a pump from new to worn condition to validate our approach. The obtained measurement data show that the presented virtual sensor is capable of calculating the flow rate of a pump being subject to wear during its regular operation.展开更多
To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second...To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.展开更多
With the increasing noise pollution, low noise optimization of centrifugal pimps has become a hot topic. However, experimental study on this problem is unacceptable for industrial applications due to unsustainable cos...With the increasing noise pollution, low noise optimization of centrifugal pimps has become a hot topic. However, experimental study on this problem is unacceptable for industrial applications due to unsustainable cost. A hybrid method that couples computational fluid dynamics (CFD) with computational aeroacoustic software is used to predict the flow-induced noise of pumps in order to minimize the noise of centrifugal pumps in actual projects. Under Langthjem's assumption that the blade surface pressure is the main flow-induced acoustic source in centrifugal pumps, the blade surface pressure pulsation is considered in terms of the acoustical sources and simulated using CFX software. The pressure pulsation and noise distribution in the near-cutoff region are examined for the blade-passing frequency (BPF) noise, and the sound pressure level (SPL) reached peaks near the cutoff that corresponded with the pressure pulsation in this region. An experiment is performed to validate this prediction. Four hydrophones are fixed to the inlet and outlet ports of the test pump to measure the flow-induced noise from the four-port model. The simulation results for the noise are analyzed and compared with the experimental results. The variation in the calculated noise with changes in the flow agreed well with the experimental results. When the flow rate was increased, the SPL first decreased and reached the minimum near the best efficient point (BEP); it then increased when the flow rate was further increased. The numerical and experimental results confirmed that the BPF noise generated by a blade-rotating dipole roughly reflects the acoustic features of centrifugal pumps. The noise simulation method in current study has a good feasibility and suitability, which could be adopted in engineering design to predict and optimize the hydroacoustic behavior of centrifugal pumps.展开更多
Raising the rotational speed of an axial piston pump is useful for improving its power density;however,the churning losses of the piston increase significantly with increasing speed,and this reduces the performance an...Raising the rotational speed of an axial piston pump is useful for improving its power density;however,the churning losses of the piston increase significantly with increasing speed,and this reduces the performance and efficiency of the axial piston pump.Currently,there has been some research on the churning losses of pistons;however,it has rarely been analyzed from the perspective of the piston number.To improve the performance and efficiency of the axial piston pump,a computational fluid dynamics(CFD)simulation model of the churning loss was established,and the effect of piston number on the churning loss was studied in detail.The simulation analysis results revealed that the churning losses initially increased as the number of pistons increased;however,when the number of pistons increased from six to nine,the torque of the churning losses decreased because of the hydrodynamic shadowing effect.In addition,in the analysis of cavitation results,it was determined that the cavitation area of the axial piston pump was mainly concentrated around the piston,and the cavitation became increasingly severe as the speed increased.By comparing the simulation results with and without the cavitation model,it was observed that the cavitation phenomenon is beneficial for the reduction of churning losses.In this study,a piston churning loss test rig that can eliminate other friction losses was established to verify the accuracy of the simulation results.A comparative analysis indicated that the simulation results were consistent with the actual situation.In addition,this study also conducted a simulation study on seven and nine piston pumps with the same displacement.The simulation results revealed that churning losses of the seven pistons were generally greater than those of the nine pistons under the same displacement.In addition,regarding the same piston number and displacement,reducing the pitch circle radius of piston bores is effective in reducing the churning loss.This research analyzes the effect of piston number on the churning loss,which has certain guiding significance for the structural design and model selection of axial piston pumps.展开更多
The momentum flow exchange between the impeller and side channel produces highly turbulent flows in side channel pumps.The turbulent flows feature complex patterns of vortex structures that are partly responsible for ...The momentum flow exchange between the impeller and side channel produces highly turbulent flows in side channel pumps.The turbulent flows feature complex patterns of vortex structures that are partly responsible for the dissipation of energy losses and unsteady pressure pulsations.The concept of turbulent flows in side channel pumps requires a reliable vortex identification criterion to capture and predict the effects of the vortex structures on the performance.For this reason,the current study presents the application of the new Ω-criterion to a side channel pump model in comparison with other traditional methods such as Qand λ2 criteria.The 3D flow fields of the pump were obtained through unsteady Reynolds-averaged Navier-Stokes(RANS)simulations.Comparative studies showed that the Ω-criterion identifies the vortex of different intensities with a standard threshold,Ω=0.52.The Q and λ2 criteria required different thresholds to capture vortex of different intensities thus leads to subjective errors.Comparing theΩ-criterion intensity on different planes with the entropy losses and pressure pulsation,the longitudinal vortex plays an important role in the momentum exchange development which increases the head performance of the pump.However,the rate of exchange is impeded by the axial and radial vortices restricted in the impeller.Therefore,the impeller generates the highest entropy loss and pressure pulsation intensities which lower the output efficiency.Finally,the findings provide a fundamental background to the morphology of the vortex structures in the turbulent flows which can be dependent upon for efficiency improvement of side channel pumps.展开更多
