In this paper,the asymptotic performance of arbitrary rectangular Quadrature Amplitude Modulation (QAM) signals over fading channels is investigated. A novel unified asymptotic average Symbol Error Probability (SEP) e...In this paper,the asymptotic performance of arbitrary rectangular Quadrature Amplitude Modulation (QAM) signals over fading channels is investigated. A novel unified asymptotic average Symbol Error Probability (SEP) expression is derived in terms of diversity and coding gain. The validity and accuracy of the analytical result are verified by means of computer simulations. Furthermore,the results presented are very easy to be extended to the systems with multi-channel diversity receivers.展开更多
As a new three-dimensional(3-D)modulation,Polarization Quadrature Amplitude Modulation(PQAM) can be regarded as the combination of Pulse amplitude modulation(PAM) and Quadrature Amplitude Modulation(QAM) Modulation.It...As a new three-dimensional(3-D)modulation,Polarization Quadrature Amplitude Modulation(PQAM) can be regarded as the combination of Pulse amplitude modulation(PAM) and Quadrature Amplitude Modulation(QAM) Modulation.It can better improve the digital communication efficiency and reduce the Symbol error rate(SER) of the system than one-dimensional or two-dimensional modulation scheme.How to design a feasible constellation is the most concerned problem of PQAM currently.This paper first studies the relationship between the SER theoretical value of PQAM and the distribution of M and N,proposes a new M,N allocation scheme.Secondly,a new and straightforward design method of constructing higher-level 3-D signal constellations,which can be matched with the PQAM,and the constellation can divided into three different structures according to the ary for PQAM.Finally,the simulation results show that:in PQAM system,the modulation scheme and the constellation mapping scheme are proposed in this paper which can effectively reduce the system SER and improve the anti-noise performance of the system.展开更多
A novel Wireless Fidelity (WiFi) over fiber link and a wavelength assignment protocol are proposed to provide sufficient bandwidth and extensive coverage range for the various applications in the Internet of Things (I...A novel Wireless Fidelity (WiFi) over fiber link and a wavelength assignment protocol are proposed to provide sufficient bandwidth and extensive coverage range for the various applications in the Internet of Things (IoT).The performance of the WiFi over fiber-based wireless IoT network is evaluated in terms of error vector magnitude (EVM) and data throughput for both the up and down links between the WiFi central control system and remote radio units (RRUs).The experimental results illustrate the reliability of the fiber transmission of 64 Quadrature Amplitude Modulation (64QAM) WiFi signals by direct analog modulation.In order to efficiently utilize the wavelength resources,we also demonstrated the wavelength assignment protocol by employing optical switching configurations in Central Station (CS) to realize the wavelength switching,and the simulation results indicate the queuing size and the corresponding queue delay for different numbers of available wavelengths.展开更多
A novel chromatic dispersion (CD) monitoring technique based on asynchronous amplitude histogram (AAH) for higher order modulation formats is proposed in this paper. Without demodulating the signal, in the monitor...A novel chromatic dispersion (CD) monitoring technique based on asynchronous amplitude histogram (AAH) for higher order modulation formats is proposed in this paper. Without demodulating the signal, in the monitoring scheme, the received signal is sampled asynchronously, and thus clock information and high-speed sampling units are unnecessary, resulting in low cost and high reliability. Simulations of CD monitoring technique for non-return-to-zero/return-to-zero (NRZ/RZ) 16- and 64-quadrature amplitude modulation (QAM) systems with different optical signal-to- noise ratios (OSNRs) and duty cycles are investigated, and the tolerance of the scheme is also discussed. Simulation results show that the presented CD monitoring technique with high sensitivity can be applied to monitor the residual CD of a transmission link in the next-generation optical networks.展开更多
基金Supported by the National Natural Science Foundation of China (NSFC) (No. 90604035)the National 863 High-Tech R&D Program (No. 2007AA01Z228)the 111 Project (No. 111-2-14)
文摘In this paper,the asymptotic performance of arbitrary rectangular Quadrature Amplitude Modulation (QAM) signals over fading channels is investigated. A novel unified asymptotic average Symbol Error Probability (SEP) expression is derived in terms of diversity and coding gain. The validity and accuracy of the analytical result are verified by means of computer simulations. Furthermore,the results presented are very easy to be extended to the systems with multi-channel diversity receivers.
基金supported in part by the National Natural Science Foundation of China (61561039, 61271177, and 61461044)
文摘As a new three-dimensional(3-D)modulation,Polarization Quadrature Amplitude Modulation(PQAM) can be regarded as the combination of Pulse amplitude modulation(PAM) and Quadrature Amplitude Modulation(QAM) Modulation.It can better improve the digital communication efficiency and reduce the Symbol error rate(SER) of the system than one-dimensional or two-dimensional modulation scheme.How to design a feasible constellation is the most concerned problem of PQAM currently.This paper first studies the relationship between the SER theoretical value of PQAM and the distribution of M and N,proposes a new M,N allocation scheme.Secondly,a new and straightforward design method of constructing higher-level 3-D signal constellations,which can be matched with the PQAM,and the constellation can divided into three different structures according to the ary for PQAM.Finally,the simulation results show that:in PQAM system,the modulation scheme and the constellation mapping scheme are proposed in this paper which can effectively reduce the system SER and improve the anti-noise performance of the system.
基金supported by the National Natural Science Foundation of China (Nos.60702006,60736002,60837004,60736036,60932004and61001121)the MOST International Cooperation Program(No.2008DFA11670)+1 种基金the 111 Project(No.B07005)the project funded by State Key Laboratory of AOCSN,China
文摘A novel Wireless Fidelity (WiFi) over fiber link and a wavelength assignment protocol are proposed to provide sufficient bandwidth and extensive coverage range for the various applications in the Internet of Things (IoT).The performance of the WiFi over fiber-based wireless IoT network is evaluated in terms of error vector magnitude (EVM) and data throughput for both the up and down links between the WiFi central control system and remote radio units (RRUs).The experimental results illustrate the reliability of the fiber transmission of 64 Quadrature Amplitude Modulation (64QAM) WiFi signals by direct analog modulation.In order to efficiently utilize the wavelength resources,we also demonstrated the wavelength assignment protocol by employing optical switching configurations in Central Station (CS) to realize the wavelength switching,and the simulation results indicate the queuing size and the corresponding queue delay for different numbers of available wavelengths.
基金This work has been supported by the National Natural Science Foundation of China (No.61274121), the Natural Scienee.Foundation of Jiangsu Province (No.BK2012829), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications p/qo.NY212007).
文摘A novel chromatic dispersion (CD) monitoring technique based on asynchronous amplitude histogram (AAH) for higher order modulation formats is proposed in this paper. Without demodulating the signal, in the monitoring scheme, the received signal is sampled asynchronously, and thus clock information and high-speed sampling units are unnecessary, resulting in low cost and high reliability. Simulations of CD monitoring technique for non-return-to-zero/return-to-zero (NRZ/RZ) 16- and 64-quadrature amplitude modulation (QAM) systems with different optical signal-to- noise ratios (OSNRs) and duty cycles are investigated, and the tolerance of the scheme is also discussed. Simulation results show that the presented CD monitoring technique with high sensitivity can be applied to monitor the residual CD of a transmission link in the next-generation optical networks.