CaO-containing carbon pellets(CCCP)were successfully prepared from well-mixed coking coal(CC)and calcium oxide(CaO)and roasted at different pyrolysis temperatures.The effects of temperature,pore distribution,and carbo...CaO-containing carbon pellets(CCCP)were successfully prepared from well-mixed coking coal(CC)and calcium oxide(CaO)and roasted at different pyrolysis temperatures.The effects of temperature,pore distribution,and carbon structure on the compressive strength of CCCP was investigated in a pyrolysis furnace(350-750℃).The results showed that as the roasting temperature increased,the compressive strength also increased and furthermore,structural defects and imperfections in the carbon crystallites were gradually eliminated to form more organized char structures,thus forming high-ordered CC.Notably,the CCCP preheated at 750℃exhibited the highest compressive strength.A positive relationship between the compressive strength and pore-size homogeneity was established.A linear relationship between the com-pressive strength of the CCCP and the average stack height of CC was observed.Additionally,a four-stage caking mechanism was developed.展开更多
Co-cracking is a process where the mixtures of different hydrocarbon feedstocks are cracked in a steam pyrolysis furnace, and widely adopted in chemical industries. In this work, the simulations of the co-cracking of ...Co-cracking is a process where the mixtures of different hydrocarbon feedstocks are cracked in a steam pyrolysis furnace, and widely adopted in chemical industries. In this work, the simulations of the co-cracking of ethane and propane, and LPG and naphtha mixtures have been conducted, and the software packages of COILSIM1 D and Sim CO are used to account for the cracking process in a tube reactor. The effects of the mixing ratio, coil outlet temperature, and pressure on cracking performance have been discussed in detail. The co-cracking of ethane and propane mixture leads to a lower profitability than the cracking of single ethane or single propane. For naphtha, cracking with LPG leads to a higher profitability than single cracking of naphtha, and more LPG can produce a higher profitability.展开更多
This study developed a numerical model to efficiently treat solid waste magnesium nitrate hydrate through multi-step chemical reactions.The model simulates two-phase flow,heat,and mass transfer processes in a pyrolysi...This study developed a numerical model to efficiently treat solid waste magnesium nitrate hydrate through multi-step chemical reactions.The model simulates two-phase flow,heat,and mass transfer processes in a pyrolysis furnace to improve the decomposition rate of magnesium nitrate.The performance of multi-nozzle and single-nozzle injection methods was evaluated,and the effects of primary and secondary nozzle flow ratios,velocity ratios,and secondary nozzle inclination angles on the decomposition rate were investigated.Results indicate that multi-nozzle injection has a higher conversion efficiency and decomposition rate than single-nozzle injection,with a 10.3%higher conversion rate under the design parameters.The decomposition rate is primarily dependent on the average residence time of particles,which can be increased by decreasing flow rate and velocity ratios and increasing the inclination angle of secondary nozzles.The optimal parameters are injection flow ratio of 40%,injection velocity ratio of 0.6,and secondary nozzle inclination of 30°,corresponding to a maximum decomposition rate of 99.33%.展开更多
Various semicokes were obtained from medium-low temperature pyrolysis of Dongrong long flame coal.The proximate analysis,calorific value and Hardgrove grindability index(HGI) of semicokes were determined,and the ignit...Various semicokes were obtained from medium-low temperature pyrolysis of Dongrong long flame coal.The proximate analysis,calorific value and Hardgrove grindability index(HGI) of semicokes were determined,and the ignition temperature,burnout temperature,ignition index,burnout index,burnout ratio,combustion characteristic index of semicokes were measured and analyzed using thermogravimetry analysis(TGA).The effects of pyrolysis temperature,heating rate,and pyrolysis time on yield,composition and calorific value of long flame coal derived semicokes were investigated,especially the influence of pyrolysis temperature on combustion characteristics and grindability of the semicokes was studied combined with X-ray diffraction(XRD) analysis of semicokes.The results show that the volatile content,ash content and calorific value of semicokes pyrolyzed at all process parameters studied meet the technical specifications of the pulverized coal-fired furnaces(PCFF) referring to China Standards GB/T 7562-1998.The pyrolysis temperature is the most influential factor among pyrolysis process parameters.As pyrolysis temperature increases,the yield,ignition index,combustion reactivity and burnout index of semicokes show a decreasing tend,but the ash content increases.In the range of 400 and 450 °C,the grindability of semicokes is rational,especially the grindability of semicokes pyrolyzed at 450 °C is suitable.Except for the decrease of volatile content and increase of ash content,the decrease of combustion performance of semicokes pyrolyzed at higher temperature should be attributed to the improvement of the degree of structural ordering and the increase of aromaticity and average crystallite size of char.It is concluded that the semicokes pyrolyzed at the temperature of 450 °C is the proper fuel for PCFF.展开更多
基金This work was financially supported by the National Key R&D Program of China(No.2018YFB0605900).