An overview of some popular rotary and reciprocating positive displacement( PD) pump types is given with the objective of presenting and comparing the respective sizing relationships and performance features. Reciproc...An overview of some popular rotary and reciprocating positive displacement( PD) pump types is given with the objective of presenting and comparing the respective sizing relationships and performance features. Reciprocating pumps discussed are the piston and plunger types. Rotary pumps addressed are gear( external and internal),vane,lobe,screw,and liquid ring pumps. To put the relative pump sizes in perspective,attention is fixed on the rotors or reciprocating elements of PD pumps,just as impellers indicate the sizes of rotodynamic pumps. The size of a PD pump is found from a dimensionless combination of displacement flow rate,rotative speed and diameter. The flow rate,head( or pressure rise) and power are related through the component efficiencies. The cavitation coefficient,often close to unity,connects the rotor tip speed or piston speed with the required NPSH,which can also be affected by the pressure rise of the pump due to leakage across the internal clearances. Operational effects due to cavitation,ingestion of gas or abrasives,and viscous and non-Newtonian fluids are discussed.展开更多
A series of steady and unsteady numerical calculations of the internal flow in mixed-flow pumps with three different specific speeds were carried out based on the N-S equation coupled with the standard k-εturbulence ...A series of steady and unsteady numerical calculations of the internal flow in mixed-flow pumps with three different specific speeds were carried out based on the N-S equation coupled with the standard k-εturbulence model under different operating conditions to investigate the relationship between the impeller specific speed and the pump performance as well as pressure pulsations.Meanwhile,the pump performance and pressure pulsations inside the mixed-flow pump with three different specific speeds were also analyzed and compared with the corresponding test data.From the results,the averaged deviations between the predicted and tested head among different impellers are below 5%,and with respect to the equivalent impeller specific speeds of 280 and 260,the values are 4.30%and 3.69%,respectively.For all the impeller schemes,the best efficiency point of the mixed-flow pump is found at the flow rate of 1.2 Q_(d) and the higher head deviation occurs at lower flow rates.Especially,it can be found that the specific speed has a slight effect on the pressure fluctuation in the impellers.Eventually,it is determined that the pump performance curves calculated by numerical simu-lations have good agreement with the relevant experimental results,which verifies that the numerical methods used in the present study are accurate to a certain extent.Furthermore,the results also provide some references to the pressure pulsation analysis and the performance improvement of the mixed-flow pump design.展开更多
AIM: To evaluate the effectiveness of automated irrigation pumps(AIPs) in improving the quality of the bowel preparation and the yield of colonoscopy.METHODS: A retrospective observational study was conducted at a sin...AIM: To evaluate the effectiveness of automated irrigation pumps(AIPs) in improving the quality of the bowel preparation and the yield of colonoscopy.METHODS: A retrospective observational study was conducted at a single medical center. Outpatient colonoscopies performed during a 4-mo time period when AIPs were not in use, were compared to colonoscopies performed during control period. The main outcomes measured were quality of bowel preparation, procedures aborted due to poor preparation, recommendations to repeat at short interval due to suboptimal bowel preparation and adenoma detection rates.RESULTS: One thousand and thirty-seven colonoscopies were included. A higher proportion of cases did not achieve a satisfactory bowel preparation when AIPs were not used(24.4% vs 10.3%, P < 0.01). The number of procedures aborted due to inadequate preparation was not significantly different, however a repeat procedure at a short interval was recommended in a higher proportion of cases when AIPs were not used(21.3% vs 6.9%, P < 0.01). Good or excellent preparation was 2.91(95%CI: 2.04-4.15) times more likely when AIPs were used. Detection of polyps and adenomas was not significantly different.CONCLUSION: AIP use during colonoscopy results in a higher proportion of colonic preparation rated as satisfactory, although polyp detection rate is not significantly affected. Recommendations for repeat colonoscopy at shorter interval significantly decrease with the use of AIPs. This study supports the use of the irrigation pumps in endoscopy units to improve the quality of colonoscopy.展开更多
Acinetobacter baumannii has greatly increased its degree of resistance to become multidrug resistant (MDR) over the past 30 years and is on the red line of the most widely replicated bacteria according to World Health...Acinetobacter baumannii has greatly increased its degree of resistance to become multidrug resistant (MDR) over the past 30 years and is on the red line of the most widely replicated bacteria according to World Health Organization (WHO). The efflux pumps are the main cause for the increasing antibiotic resistance of A. baumannii originated from nosocomial infection. The progressive resistance of A. baumannii even on the recent drugs (tigecycline and fosfomycin) reduces to very effective antibiotic scale. With attention focused on MDR and pan-drug-resistant (PDR) in A. baumannii multiple works on efflux pumps chemical inhibitor (NMP, PAβN, omeprazole, verapamil, reserpine, CCCP) are still in progress. Certain inhibitors from plants (Biricodar and timcodar, Falvone, Mahonia, Dalea versicolor, Lycopus europaeus, and Rosmarinus officinalis) have the capability to have such compounds according to their very significant synergistic effect with antibiotics. In this review we focused on the growth of antibiotic resistance to explain the mechanism of efflux pumps into these different super families and a comprehensive understanding of the extrusion, regulation and physiology role of drug efflux pumps in the essential development of anti-resistivity drugs. We recapitulated the evolution of the work carried out in these fields during the last years and in the course of elaboration, with the aim of increasing the chances of decreasing bacterial resistivity to antibiotics.展开更多
