Interference with quorum sensing(QS)represents an antivirulence strategy with a significant promise for the treatment of bacterial infections and a new approach to restoring antibiotic tolerance.Over the past two deca...Interference with quorum sensing(QS)represents an antivirulence strategy with a significant promise for the treatment of bacterial infections and a new approach to restoring antibiotic tolerance.Over the past two decades,a novel series of studies have reported that quorum quenching approaches and the discovery of quorum sensing inhibitors(QSIs)have a strong impact on the discovery of anti-infective drugs against various types of bacteria.The discovery of QSI was demonstrated to be an appropriate strategy to expand the anti-infective therapeutic approaches to complement classical antibiotics and antimicrobial agents.For the discovery of QSIs,diverse approaches exist and develop in-step with the scale of screening as well as specific QS systems.This review highlights the latest findings in strategies and methodologies for QSI screening,involving activity-based screening with bioassays,chemical methods to seek bacterial QS pathways for QSI discovery,virtual screening for QSI screening,and other potential tools for interpreting QS signaling,which are innovative routes for future efforts to discover additional QSIs to combat bacterial infections.展开更多
The development of green experimental processes for the synthesis of nanoparticles is a need in the field of nanotechnology. The synthesis of silver nanoparticles was achieved using Bacillus cereus supernatant and1 m ...The development of green experimental processes for the synthesis of nanoparticles is a need in the field of nanotechnology. The synthesis of silver nanoparticles was achieved using Bacillus cereus supernatant and1 m M silver nitrate. 100 m M glucose was found to quicken the rate of reaction of silver nanoparticles synthesis.UV-visible spectrophotometric analysis was carried out to assess the synthesis of silver nanoparticles. The synthesized silver nanoparticles were further characterized by using Nanoparticle Tracking Analyzer(NTA),Transmission Electron Microscope and Energy Dispersive X-ray spectra. These silver nanoparticles showed enhanced quorum quenching activity against Staphylococcus aureus biofilm and prevention of biofilm formation which can be seen under inverted microscope(40 X). The synergistic effect of silver nanoparticles along with antibiotics in biofilm quenching was found to be effective. In the near future, silver nanoparticles could be used in the treatment of infections caused by highly antibiotic resistant biofilm.展开更多
Quorum sensing, or auto induction, as a cell density dependent signaling mechanism in many microorganisms, is trig- gered via auto inducers which passively diffuse across the bacterial envelope and therefore intracell...Quorum sensing, or auto induction, as a cell density dependent signaling mechanism in many microorganisms, is trig- gered via auto inducers which passively diffuse across the bacterial envelope and therefore intracellulaly accumulate only at higher bacterial densities to regulate specialized processes such as genetic competence, bioluminescence, virulence and sporulation. N-acyl homoserine lactones are the most common type of signal molecules. Aquaculture is one of the fastest-growing food-producing indus- tries, but disease outbreaks caused by pathogenic bacteria are a significant constraint on the development of the sector worldwide. Many of these pathogens have been found to be controlled by their quorum sensing systems. As there is relevance between the pathogenic bacteria's virulence factor expression and their auto inducers, quorum quenching is a new effective anti-infective strategy to control infections caused by bacterial pathogens in aquaculture. The techniques used to do this mainly include the following: (1) the inhibition of signal molecule biosynthesis, (2) blocking signal transduction, and (3) chemical inactivation and biodegradation of signal molecules. To provide a basis for finding alternative means of controlling aquatic diseases by quorum quenching instead of treatment by antibiotics and disinfectants, we will discuss the examination, purification and identification of auto inducers in this paper.展开更多
