Einstein–Podolsky–Rosen(EPR) steering is an example of nontrivial quantum nonlocality and characteristic in the non-classical world.The directivity(or asymmetry) is a fascinating trait of EPR steering,and it is diff...Einstein–Podolsky–Rosen(EPR) steering is an example of nontrivial quantum nonlocality and characteristic in the non-classical world.The directivity(or asymmetry) is a fascinating trait of EPR steering,and it is different from other quantum nonlocalities.Here,we consider the strategy in which two atoms compose a two-qubit X state,and the two atoms are owned by Alice and Bob,respectively.The atom of Alice suffers from a reservoir,and the atom of Bob couples with a bit flip channel.The influences of auxiliary qubits on EPR steering and its directions are revealed by means of the entropy uncertainty relation.The results indicate that EPR steering declines with growing time t when adding fewer auxiliary qubits.The EPR steering behaves as damped oscillation when introducing more auxiliary qubits in the strong coupling regime.In the weak coupling regime,the EPR steering monotonously decreases as t increases when coupling auxiliary qubits.The increases in auxiliary qubits are responsible for the fact that the steerability from Alice to Bob(or from Bob to Alice) can be more effectively revealed.Notably,the introductions of more auxiliary qubits can change the situation that steerability from Alice to Bob is certain to a situation in which steerability from Bob to Alice is certain.展开更多
Feasible schemes for implementing quantum swap gates of both coherent-state qubits and photonic qubits are proposed using a A-type atomic ensemble trapped in a bimodal optical cavity. In both protocols, the decoherenc...Feasible schemes for implementing quantum swap gates of both coherent-state qubits and photonic qubits are proposed using a A-type atomic ensemble trapped in a bimodal optical cavity. In both protocols, the decoherence from atomic spontaneous emission is negligible due to the fact that the excited states of the atoms are adiabatically eliminated under large detuning condition and the swap gates can be created in a single step. In our schemes, the required atoms-cavity interaction time decreases with the increase of the number of atoms, which is very important in view of decoherence. The experimental feasibilities of the schemes are also discussed.展开更多
The sudden death of entanglement is investigated for the non-Markovian dynamic process of a pair of interacting flux qubits under a thermal bath. The results show that, for initially two-qubit entangled states, entang...The sudden death of entanglement is investigated for the non-Markovian dynamic process of a pair of interacting flux qubits under a thermal bath. The results show that, for initially two-qubit entangled states, entanglement sudden death (ESD) always happens in the thermal reservoir, where its appearance strongly depends on the environment. In particular, ESD of the qubits occurs more easily for the non-Markovian process than for the Markovian one.展开更多
In this paper,we investigate the quantum correlation of coupled qubits which are initially in maximally entangled mixed states in a squeezed vacuum reservoir.We compare and analyze the effects of squeezed parameters o...In this paper,we investigate the quantum correlation of coupled qubits which are initially in maximally entangled mixed states in a squeezed vacuum reservoir.We compare and analyze the effects of squeezed parameters on quantum discord and quantum concurrence.The results show that in a squeezed vacuum reservoir,the quantum discord and quantum concurrence perform with completely opposite behaviors with the change of squeezed parameters.Quantum discord survives longer with the increase of squeezed amplitude parameter,but entanglement death is faster on the contrary.The results also indicate that the classical correlation of the system is smaller than quantum discord in a vacuum reservoir,while it is bigger than quantum discord in a squeezed vacuum reservoir.The quantum discord and classical correlation are more robust than quantum concurrence in the two reservoir environments,which indicates that the entanglement actually is easily affected by decoherence and quantum discord has a stronger ability to avoid decoherence in a squeezed vacuum reservoir.展开更多