Plasma membrane Ca2+pumps(PMCA)play a major role in Ca2+homeostasis and signaling by extruding cellular Ca2+with high affinity.PMCA isoforms are encoded by four genes which are expressed differentially in various cell...Plasma membrane Ca2+pumps(PMCA)play a major role in Ca2+homeostasis and signaling by extruding cellular Ca2+with high affinity.PMCA isoforms are encoded by four genes which are expressed differentially in various cell types in normal and disease states.Therefore, PMCA isoform selective inhibitors would aid in delineating their role in physiology and pathophysiology.We are testing the hypothesis that extracellular domains of PMCA can be used as allosteric targets to obtain a novel class of PMCA-specific inhibitors termed caloxins. This review presents the concepts behind the invention of caloxins and our progress in this area.A section is also devoted to the applications of caloxins in literature. We anticipate that isoform-selective caloxins will aid in understanding PMCA physiology in health and disease. With strategies to develop therapeutics from bioactive peptides,caloxins may become clinically useful in car diovascular diseases,neurological disorders,retinopathy,cancer and contraception.展开更多
Cells are equipped with mechanisms to control tightly the influx, efflux and resting level of free calcium (Ca 2+ ). Inappropriate Ca 2+ signaling and abnormal Ca 2+ levels are involved in many clinical disorders incl...Cells are equipped with mechanisms to control tightly the influx, efflux and resting level of free calcium (Ca 2+ ). Inappropriate Ca 2+ signaling and abnormal Ca 2+ levels are involved in many clinical disorders including heart disease, Alzheimer's disease and stroke. Ca 2+ also plays a major role in cell growth, differentiation and motility; disturbances in these processes underlie cell transformation and the progression of cancer. Accordingly, research in the Strehler laboratory is focused on a better understanding of the molecular "toolkit" needed to ensure proper Ca 2+ homeostasis in the cell, as well as on the mechanisms of localized Ca 2+ signaling. A longterm focus has been on the plasma membrane calcium pumps (PMCAs), which are linked to multiple disorders including hearing loss, neurodegeneration, and heart disease. Our work over the past 20 years or more has revealed a surprising complexity of PMCA isoforms with different functional characteristics, regulation, and cellular localization. Emerging evidence shows how specific PMCAs contribute not only to setting basal intracellular Ca 2+ levels, but also to local Ca 2+ signaling and vectorial Ca 2+ transport. A second major research arearevolves around the calcium sensor protein calmodulin and an enigmatic calmodulin-like protein (CALML3) that is linked to epithelial differentiation. One of the cellular targets of CALML3 is the unconventional motor protein myosin-10, which raises new questions about the role of CALML3 and myosin-10 in cell adhesion and migration in normal cell differentiation and cancer.展开更多
Condition based maintenance(CBM) is one of the solutions to machinery maintenance requirements. Latest approaches to CBM aim at reducing human engagement in the real-time fault detection and decision making. Machine l...Condition based maintenance(CBM) is one of the solutions to machinery maintenance requirements. Latest approaches to CBM aim at reducing human engagement in the real-time fault detection and decision making. Machine learning techniques like fuzzy-logic-based systems, neural networks, and support vector machines help to reduce human involvement. Most of these techniques provide fault information with 100% confidence. It is undeniably apparent that this area has a vast application scope. To facilitate future exploration, this review is presented describing the centrifugal pump faults, the signals they generate, their CBM based diagnostic schemes, and case studies for blockage and cavitation fault detection in centrifugal pump(CP) by performing the experiment on test rig. The classification accuracy is above 98% for fault detection. This review gives a head-start to new researchers in this field and identifies the un-touched areas pertaining to CP fault diagnosis.展开更多
The aim of this study was to detect the expression of 4 clinically-important efflux pumps in the Resistance-Nodulation-Cell Division (RND) family including MexAB-OprM, MexXY, MexCD-OprJ and MexEF-OprN in Pseudomonas a...The aim of this study was to detect the expression of 4 clinically-important efflux pumps in the Resistance-Nodulation-Cell Division (RND) family including MexAB-OprM, MexXY, MexCD-OprJ and MexEF-OprN in Pseudomonas aeruginosa using a combination of resistance-phenotypic markers and multiplex RT-PCR (mRT-PCR). The antibiotic substrates specific for each Mex systems were used as phenotypic markers including carbenicillin, MexAB-OprM, erythromycin, MexCD-OprJ, norfloxacin and imipenem, MexEF-OprN and gentamicin, MexXY-OprM. The methods were validated with reference strains with known genotypes of the Mex systems and the potential applicability in clinical practice was tested with clinical isolates. The results for the reference strains support that the combination of resistance phenotype and mRT-PCR is a potential-attractive method for diagnosis of efflux-mediated resistance in P. aeruginosa. Further development to make it more practical for clinical use and study in a larger number of clinical isolates is required.展开更多
The increased use of mechanical circulatory support has led to a rise in infectious complications in the recent years predisposing this population of patients to higher morbidity and mortality. In this study, we repor...The increased use of mechanical circulatory support has led to a rise in infectious complications in the recent years predisposing this population of patients to higher morbidity and mortality. In this study, we report a significantly lower rate of driveline infections of 0.12 episodes/patient-year as compared to the rates reported in the existing literature in patients with the HMII (Heartmate II). The study is limited by the fact that it is based on a small population of patients and was conducted retrospectively making recall bias hard to rule out. It is strictly restricted to one type of continuous flow pump (HMII) solely to decrease variations in the data reviewed. The exact cause of the low infection rate noted in this study is difficult to define. However, detailed teaching to the caregivers and the patient as well as close follow-ups in the perioperative period may substantially contribute to the outcome noted. Continued research limited to similar continuous flow ventricular assist devices in larger study populations would shed light on defining causes of infections in this population and developing robust algorithms to prevent such complications.展开更多