文摘CaO-containing carbon pellets(CCCP)were successfully prepared from well-mixed coking coal(CC)and calcium oxide(CaO)and roasted at different pyrolysis temperatures.The effects of temperature,pore distribution,and carbon structure on the compressive strength of CCCP was investigated in a pyrolysis furnace(350-750℃).The results showed that as the roasting temperature increased,the compressive strength also increased and furthermore,structural defects and imperfections in the carbon crystallites were gradually eliminated to form more organized char structures,thus forming high-ordered CC.Notably,the CCCP preheated at 750℃exhibited the highest compressive strength.A positive relationship between the compressive strength and pore-size homogeneity was established.A linear relationship between the com-pressive strength of the CCCP and the average stack height of CC was observed.Additionally,a four-stage caking mechanism was developed.
基金Supported by the National Natural Science Foundation of China(21276078)Shanghai Key Technologies R&D Programe(12dz1125100)+1 种基金Natural Science Foundation of Shanghai(13ZR1411300)Shanghai Leading Academic Discipline Project(B504)
文摘Co-cracking is a process where the mixtures of different hydrocarbon feedstocks are cracked in a steam pyrolysis furnace, and widely adopted in chemical industries. In this work, the simulations of the co-cracking of ethane and propane, and LPG and naphtha mixtures have been conducted, and the software packages of COILSIM1 D and Sim CO are used to account for the cracking process in a tube reactor. The effects of the mixing ratio, coil outlet temperature, and pressure on cracking performance have been discussed in detail. The co-cracking of ethane and propane mixture leads to a lower profitability than the cracking of single ethane or single propane. For naphtha, cracking with LPG leads to a higher profitability than single cracking of naphtha, and more LPG can produce a higher profitability.
基金the financial support for this work provided by the National Key R&D Program of China‘Technologies and Integrated Application of Magnesite Waste Utilization for High-Valued Chemicals and Materials’(2020YFC1909303)。
文摘This study developed a numerical model to efficiently treat solid waste magnesium nitrate hydrate through multi-step chemical reactions.The model simulates two-phase flow,heat,and mass transfer processes in a pyrolysis furnace to improve the decomposition rate of magnesium nitrate.The performance of multi-nozzle and single-nozzle injection methods was evaluated,and the effects of primary and secondary nozzle flow ratios,velocity ratios,and secondary nozzle inclination angles on the decomposition rate were investigated.Results indicate that multi-nozzle injection has a higher conversion efficiency and decomposition rate than single-nozzle injection,with a 10.3%higher conversion rate under the design parameters.The decomposition rate is primarily dependent on the average residence time of particles,which can be increased by decreasing flow rate and velocity ratios and increasing the inclination angle of secondary nozzles.The optimal parameters are injection flow ratio of 40%,injection velocity ratio of 0.6,and secondary nozzle inclination of 30°,corresponding to a maximum decomposition rate of 99.33%.
基金support from the Allocated Section of the Basic Fund for the Scientific Research and Operation of Central Universities of China (No.2009KH10)
文摘Various semicokes were obtained from medium-low temperature pyrolysis of Dongrong long flame coal.The proximate analysis,calorific value and Hardgrove grindability index(HGI) of semicokes were determined,and the ignition temperature,burnout temperature,ignition index,burnout index,burnout ratio,combustion characteristic index of semicokes were measured and analyzed using thermogravimetry analysis(TGA).The effects of pyrolysis temperature,heating rate,and pyrolysis time on yield,composition and calorific value of long flame coal derived semicokes were investigated,especially the influence of pyrolysis temperature on combustion characteristics and grindability of the semicokes was studied combined with X-ray diffraction(XRD) analysis of semicokes.The results show that the volatile content,ash content and calorific value of semicokes pyrolyzed at all process parameters studied meet the technical specifications of the pulverized coal-fired furnaces(PCFF) referring to China Standards GB/T 7562-1998.The pyrolysis temperature is the most influential factor among pyrolysis process parameters.As pyrolysis temperature increases,the yield,ignition index,combustion reactivity and burnout index of semicokes show a decreasing tend,but the ash content increases.In the range of 400 and 450 °C,the grindability of semicokes is rational,especially the grindability of semicokes pyrolyzed at 450 °C is suitable.Except for the decrease of volatile content and increase of ash content,the decrease of combustion performance of semicokes pyrolyzed at higher temperature should be attributed to the improvement of the degree of structural ordering and the increase of aromaticity and average crystallite size of char.It is concluded that the semicokes pyrolyzed at the temperature of 450 °C is the proper fuel for PCFF.