We present a remote three-party quantum state sharing (QSTS) scheme with three-atom Greenberger- Horne-Zeilinger (GHZ) states assisted by cavity QED and flying qubits. It exploits some photons to act as the flying...We present a remote three-party quantum state sharing (QSTS) scheme with three-atom Greenberger- Horne-Zeilinger (GHZ) states assisted by cavity QED and flying qubits. It exploits some photons to act as the flying qubits for setting up the quantum channel securely with three-atom systems in a GHZ state, which maybe make this remote QSTS scheme more practical than some other schemes based on atom systems only or ion-trap systems as photons interact with their environments weakly. The coherence of the stationary atom qubits in cavities provides the convenience for the parties in QSTS to check eavesdropping, different from entangled photon systems. Moreover, the present scheme works in a collective-noise condition and it may be more practical than others in applications in future.展开更多
We propose a scheme for a fast generating three-qubit W state in a superconducting system by using a technique of shortcuts to adiabaticity, Lewis–Riesenfeld invariants. Three identical superconducting qubits(SQs) ...We propose a scheme for a fast generating three-qubit W state in a superconducting system by using a technique of shortcuts to adiabaticity, Lewis–Riesenfeld invariants. Three identical superconducting qubits(SQs) are connected by two coplanar waveguide resonators(CPWRs) capacitively. Under a certain limit condition, we convert the complicated SQ system into a simple three-state system. By designing experimentally accessible harmonic pulses, a three-SQ W state is implemented with quite short operation time and high fidelity. Numerical simulations prove that the scheme is robust against the parameter deviation. In addition, we also give detailed discussion about the scheme robustness against decoherence.展开更多
We propose an effective mechanism to couple superconducting charge and flux qubits by using a quantized nanomechanical resonator. The coupling between the charge and flux qubits can be controlled by the external flux ...We propose an effective mechanism to couple superconducting charge and flux qubits by using a quantized nanomechanical resonator. The coupling between the charge and flux qubits can be controlled by the external flux of the charge qubit. Under the strong coupling limR, an iSWAP gate can be generated by this scheme. The experimental feasibility in our scheme is also presented.展开更多
Wavelength division multiplexing (WDM) is widely used in modern optics and electronics. For future quantum computers, the integration of readout is also vitally important. Here we incorporate an idea of WDM to demon...Wavelength division multiplexing (WDM) is widely used in modern optics and electronics. For future quantum computers, the integration of readout is also vitally important. Here we incorporate an idea of WDM to demon- strate multiplexing readout of charge qubits by using a single integrated on-chip superconducting microwave resonator. Two distant qubits formed by two graphene double quantum dots (DQDs) are simultaneously readout by an interconnected superconducting resonator. This readout device is found to have 2 MHz bandwidth and 1.1 x 10-4 e/x/-H-z charge sensitivity. Different frequency gate-modulations, which are used selectively to change the impedance of the qubits, are applied to different DQDs, which results in separated sidebands in the spectrum. These sidebands enable a multiplexing readout for the multi-qubits circuit. This architecture can largely reduce the amount of detectors and can improve the prospect for scaling-up of semiconductor qubits.展开更多
Dynamics of quantum entanglement of two qubits in two identical quantum Rabi models is studied analytically in the framework of corrections to the rotating-wave approximations. A closed-form expression for the entangl...Dynamics of quantum entanglement of two qubits in two identical quantum Rabi models is studied analytically in the framework of corrections to the rotating-wave approximations. A closed-form expression for the entanglement dynamics initiated from the well-known Bell states is derived, which is very close to the numerical exact results up to the ultrastrong coupling regime. It is found that the vanishing entanglement can be purely induced by the counter-rotating terms, and can be enhanced with the atom-cavity coupling.展开更多
Control of purity and entanglement of two two-qubits dispersively coupled to a field with a reservoir are investigated.Initially the qubits are entangled,while the field is either in a coherent state or a statistical ...Control of purity and entanglement of two two-qubits dispersively coupled to a field with a reservoir are investigated.Initially the qubits are entangled,while the field is either in a coherent state or a statistical mixture of two coherent states.For an alternative entanglement measure we calculate the negativity of the eigenvalues of the partially transposed density matrix.A measure related to the mutual entropy,namely the index of entropy,is employed to measure the entanglement.Its results agree well with the negativity.It is found that the entanglement and purity have strong sensitivity to phase damping.The asymptotic behaviour of the states of the field,the two two-qubits,and the total system fall into mixed states.展开更多