The pressure fluctuation in the flow passage of both impeller and casing is addressed on design condition. The initial conditions for the unsteady turbulent simulation are resulted from the steady calculations, and th...The pressure fluctuation in the flow passage of both impeller and casing is addressed on design condition. The initial conditions for the unsteady turbulent simulation are resulted from the steady calculations, and the three dimensional unsteady turbulent simulation concerning the rotor-stator interaction is executed by a Navier-Stoke solver embedded with k -ε turbulence model and with appropriate moving interface boundary conditions. Detecting points are distributed in the flow passage in different radial and circumferential positions to capture the static pressure fluctuation character for one cycle of the impeller. The time-domain spectrums show that the static pressure curves are periodic and have five peaks and five valleys. With the radius increasing, the pressure fluctuation peak-to-peak values in the impeller are increasing, and reach the maximum value on the interface. In the casing flow passage, those values are about 7% of local static pressure except some ones near the tongue. The values become decreasingly in the diffuser pipe. The frequency spectrums transformed by fast Fourier transform (FFT) show that the dominant frequency is approximate with the blade passing frequency, and the pressure fluctuations in impeller passage have high frequency content while those in casing ones have no such information.展开更多
The blade number of impeller is an important design parameter of pumps, which affects the characteristics of pump heavily. At present, the investigation focuses mostly on the performance characteristics of axis flow p...The blade number of impeller is an important design parameter of pumps, which affects the characteristics of pump heavily. At present, the investigation focuses mostly on the performance characteristics of axis flow pumps, the influence of blade number on inner flow filed and characteristics of centrifugal pump has not been understood completely. Therefore, the methods of numerical simulation and experimental verification are used to investigate the effects of blade number on flow field and characteristics of a centrifugal pump. The model pump has a design specific speed of 92.7 and an impeller with 5 blades. The blade number is varied to 4, 6, 7 with the casing and other geometric parameters keep constant. The inner flow fields and characteristics of the centrifugal pumps with different blade number are simulated and predicted in non-cavitation and cavitation conditions by using commercial code FLUENT. The impellers with different blade number are made by using rapid prototyping, and their characteristics are tested in an open loop. The comparison between prediction values and experimental results indicates that the prediction results are satisfied. The maximum discrepancy of prediction results for head, efficiency and required net positive suction head are 4.83%, 3.9% and 0.36 m, respectively. The flow analysis displays that blade number change has an important effect on the area of low pressure region behind the blade inlet and jet-wake structure in impellers. With the increase of blade number, the head of the model pumps increases too, the variable regulation of efficiency and cavitation characteristics are complicated, but there are optimum values of blade number for each one. The research results are helpful for hydraulic design of centrifugal pump.展开更多
AIM:To determine the laryngeal H+K+-ATPase and pharyngeal p H in patients with laryngopharyngeal reflux(LPR)-symptoms as well as to assess the symptom scores during PPI therapy.METHODS:Endoscopy was performed to exclu...AIM:To determine the laryngeal H+K+-ATPase and pharyngeal p H in patients with laryngopharyngeal reflux(LPR)-symptoms as well as to assess the symptom scores during PPI therapy.METHODS:Endoscopy was performed to exclude neoplasia and to collect biopsies from the posterior cricoid area(immunohistochemistry and PCR analysis).Immunohistochemical staining was performed with monoclonal mouse antibodies against human H+K+-ATPase.Quantitative real-time RT-PCR for each of the H+K+-ATPase subunits was performed.The p H values were assessed in the aerosolized environment of the oropharynx(Dxp H Catheter) and compared to a subsequently applied combined p H/MII measurement.RESULTS:Twenty patients with LPR symptoms were included.In only one patient,the laryngeal H+K+-ATPase was verified by immunohistochemical staining.In another patient,real-time RT-PCR for each H+K+-ATPase subunit was positive.Fourteen out of twenty patients had pathological results in Dxp H,and 6/20 patients had pathological results in p H/MII.Four patients had pathological results in both functional tests.Nine out of twenty patients responded to PPIs.CONCLUSION:The laryngeal H+K+-ATPase can only be sporadically detected in patients with LPR symptoms and is unlikely to cause the LPR symptoms.Alternative hypotheses for the pathomechanism are needed.The role of pharyngeal p H-metry remains unclearand its use can only be recommended for patients in a research study setting.展开更多
文摘In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is on the increase. The operation and working principle of heat pumps must be well understood in the investigations of their impacts on the grid and the grid assets, especially distribution transformers which could be overloaded due to higher peak load demand. This work develops an operational model of heat pumps as combined space heating and domestic hot water provider implemented in MATLAB. The developed operational model of heat pumps is adaptable and repeatable for different input parameters. The developed model is used to generate daily average demand profiles of heat pumps for a typical winter weekday and a typical summer weekday. The generated demand profiles of heat pumps by the developed model compared well with the demand profiles of heat pumps generated from actual field projects which are usually expensive and time-tasking.