Background Salmonella Typhimurium challenge causes a huge detriment to chicken production.N-acyl homoserine lactonase(AHLase),a quorum quenching enzyme,potentially inhibits the growth and virulence of Gram-negative ba...Background Salmonella Typhimurium challenge causes a huge detriment to chicken production.N-acyl homoserine lactonase(AHLase),a quorum quenching enzyme,potentially inhibits the growth and virulence of Gram-negative bacteria.However,it is unknown whether AHLase can protect chickens against S.Typhimurium challenge.This study aimed to evaluate the effects of AHLase on growth performance and intestinal health in broilers challenged by S.Typhimurium.A total of 240 one-day-old female crossbred broilers(817C)were randomly divided into 5 groups(6 replicates/group):negative control(NC),positive control(PC),and PC group supplemented with 5,10 or 20 U/g AHLase.All birds except those in NC were challenged with S.Typhimurium from 7 to 9 days of age.All parameters related to growth and intestinal health were determined on d 10 and 14.Results The reductions(P<0.05)in body weight(BW)and average daily gain(ADG)in challenged birds were alleviated by AHLase addition especially at 10 U/g.Thus,samples from NC,PC and PC plus 10 U/g AHLase group were selected for further analysis.S.Typhimurium challenge impaired(P<0.05)intestinal morphology,elevated(P<0.05)ileal inflammatory cytokines(IL-1βand IL-8)expression,and increased(P<0.05)serum diamine oxidase(DAO)activity on d 10.However,AHLase addition normalized these changes.Gut microbiota analysis on d 10 showed that AHLase reversed the reductions(P<0.05)in several beneficial bacteria(e.g.Bacilli,Bacillales and Lactobacillales),along with increases(P<0.05)in certain harmful bacteria(e.g.Proteobacteria,Gammaproteobacteria,Enterobacteriaceae and Escherichia/Shigel a)in PC group.Furthermore,AHLase-induced increased beneficial bacteria and decreased harmful bacteria were basically negatively correlated(P<0.05)with the reductions of ileal IL-1βand IL-8 expression and serum DAO activity,but positively correlated(P<0.05)with the increased BW and ADG.Functional prediction revealed that AHLase abolished S.Typhimurium-induced upregulations(P<0.05)of certain pathogenicity-related pathways such as lipopolysaccharide biosynthesis,shigellosis,bacterial invasion of epithelial cells and pathogenic Escherichia coli infection of gut microbiota.Conclusions Supplemental AHLase attenuated S.Typhimurium-induced growth retardation and intestinal disruption in broilers,which could be associated with the observed recovery of gut microbiota dysbiosis.展开更多
基金funded by the National Natural Science Foundation of China (Grant No.: 81803812)
文摘Interference with quorum sensing(QS)represents an antivirulence strategy with a significant promise for the treatment of bacterial infections and a new approach to restoring antibiotic tolerance.Over the past two decades,a novel series of studies have reported that quorum quenching approaches and the discovery of quorum sensing inhibitors(QSIs)have a strong impact on the discovery of anti-infective drugs against various types of bacteria.The discovery of QSI was demonstrated to be an appropriate strategy to expand the anti-infective therapeutic approaches to complement classical antibiotics and antimicrobial agents.For the discovery of QSIs,diverse approaches exist and develop in-step with the scale of screening as well as specific QS systems.This review highlights the latest findings in strategies and methodologies for QSI screening,involving activity-based screening with bioassays,chemical methods to seek bacterial QS pathways for QSI discovery,virtual screening for QSI screening,and other potential tools for interpreting QS signaling,which are innovative routes for future efforts to discover additional QSIs to combat bacterial infections.
基金Pravara Institute of Medical Sciences, Loni (MS), India for the financial support
文摘The development of green experimental processes for the synthesis of nanoparticles is a need in the field of nanotechnology. The synthesis of silver nanoparticles was achieved using Bacillus cereus supernatant and1 m M silver nitrate. 100 m M glucose was found to quicken the rate of reaction of silver nanoparticles synthesis.UV-visible spectrophotometric analysis was carried out to assess the synthesis of silver nanoparticles. The synthesized silver nanoparticles were further characterized by using Nanoparticle Tracking Analyzer(NTA),Transmission Electron Microscope and Energy Dispersive X-ray spectra. These silver nanoparticles showed enhanced quorum quenching activity against Staphylococcus aureus biofilm and prevention of biofilm formation which can be seen under inverted microscope(40 X). The synergistic effect of silver nanoparticles along with antibiotics in biofilm quenching was found to be effective. In the near future, silver nanoparticles could be used in the treatment of infections caused by highly antibiotic resistant biofilm.