We study the entanglement dynamics between two strongly-AC-driven superconducting charge qubitscoupled collectively to a zero temperature,dissipative resonator and find an unusual feather that the competing ofcreation...We study the entanglement dynamics between two strongly-AC-driven superconducting charge qubitscoupled collectively to a zero temperature,dissipative resonator and find an unusual feather that the competing ofcreation and annihilation of entanglement can lead to entanglement increasing,sudden death and revival.We alsocalculate the dependence of the death time on the initial state of the system.展开更多
A scheme is proposed to generate W state with qubits of superconducting quantum interference devices (SQUIDs), based on adiabatic passage along dark state. Taking advantages of adiabatic passage, the scheme is very ...A scheme is proposed to generate W state with qubits of superconducting quantum interference devices (SQUIDs), based on adiabatic passage along dark state. Taking advantages of adiabatic passage, the scheme is very robust against decoherence, and it does not need to control the classical field and the interaction time accurately. Because of the achievable strong coupling between SQUID qubits and cavity, W state can be generated with high successful probability.展开更多
This paper investigates the entanglement dynamics of a Heisenberg XY model for a two-spin system in the presence of a nonuniform magnetic field. The master equations and the concurrence evolution equations for the ini...This paper investigates the entanglement dynamics of a Heisenberg XY model for a two-spin system in the presence of a nonuniform magnetic field. The master equations and the concurrence evolution equations for the initial α state ave derived and analysed. It is shown that for the symmetric initial α state, only the nonuniform field can play a role in entanglement dynamics while the uniform field and the bath will not play such a role. For the asymmetric α state, the nonuniform field leads to the beat pattern oscillation of the concurrence evolution. The inhomogeneity of the field can enhance the entanglement by suppressing the decoherence effects of both the spin-orbit interaction and the spin bath.展开更多
We investigate the entanglement dynamics of a quantum system consisting of three superconducting charge qubits (SCQs) interacting with a microwave field. For separable and entangled states of the SCQs, the evolution...We investigate the entanglement dynamics of a quantum system consisting of three superconducting charge qubits (SCQs) interacting with a microwave field. For separable and entangled states of the SCQs, the evolutions are studied under various photon numbers of cavity field. The results show that the amplitude and period of the bipartite entanglement square concurrences can be controlled by the choice of initial states of SCQs and photon number of cavity field, respectively. This simple model of a quantum register allows us to understand the dynamic process of the quantum storage of information carried by charge qubit.展开更多
We consider the problem of state estimation of qubits chosen from circles. It is shown that any qubit encoded in pairs chosen from a fixed circle parailel to the x-y equator with different phases contains the same inf...We consider the problem of state estimation of qubits chosen from circles. It is shown that any qubit encoded in pairs chosen from a fixed circle parailel to the x-y equator with different phases contains the same information. We also investigate the problem of state estimation of qubits from three circles. The optimai estimation fidelity is derived.展开更多
This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on de-SQUID charge qubits through the control of their coupling to a 1D transmission lin...This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on de-SQUID charge qubits through the control of their coupling to a 1D transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1/f noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, hut also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line.展开更多