基金Funding by Ministerium für Wirtschaft,Innovation,Digitalisierung und Energie des Landes Nordrhein-Westfalen。
文摘This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this material loss on the volumetric efficiency. The results are combined with an established backflow model to implement a backflow calculation procedure that is adaptive to wear. We use a laboratory test setup with a highly abrasive fluid and operate a pump from new to worn condition to validate our approach. The obtained measurement data show that the presented virtual sensor is capable of calculating the flow rate of a pump being subject to wear during its regular operation.
基金National Key R&D Program of China(Grant No.2020YFC1512404).
文摘To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.
基金Supported by Research and Innovation Project for College Graduates of Jiangsu Province of China(Grant No.CXZZ13_0673)National Natural Science Foundation of China(Grant No.51009072)+1 种基金National Science&Technology Pillar Program of China(Grant No.2011BAF14B04)State Key Program of National Natural Science Foundation of China(Grant No.51239005)
文摘With the increasing noise pollution, low noise optimization of centrifugal pimps has become a hot topic. However, experimental study on this problem is unacceptable for industrial applications due to unsustainable cost. A hybrid method that couples computational fluid dynamics (CFD) with computational aeroacoustic software is used to predict the flow-induced noise of pumps in order to minimize the noise of centrifugal pumps in actual projects. Under Langthjem's assumption that the blade surface pressure is the main flow-induced acoustic source in centrifugal pumps, the blade surface pressure pulsation is considered in terms of the acoustical sources and simulated using CFX software. The pressure pulsation and noise distribution in the near-cutoff region are examined for the blade-passing frequency (BPF) noise, and the sound pressure level (SPL) reached peaks near the cutoff that corresponded with the pressure pulsation in this region. An experiment is performed to validate this prediction. Four hydrophones are fixed to the inlet and outlet ports of the test pump to measure the flow-induced noise from the four-port model. The simulation results for the noise are analyzed and compared with the experimental results. The variation in the calculated noise with changes in the flow agreed well with the experimental results. When the flow rate was increased, the SPL first decreased and reached the minimum near the best efficient point (BEP); it then increased when the flow rate was further increased. The numerical and experimental results confirmed that the BPF noise generated by a blade-rotating dipole roughly reflects the acoustic features of centrifugal pumps. The noise simulation method in current study has a good feasibility and suitability, which could be adopted in engineering design to predict and optimize the hydroacoustic behavior of centrifugal pumps.
基金National Natural Science Foundation of China(Grant No.52005429)Open Foundation of State Key Laboratory of Fluid Power and Mechatronic Systems of China(Grant No.GZKF-201911)National Key Research and Development Program of China(Grant No.2018YFB2000703).
文摘Raising the rotational speed of an axial piston pump is useful for improving its power density;however,the churning losses of the piston increase significantly with increasing speed,and this reduces the performance and efficiency of the axial piston pump.Currently,there has been some research on the churning losses of pistons;however,it has rarely been analyzed from the perspective of the piston number.To improve the performance and efficiency of the axial piston pump,a computational fluid dynamics(CFD)simulation model of the churning loss was established,and the effect of piston number on the churning loss was studied in detail.The simulation analysis results revealed that the churning losses initially increased as the number of pistons increased;however,when the number of pistons increased from six to nine,the torque of the churning losses decreased because of the hydrodynamic shadowing effect.In addition,in the analysis of cavitation results,it was determined that the cavitation area of the axial piston pump was mainly concentrated around the piston,and the cavitation became increasingly severe as the speed increased.By comparing the simulation results with and without the cavitation model,it was observed that the cavitation phenomenon is beneficial for the reduction of churning losses.In this study,a piston churning loss test rig that can eliminate other friction losses was established to verify the accuracy of the simulation results.A comparative analysis indicated that the simulation results were consistent with the actual situation.In addition,this study also conducted a simulation study on seven and nine piston pumps with the same displacement.The simulation results revealed that churning losses of the seven pistons were generally greater than those of the nine pistons under the same displacement.In addition,regarding the same piston number and displacement,reducing the pitch circle radius of piston bores is effective in reducing the churning loss.This research analyzes the effect of piston number on the churning loss,which has certain guiding significance for the structural design and model selection of axial piston pumps.
基金Supported by National Natural Science Foundation of China(Grant Nos.51809121,51879121)China Postdoctoral Science Foundation(Grant No.2021M701535).