文摘Quorum sensing, or auto induction, as a cell density dependent signaling mechanism in many microorganisms, is trig- gered via auto inducers which passively diffuse across the bacterial envelope and therefore intracellulaly accumulate only at higher bacterial densities to regulate specialized processes such as genetic competence, bioluminescence, virulence and sporulation. N-acyl homoserine lactones are the most common type of signal molecules. Aquaculture is one of the fastest-growing food-producing indus- tries, but disease outbreaks caused by pathogenic bacteria are a significant constraint on the development of the sector worldwide. Many of these pathogens have been found to be controlled by their quorum sensing systems. As there is relevance between the pathogenic bacteria's virulence factor expression and their auto inducers, quorum quenching is a new effective anti-infective strategy to control infections caused by bacterial pathogens in aquaculture. The techniques used to do this mainly include the following: (1) the inhibition of signal molecule biosynthesis, (2) blocking signal transduction, and (3) chemical inactivation and biodegradation of signal molecules. To provide a basis for finding alternative means of controlling aquatic diseases by quorum quenching instead of treatment by antibiotics and disinfectants, we will discuss the examination, purification and identification of auto inducers in this paper.
基金financially supported by the National Natural Science Foundation of China(No.31872390)the Modern Feed Industry Innovation Team Project of Guangdong Province(No.2021KJ115)。
文摘Background Salmonella Typhimurium challenge causes a huge detriment to chicken production.N-acyl homoserine lactonase(AHLase),a quorum quenching enzyme,potentially inhibits the growth and virulence of Gram-negative bacteria.However,it is unknown whether AHLase can protect chickens against S.Typhimurium challenge.This study aimed to evaluate the effects of AHLase on growth performance and intestinal health in broilers challenged by S.Typhimurium.A total of 240 one-day-old female crossbred broilers(817C)were randomly divided into 5 groups(6 replicates/group):negative control(NC),positive control(PC),and PC group supplemented with 5,10 or 20 U/g AHLase.All birds except those in NC were challenged with S.Typhimurium from 7 to 9 days of age.All parameters related to growth and intestinal health were determined on d 10 and 14.Results The reductions(P<0.05)in body weight(BW)and average daily gain(ADG)in challenged birds were alleviated by AHLase addition especially at 10 U/g.Thus,samples from NC,PC and PC plus 10 U/g AHLase group were selected for further analysis.S.Typhimurium challenge impaired(P<0.05)intestinal morphology,elevated(P<0.05)ileal inflammatory cytokines(IL-1βand IL-8)expression,and increased(P<0.05)serum diamine oxidase(DAO)activity on d 10.However,AHLase addition normalized these changes.Gut microbiota analysis on d 10 showed that AHLase reversed the reductions(P<0.05)in several beneficial bacteria(e.g.Bacilli,Bacillales and Lactobacillales),along with increases(P<0.05)in certain harmful bacteria(e.g.Proteobacteria,Gammaproteobacteria,Enterobacteriaceae and Escherichia/Shigel a)in PC group.Furthermore,AHLase-induced increased beneficial bacteria and decreased harmful bacteria were basically negatively correlated(P<0.05)with the reductions of ileal IL-1βand IL-8 expression and serum DAO activity,but positively correlated(P<0.05)with the increased BW and ADG.Functional prediction revealed that AHLase abolished S.Typhimurium-induced upregulations(P<0.05)of certain pathogenicity-related pathways such as lipopolysaccharide biosynthesis,shigellosis,bacterial invasion of epithelial cells and pathogenic Escherichia coli infection of gut microbiota.Conclusions Supplemental AHLase attenuated S.Typhimurium-induced growth retardation and intestinal disruption in broilers,which could be associated with the observed recovery of gut microbiota dysbiosis.