We revisit the harmonic approximation (HA) for a large Josephson junction interacting with some charge qubits through the variational approach for the quantum dynamics of the junction-qubit coupling system. By making ...We revisit the harmonic approximation (HA) for a large Josephson junction interacting with some charge qubits through the variational approach for the quantum dynamics of the junction-qubit coupling system. By making use of numerical calculation and analytical treatment, the conditions under which HA works well can be precisely presented to control the parameters implementing the two-qubit quantum logical gate through the couplings to the large junction with harmonic oscillator Hamiltonian.展开更多
We propose a scheme of implementing the Deutsch-Jozsa algorithm based on superconducing charge qubits, which would be a key step to scale more complex quantum algorithms and very important for constructing a real quan...We propose a scheme of implementing the Deutsch-Jozsa algorithm based on superconducing charge qubits, which would be a key step to scale more complex quantum algorithms and very important for constructing a real quantum computer via superconducting charge qubits. The present scheme is simple but fairly efficient, and easily manipulated because arbitrary two-qubit can be selectively and effectively coupled by a common inductance. More manipulations can be carried out before decoherence sets in. The proposed scheme is in line with current technology.展开更多
A scheme is proposed to generate GHZ state and realize quantum phase gate for superconducting qubits placed in a microwave cavity. This scheme uses resonant interaction between the qubits and the cavity mode, so that ...A scheme is proposed to generate GHZ state and realize quantum phase gate for superconducting qubits placed in a microwave cavity. This scheme uses resonant interaction between the qubits and the cavity mode, so that the interaction time is short, which is important in view of decoherence. In particular, the phase gate can be realized simply with a single interaction between the qubits and the cavity mode. With cavity decay being considered, the fidelity and success probability are both very close to unity.展开更多
An experimentally feasible scheme for teleportation of an arbitrary unknown entangled state is proposed. Our scheme is based on Josephson charge qubits, where we do not need any joint measurement. Moreover the success...An experimentally feasible scheme for teleportation of an arbitrary unknown entangled state is proposed. Our scheme is based on Josephson charge qubits, where we do not need any joint measurement. Moreover the successful probability and fidelity of the teleportation can both reach 1.0. The current scheme can be realized within the current experimental technology.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12175001)the Key Project of Natural Science Research of West Anhui University(Grant No.WXZR202311)+7 种基金the Natural Science Research Key Project of Education Department of Anhui Province of China(Grant Nos.KJ2021A0943,2022AH051681,and 2023AH052648)the Open Fund of Anhui Undergrowth Crop Intelligent Equipment Engineering Research Center(Grant No.AUCIEERC-2022-01)Anhui Undergrowth Crop Intelligent Equipment Engineering Research Center(Grant No.2022AH010091)the University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2021-026)the Anhui Provincial Natural Science Foundation(Grant Nos.2108085MA18 and 2008085MA20)Key Project of Program for Excellent Young Talents of Anhui Universities(Grant No.gxyq ZD2019042)the open project of the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes(Grant No.FMDI202106)the research start-up funding project of High Level Talent of West Anhui University(Grant No.WGKQ2021048)。
文摘Einstein–Podolsky–Rosen(EPR) steering is an example of nontrivial quantum nonlocality and characteristic in the non-classical world.The directivity(or asymmetry) is a fascinating trait of EPR steering,and it is different from other quantum nonlocalities.Here,we consider the strategy in which two atoms compose a two-qubit X state,and the two atoms are owned by Alice and Bob,respectively.The atom of Alice suffers from a reservoir,and the atom of Bob couples with a bit flip channel.The influences of auxiliary qubits on EPR steering and its directions are revealed by means of the entropy uncertainty relation.The results indicate that EPR steering declines with growing time t when adding fewer auxiliary qubits.The EPR steering behaves as damped oscillation when introducing more auxiliary qubits in the strong coupling regime.In the weak coupling regime,the EPR steering monotonously decreases as t increases when coupling auxiliary qubits.The increases in auxiliary qubits are responsible for the fact that the steerability from Alice to Bob(or from Bob to Alice) can be more effectively revealed.Notably,the introductions of more auxiliary qubits can change the situation that steerability from Alice to Bob is certain to a situation in which steerability from Bob to Alice is certain.