文摘The momentum flow exchange between the impeller and side channel produces highly turbulent flows in side channel pumps.The turbulent flows feature complex patterns of vortex structures that are partly responsible for the dissipation of energy losses and unsteady pressure pulsations.The concept of turbulent flows in side channel pumps requires a reliable vortex identification criterion to capture and predict the effects of the vortex structures on the performance.For this reason,the current study presents the application of the new Ω-criterion to a side channel pump model in comparison with other traditional methods such as Qand λ2 criteria.The 3D flow fields of the pump were obtained through unsteady Reynolds-averaged Navier-Stokes(RANS)simulations.Comparative studies showed that the Ω-criterion identifies the vortex of different intensities with a standard threshold,Ω=0.52.The Q and λ2 criteria required different thresholds to capture vortex of different intensities thus leads to subjective errors.Comparing theΩ-criterion intensity on different planes with the entropy losses and pressure pulsation,the longitudinal vortex plays an important role in the momentum exchange development which increases the head performance of the pump.However,the rate of exchange is impeded by the axial and radial vortices restricted in the impeller.Therefore,the impeller generates the highest entropy loss and pressure pulsation intensities which lower the output efficiency.Finally,the findings provide a fundamental background to the morphology of the vortex structures in the turbulent flows which can be dependent upon for efficiency improvement of side channel pumps.
文摘An overview of some popular rotary and reciprocating positive displacement( PD) pump types is given with the objective of presenting and comparing the respective sizing relationships and performance features. Reciprocating pumps discussed are the piston and plunger types. Rotary pumps addressed are gear( external and internal),vane,lobe,screw,and liquid ring pumps. To put the relative pump sizes in perspective,attention is fixed on the rotors or reciprocating elements of PD pumps,just as impellers indicate the sizes of rotodynamic pumps. The size of a PD pump is found from a dimensionless combination of displacement flow rate,rotative speed and diameter. The flow rate,head( or pressure rise) and power are related through the component efficiencies. The cavitation coefficient,often close to unity,connects the rotor tip speed or piston speed with the required NPSH,which can also be affected by the pressure rise of the pump due to leakage across the internal clearances. Operational effects due to cavitation,ingestion of gas or abrasives,and viscous and non-Newtonian fluids are discussed.
基金National Natural Science Foundation of China(51976078)Senior Personnel Scientific Research Foundation of Jiangsu University:(15JDG073)Open Research Subject of Key Laboratory of Fluid and Power Machinery,Ministry of Education(szjj2016-065)。
文摘A series of steady and unsteady numerical calculations of the internal flow in mixed-flow pumps with three different specific speeds were carried out based on the N-S equation coupled with the standard k-εturbulence model under different operating conditions to investigate the relationship between the impeller specific speed and the pump performance as well as pressure pulsations.Meanwhile,the pump performance and pressure pulsations inside the mixed-flow pump with three different specific speeds were also analyzed and compared with the corresponding test data.From the results,the averaged deviations between the predicted and tested head among different impellers are below 5%,and with respect to the equivalent impeller specific speeds of 280 and 260,the values are 4.30%and 3.69%,respectively.For all the impeller schemes,the best efficiency point of the mixed-flow pump is found at the flow rate of 1.2 Q_(d) and the higher head deviation occurs at lower flow rates.Especially,it can be found that the specific speed has a slight effect on the pressure fluctuation in the impellers.Eventually,it is determined that the pump performance curves calculated by numerical simu-lations have good agreement with the relevant experimental results,which verifies that the numerical methods used in the present study are accurate to a certain extent.Furthermore,the results also provide some references to the pressure pulsation analysis and the performance improvement of the mixed-flow pump design.
基金Supported by Resources and the use of facilities at the John D.Dingell VA Medical CenterDetroit+1 种基金MIUnited States(the views expressed in this article are those of the authors and do not represent those of the Department of Veterans Affairs or the United States Government)
文摘AIM: To evaluate the effectiveness of automated irrigation pumps(AIPs) in improving the quality of the bowel preparation and the yield of colonoscopy.METHODS: A retrospective observational study was conducted at a single medical center. Outpatient colonoscopies performed during a 4-mo time period when AIPs were not in use, were compared to colonoscopies performed during control period. The main outcomes measured were quality of bowel preparation, procedures aborted due to poor preparation, recommendations to repeat at short interval due to suboptimal bowel preparation and adenoma detection rates.RESULTS: One thousand and thirty-seven colonoscopies were included. A higher proportion of cases did not achieve a satisfactory bowel preparation when AIPs were not used(24.4% vs 10.3%, P < 0.01). The number of procedures aborted due to inadequate preparation was not significantly different, however a repeat procedure at a short interval was recommended in a higher proportion of cases when AIPs were not used(21.3% vs 6.9%, P < 0.01). Good or excellent preparation was 2.91(95%CI: 2.04-4.15) times more likely when AIPs were used. Detection of polyps and adenomas was not significantly different.CONCLUSION: AIP use during colonoscopy results in a higher proportion of colonic preparation rated as satisfactory, although polyp detection rate is not significantly affected. Recommendations for repeat colonoscopy at shorter interval significantly decrease with the use of AIPs. This study supports the use of the irrigation pumps in endoscopy units to improve the quality of colonoscopy.
文摘Acinetobacter baumannii has greatly increased its degree of resistance to become multidrug resistant (MDR) over the past 30 years and is on the red line of the most widely replicated bacteria according to World Health Organization (WHO). The efflux pumps are the main cause for the increasing antibiotic resistance of A. baumannii originated from nosocomial infection. The progressive resistance of A. baumannii even on the recent drugs (tigecycline and fosfomycin) reduces to very effective antibiotic scale. With attention focused on MDR and pan-drug-resistant (PDR) in A. baumannii multiple works on efflux pumps chemical inhibitor (NMP, PAβN, omeprazole, verapamil, reserpine, CCCP) are still in progress. Certain inhibitors from plants (Biricodar and timcodar, Falvone, Mahonia, Dalea versicolor, Lycopus europaeus, and Rosmarinus officinalis) have the capability to have such compounds according to their very significant synergistic effect with antibiotics. In this review we focused on the growth of antibiotic resistance to explain the mechanism of efflux pumps into these different super families and a comprehensive understanding of the extrusion, regulation and physiology role of drug efflux pumps in the essential development of anti-resistivity drugs. We recapitulated the evolution of the work carried out in these fields during the last years and in the course of elaboration, with the aim of increasing the chances of decreasing bacterial resistivity to antibiotics.
基金Supported by Grant-in-Aid from the Heart and Stroke Foundation of Ontario and a Doctoral Award to MMS from the Heartand Stroke Foundation of CanadaThis work is part of a pendingpatent and US Patent 7091174B2
文摘Plasma membrane Ca2+pumps(PMCA)play a major role in Ca2+homeostasis and signaling by extruding cellular Ca2+with high affinity.PMCA isoforms are encoded by four genes which are expressed differentially in various cell types in normal and disease states.Therefore, PMCA isoform selective inhibitors would aid in delineating their role in physiology and pathophysiology.We are testing the hypothesis that extracellular domains of PMCA can be used as allosteric targets to obtain a novel class of PMCA-specific inhibitors termed caloxins. This review presents the concepts behind the invention of caloxins and our progress in this area.A section is also devoted to the applications of caloxins in literature. We anticipate that isoform-selective caloxins will aid in understanding PMCA physiology in health and disease. With strategies to develop therapeutics from bioactive peptides,caloxins may become clinically useful in car diovascular diseases,neurological disorders,retinopathy,cancer and contraception.
基金Supported by The National Institutes of Health (NS51769)the Mayo Foundation for Education and Research
文摘Cells are equipped with mechanisms to control tightly the influx, efflux and resting level of free calcium (Ca 2+ ). Inappropriate Ca 2+ signaling and abnormal Ca 2+ levels are involved in many clinical disorders including heart disease, Alzheimer's disease and stroke. Ca 2+ also plays a major role in cell growth, differentiation and motility; disturbances in these processes underlie cell transformation and the progression of cancer. Accordingly, research in the Strehler laboratory is focused on a better understanding of the molecular "toolkit" needed to ensure proper Ca 2+ homeostasis in the cell, as well as on the mechanisms of localized Ca 2+ signaling. A longterm focus has been on the plasma membrane calcium pumps (PMCAs), which are linked to multiple disorders including hearing loss, neurodegeneration, and heart disease. Our work over the past 20 years or more has revealed a surprising complexity of PMCA isoforms with different functional characteristics, regulation, and cellular localization. Emerging evidence shows how specific PMCAs contribute not only to setting basal intracellular Ca 2+ levels, but also to local Ca 2+ signaling and vectorial Ca 2+ transport. A second major research arearevolves around the calcium sensor protein calmodulin and an enigmatic calmodulin-like protein (CALML3) that is linked to epithelial differentiation. One of the cellular targets of CALML3 is the unconventional motor protein myosin-10, which raises new questions about the role of CALML3 and myosin-10 in cell adhesion and migration in normal cell differentiation and cancer.
文摘Condition based maintenance(CBM) is one of the solutions to machinery maintenance requirements. Latest approaches to CBM aim at reducing human engagement in the real-time fault detection and decision making. Machine learning techniques like fuzzy-logic-based systems, neural networks, and support vector machines help to reduce human involvement. Most of these techniques provide fault information with 100% confidence. It is undeniably apparent that this area has a vast application scope. To facilitate future exploration, this review is presented describing the centrifugal pump faults, the signals they generate, their CBM based diagnostic schemes, and case studies for blockage and cavitation fault detection in centrifugal pump(CP) by performing the experiment on test rig. The classification accuracy is above 98% for fault detection. This review gives a head-start to new researchers in this field and identifies the un-touched areas pertaining to CP fault diagnosis.
文摘The aim of this study was to detect the expression of 4 clinically-important efflux pumps in the Resistance-Nodulation-Cell Division (RND) family including MexAB-OprM, MexXY, MexCD-OprJ and MexEF-OprN in Pseudomonas aeruginosa using a combination of resistance-phenotypic markers and multiplex RT-PCR (mRT-PCR). The antibiotic substrates specific for each Mex systems were used as phenotypic markers including carbenicillin, MexAB-OprM, erythromycin, MexCD-OprJ, norfloxacin and imipenem, MexEF-OprN and gentamicin, MexXY-OprM. The methods were validated with reference strains with known genotypes of the Mex systems and the potential applicability in clinical practice was tested with clinical isolates. The results for the reference strains support that the combination of resistance phenotype and mRT-PCR is a potential-attractive method for diagnosis of efflux-mediated resistance in P. aeruginosa. Further development to make it more practical for clinical use and study in a larger number of clinical isolates is required.