基金supported by the National Natural Science Foundation of China (Grant No. 11004050)the Key Scientific Research Fund of Hunan Provincial Education Department,China (Grant No. 09A013)+2 种基金the Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 10B013)the Science and Technology Research Foundation of Hunan Province of China (Grant No. 2010FJ4120)the Science Foundation of Hengyang Normal University,China (Grant No. 09A28)
文摘Feasible schemes for implementing quantum swap gates of both coherent-state qubits and photonic qubits are proposed using a A-type atomic ensemble trapped in a bimodal optical cavity. In both protocols, the decoherence from atomic spontaneous emission is negligible due to the fact that the excited states of the atoms are adiabatically eliminated under large detuning condition and the swap gates can be created in a single step. In our schemes, the required atoms-cavity interaction time decreases with the increase of the number of atoms, which is very important in view of decoherence. The experimental feasibilities of the schemes are also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No.10864002)
文摘The sudden death of entanglement is investigated for the non-Markovian dynamic process of a pair of interacting flux qubits under a thermal bath. The results show that, for initially two-qubit entangled states, entanglement sudden death (ESD) always happens in the thermal reservoir, where its appearance strongly depends on the environment. In particular, ESD of the qubits occurs more easily for the non-Markovian process than for the Markovian one.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11164009)
文摘In this paper,we investigate the quantum correlation of coupled qubits which are initially in maximally entangled mixed states in a squeezed vacuum reservoir.We compare and analyze the effects of squeezed parameters on quantum discord and quantum concurrence.The results show that in a squeezed vacuum reservoir,the quantum discord and quantum concurrence perform with completely opposite behaviors with the change of squeezed parameters.Quantum discord survives longer with the increase of squeezed amplitude parameter,but entanglement death is faster on the contrary.The results also indicate that the classical correlation of the system is smaller than quantum discord in a vacuum reservoir,while it is bigger than quantum discord in a squeezed vacuum reservoir.The quantum discord and classical correlation are more robust than quantum concurrence in the two reservoir environments,which indicates that the entanglement actually is easily affected by decoherence and quantum discord has a stronger ability to avoid decoherence in a squeezed vacuum reservoir.
基金Supported by the National Natural Science Foundation of China under Grant No.10974020the Fundamental Research Funds for the Central Universities
文摘We present a remote three-party quantum state sharing (QSTS) scheme with three-atom Greenberger- Horne-Zeilinger (GHZ) states assisted by cavity QED and flying qubits. It exploits some photons to act as the flying qubits for setting up the quantum channel securely with three-atom systems in a GHZ state, which maybe make this remote QSTS scheme more practical than some other schemes based on atom systems only or ion-trap systems as photons interact with their environments weakly. The coherence of the stationary atom qubits in cavities provides the convenience for the parties in QSTS to check eavesdropping, different from entangled photon systems. Moreover, the present scheme works in a collective-noise condition and it may be more practical than others in applications in future.
基金supported by the National Natural Science Foundation of China(Grant No.11464046)
文摘We propose a scheme for a fast generating three-qubit W state in a superconducting system by using a technique of shortcuts to adiabaticity, Lewis–Riesenfeld invariants. Three identical superconducting qubits(SQs) are connected by two coplanar waveguide resonators(CPWRs) capacitively. Under a certain limit condition, we convert the complicated SQ system into a simple three-state system. By designing experimentally accessible harmonic pulses, a three-SQ W state is implemented with quite short operation time and high fidelity. Numerical simulations prove that the scheme is robust against the parameter deviation. In addition, we also give detailed discussion about the scheme robustness against decoherence.
文摘We propose an effective mechanism to couple superconducting charge and flux qubits by using a quantized nanomechanical resonator. The coupling between the charge and flux qubits can be controlled by the external flux of the charge qubit. Under the strong coupling limR, an iSWAP gate can be generated by this scheme. The experimental feasibility in our scheme is also presented.