文摘The increased use of mechanical circulatory support has led to a rise in infectious complications in the recent years predisposing this population of patients to higher morbidity and mortality. In this study, we report a significantly lower rate of driveline infections of 0.12 episodes/patient-year as compared to the rates reported in the existing literature in patients with the HMII (Heartmate II). The study is limited by the fact that it is based on a small population of patients and was conducted retrospectively making recall bias hard to rule out. It is strictly restricted to one type of continuous flow pump (HMII) solely to decrease variations in the data reviewed. The exact cause of the low infection rate noted in this study is difficult to define. However, detailed teaching to the caregivers and the patient as well as close follow-ups in the perioperative period may substantially contribute to the outcome noted. Continued research limited to similar continuous flow ventricular assist devices in larger study populations would shed light on defining causes of infections in this population and developing robust algorithms to prevent such complications.
基金supported by National Outstanding Young Scientists Funds of China (Grand No.50825902)
文摘The pressure fluctuation in the flow passage of both impeller and casing is addressed on design condition. The initial conditions for the unsteady turbulent simulation are resulted from the steady calculations, and the three dimensional unsteady turbulent simulation concerning the rotor-stator interaction is executed by a Navier-Stoke solver embedded with k -ε turbulence model and with appropriate moving interface boundary conditions. Detecting points are distributed in the flow passage in different radial and circumferential positions to capture the static pressure fluctuation character for one cycle of the impeller. The time-domain spectrums show that the static pressure curves are periodic and have five peaks and five valleys. With the radius increasing, the pressure fluctuation peak-to-peak values in the impeller are increasing, and reach the maximum value on the interface. In the casing flow passage, those values are about 7% of local static pressure except some ones near the tongue. The values become decreasingly in the diffuser pipe. The frequency spectrums transformed by fast Fourier transform (FFT) show that the dominant frequency is approximate with the blade passing frequency, and the pressure fluctuations in impeller passage have high frequency content while those in casing ones have no such information.
基金supported by National Outstanding Young Scientists Founds of China (Grant No.50825902)Top talent Foundation of Jiangsu University of china (Grant No. 2007001)
文摘The blade number of impeller is an important design parameter of pumps, which affects the characteristics of pump heavily. At present, the investigation focuses mostly on the performance characteristics of axis flow pumps, the influence of blade number on inner flow filed and characteristics of centrifugal pump has not been understood completely. Therefore, the methods of numerical simulation and experimental verification are used to investigate the effects of blade number on flow field and characteristics of a centrifugal pump. The model pump has a design specific speed of 92.7 and an impeller with 5 blades. The blade number is varied to 4, 6, 7 with the casing and other geometric parameters keep constant. The inner flow fields and characteristics of the centrifugal pumps with different blade number are simulated and predicted in non-cavitation and cavitation conditions by using commercial code FLUENT. The impellers with different blade number are made by using rapid prototyping, and their characteristics are tested in an open loop. The comparison between prediction values and experimental results indicates that the prediction results are satisfied. The maximum discrepancy of prediction results for head, efficiency and required net positive suction head are 4.83%, 3.9% and 0.36 m, respectively. The flow analysis displays that blade number change has an important effect on the area of low pressure region behind the blade inlet and jet-wake structure in impellers. With the increase of blade number, the head of the model pumps increases too, the variable regulation of efficiency and cavitation characteristics are complicated, but there are optimum values of blade number for each one. The research results are helpful for hydraulic design of centrifugal pump.
文摘AIM:To determine the laryngeal H+K+-ATPase and pharyngeal p H in patients with laryngopharyngeal reflux(LPR)-symptoms as well as to assess the symptom scores during PPI therapy.METHODS:Endoscopy was performed to exclude neoplasia and to collect biopsies from the posterior cricoid area(immunohistochemistry and PCR analysis).Immunohistochemical staining was performed with monoclonal mouse antibodies against human H+K+-ATPase.Quantitative real-time RT-PCR for each of the H+K+-ATPase subunits was performed.The p H values were assessed in the aerosolized environment of the oropharynx(Dxp H Catheter) and compared to a subsequently applied combined p H/MII measurement.RESULTS:Twenty patients with LPR symptoms were included.In only one patient,the laryngeal H+K+-ATPase was verified by immunohistochemical staining.In another patient,real-time RT-PCR for each H+K+-ATPase subunit was positive.Fourteen out of twenty patients had pathological results in Dxp H,and 6/20 patients had pathological results in p H/MII.Four patients had pathological results in both functional tests.Nine out of twenty patients responded to PPIs.CONCLUSION:The laryngeal H+K+-ATPase can only be sporadically detected in patients with LPR symptoms and is unlikely to cause the LPR symptoms.Alternative hypotheses for the pathomechanism are needed.The role of pharyngeal p H-metry remains unclearand its use can only be recommended for patients in a research study setting.