基金Supported by the National Basic Research Program of China under Grant No 2011CBA00200the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB01030000the National Natural Science Foundation of China under Grant Nos 11222438,11174267,61306150,11304301 and 91421303
文摘Wavelength division multiplexing (WDM) is widely used in modern optics and electronics. For future quantum computers, the integration of readout is also vitally important. Here we incorporate an idea of WDM to demon- strate multiplexing readout of charge qubits by using a single integrated on-chip superconducting microwave resonator. Two distant qubits formed by two graphene double quantum dots (DQDs) are simultaneously readout by an interconnected superconducting resonator. This readout device is found to have 2 MHz bandwidth and 1.1 x 10-4 e/x/-H-z charge sensitivity. Different frequency gate-modulations, which are used selectively to change the impedance of the qubits, are applied to different DQDs, which results in separated sidebands in the spectrum. These sidebands enable a multiplexing readout for the multi-qubits circuit. This architecture can largely reduce the amount of detectors and can improve the prospect for scaling-up of semiconductor qubits.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174254 and 11474256
文摘Dynamics of quantum entanglement of two qubits in two identical quantum Rabi models is studied analytically in the framework of corrections to the rotating-wave approximations. A closed-form expression for the entanglement dynamics initiated from the well-known Bell states is derived, which is very close to the numerical exact results up to the ultrastrong coupling regime. It is found that the vanishing entanglement can be purely induced by the counter-rotating terms, and can be enhanced with the atom-cavity coupling.
文摘Control of purity and entanglement of two two-qubits dispersively coupled to a field with a reservoir are investigated.Initially the qubits are entangled,while the field is either in a coherent state or a statistical mixture of two coherent states.For an alternative entanglement measure we calculate the negativity of the eigenvalues of the partially transposed density matrix.A measure related to the mutual entropy,namely the index of entropy,is employed to measure the entanglement.Its results agree well with the negativity.It is found that the entanglement and purity have strong sensitivity to phase damping.The asymptotic behaviour of the states of the field,the two two-qubits,and the total system fall into mixed states.
基金Supported by Hunan Provincial Natural Science Foundation of China under Grant No. 10J J6010the Key Project Foundation and the Youngth Foundation of Education Commission of Hunan Province of China under Grant Nos. 10A095, 09B079the Youth Foundation from Huaihua University of China under Grant No. HHUQ2009-09
文摘We study the entanglement dynamics between two strongly-AC-driven superconducting charge qubitscoupled collectively to a zero temperature,dissipative resonator and find an unusual feather that the competing ofcreation and annihilation of entanglement can lead to entanglement increasing,sudden death and revival.We alsocalculate the dependence of the death time on the initial state of the system.
基金Supported by the Foundation of Educational Committee of Fujian Province under Grant Nos.JB09012 and JB09013
文摘A scheme is proposed to generate W state with qubits of superconducting quantum interference devices (SQUIDs), based on adiabatic passage along dark state. Taking advantages of adiabatic passage, the scheme is very robust against decoherence, and it does not need to control the classical field and the interaction time accurately. Because of the achievable strong coupling between SQUID qubits and cavity, W state can be generated with high successful probability.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10874194,60978013,and 60921004)the International Cooperation Program from Science and Technology Commission of Shanghai Municipality (Grant No.10530704800)
文摘This paper investigates the entanglement dynamics of a Heisenberg XY model for a two-spin system in the presence of a nonuniform magnetic field. The master equations and the concurrence evolution equations for the initial α state ave derived and analysed. It is shown that for the symmetric initial α state, only the nonuniform field can play a role in entanglement dynamics while the uniform field and the bath will not play such a role. For the asymmetric α state, the nonuniform field leads to the beat pattern oscillation of the concurrence evolution. The inhomogeneity of the field can enhance the entanglement by suppressing the decoherence effects of both the spin-orbit interaction and the spin bath.
基金Supported by State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics of Chinese Academy of Sciences under Grant No.T152908Hunan Provincial Natural Science Foundation of China under Grant No.10JJ6010+1 种基金the Key Project Foundation of Hunan Provincial Education Department,China under Grant No.10A095Science Research Foundation of Jishou University of China under Grant No.10JDY034
文摘We investigate the entanglement dynamics of a quantum system consisting of three superconducting charge qubits (SCQs) interacting with a microwave field. For separable and entangled states of the SCQs, the evolutions are studied under various photon numbers of cavity field. The results show that the amplitude and period of the bipartite entanglement square concurrences can be controlled by the choice of initial states of SCQs and photon number of cavity field, respectively. This simple model of a quantum register allows us to understand the dynamic process of the quantum storage of information carried by charge qubit.
基金the Natural Science Foundation of the Education Department of Anhui Province under Grant Nos.2006kj070A,2006kj057B,and jk2008b83zcNational Natural Science Foundation of China under Grant No.60678022
文摘We consider the problem of state estimation of qubits chosen from circles. It is shown that any qubit encoded in pairs chosen from a fixed circle parailel to the x-y equator with different phases contains the same information. We also investigate the problem of state estimation of qubits from three circles. The optimai estimation fidelity is derived.
基金supported by Hunan Provincial Natural Science Foundation of China (Grant No 06JJ50014)the Key Project Foundation of the Education Commission of Hunan Province of China (Grant No 06A055)
文摘This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on de-SQUID charge qubits through the control of their coupling to a 1D transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1/f noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, hut also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line.
基金the Cooperation Foundation of Nankai University,Tianjin University for research of nanoscience,国家自然科学基金
文摘We revisit the harmonic approximation (HA) for a large Josephson junction interacting with some charge qubits through the variational approach for the quantum dynamics of the junction-qubit coupling system. By making use of numerical calculation and analytical treatment, the conditions under which HA works well can be precisely presented to control the parameters implementing the two-qubit quantum logical gate through the couplings to the large junction with harmonic oscillator Hamiltonian.
基金The project supported partially by National Natural Science Foundation of China under Grant Nos.60678022 and 10674001the Doctoral Fund of the Ministry of Education of China under Grant No.20060357008+4 种基金Natural Science Foundation of Anhui Province under Grant No.070412060the Key Program of the Education Department of Anhui Province under Grant No.KJ2008A28ZCthe Program of the Education Department of Anhui Province under Grant No.KJ2007B082the Doctor Innovation Research Plan Fund of Anhui University under Grant No.20072007Anhui Key Laboratory of Information Materials and Devices(Anhui University)
文摘We propose a scheme of implementing the Deutsch-Jozsa algorithm based on superconducing charge qubits, which would be a key step to scale more complex quantum algorithms and very important for constructing a real quantum computer via superconducting charge qubits. The present scheme is simple but fairly efficient, and easily manipulated because arbitrary two-qubit can be selectively and effectively coupled by a common inductance. More manipulations can be carried out before decoherence sets in. The proposed scheme is in line with current technology.
基金Project supported by the National Basic Research Program of China (Grant No.2013CBA01702)
文摘A scheme is proposed to generate GHZ state and realize quantum phase gate for superconducting qubits placed in a microwave cavity. This scheme uses resonant interaction between the qubits and the cavity mode, so that the interaction time is short, which is important in view of decoherence. In particular, the phase gate can be realized simply with a single interaction between the qubits and the cavity mode. With cavity decay being considered, the fidelity and success probability are both very close to unity.
基金The project supported partly by National Natural Science Foundation of China under Grant Nos.60678022 and 10674001Natural Science Foundation of Anhui Province under Grant No.070412060+3 种基金the Doctoral Fund of Ministry of Education of China under Grant No.20060357008the Key Program of the Education Department of Anhui Province under Grant No.2006KJ070Athe Program of the Education Department of Anhui Province under Grant No.2006KJ057Bthe Talent Foundation of Anhui University,Anhui Key Laboratory of Information Materials and Devices(Anhui University)
文摘An experimentally feasible scheme for teleportation of an arbitrary unknown entangled state is proposed. Our scheme is based on Josephson charge qubits, where we do not need any joint measurement. Moreover the successful probability and fidelity of the teleportation can both reach 1.0. The current scheme can be realized within the current experimental technology.