The degradation of Mg alloys relates to the service performance of Mg alloy biodegradable implants.In order to investigate the degradation behavior of Mg alloys as vascular stent materials in the near service environm...The degradation of Mg alloys relates to the service performance of Mg alloy biodegradable implants.In order to investigate the degradation behavior of Mg alloys as vascular stent materials in the near service environment,the hot-extruded fine-grained Mg-Zn-Y-Nd alloy microtubes,which are employed to manufacture vascular stents,were tested under radial compressive stress in the dynamic Hanks'Balanced Salt Solution(HBSS).The results revealed that the high flow rate accelerates the degradation of Mg alloy microtubes and its degradation is sensitive to radial compressive stress.These results contribute to understanding the service performance of Mg alloys as vascular stent materials.展开更多
In this paper, an analytical and numerical study of strain fields, stress fields and displacements in a rotating hollow cylinder, whose walls were completely made in Functionally Graded Materials (FGM), was conducted....In this paper, an analytical and numerical study of strain fields, stress fields and displacements in a rotating hollow cylinder, whose walls were completely made in Functionally Graded Materials (FGM), was conducted. We have considered the rotating hollow cylinder submitted to an asymmetric radial loading. It is assumed that, because of the functional graduation of the material, the mechanical properties such as Young elastic modulus and the density varies in the radial direction, in accordance with a the power law function. The inhomogeneity parameter was selected between -1 and 1. On the basis of the second law of Newton, Hooke’s law and the strain-stress relationship, we established the differential equation which governs the equilibrium for a rotating hollow cylinder. We found the analytical solution and compared to the numerical solution obtained by using the shooting method and the fourth order Runge-Kutta algorithm. The analytical and numerical results lead to the conclusion that the magnitude of the tangential stresses is greater than that of the radial stresses. The changes due to the graduation of FGM does not produce consistent variations in the distribution of radial stresses, but strongly affects the distribution of tangential stresses. The tangential stresses, tangential strains and displacements are much higher at the inner surface of the cylinder wall. The internal radial pressure intensely affects the radial stresses and the radial strain.展开更多
When maize seedlings were subjected to salt stress,a decline in root xylem pressure was observed within seconds,followed by a gradual increase in Na+ deposition in the seedlings.The magnitude of xylem pressure respon...When maize seedlings were subjected to salt stress,a decline in root xylem pressure was observed within seconds,followed by a gradual increase in Na+ deposition in the seedlings.The magnitude of xylem pressure response was positively correlated with,but not proportional to the intensity of the stress.A continuous recording of the xylem pressure profile showed that self-regulation of the xylem pressure existed before and after the imposition of salt stress when the environmental conditions were relatively stable.The salt induced increase in xylem tension dominated the total water potential of the plant when the salt stress was mild,but the osmotic potential became more prominent when the NaCl concentration in the root bathing solution was raised to over 100 mol m-3.The average transpiration rate of the seedlings dropped by 40% when the NaCl concentration in the root ambient was increased to 150 mol m-3.Although salt stress resulted in the decline of both the xylem pressure potential and the osmotic potential in the root xylem,the changes in the total water potential of the root xylem solution were always smaller than the changes in the water (osmotic) potentials of the solution bathing the root.An analysis to the water relations of maize seedlings showed that not only the water potential components,but the radial reflection coefficient of the roots was also dependent on the level of salinity.When the NaCl level in the root bathing solution was raised from 25 to 150 mol m-3,the radial reflection coefficient of the root declined from 0.43 to 0.31.This small change resulted in a remarkable increase in the normalised relative NaCl absorption by 2.4 times,indicating that the radial reflection coefficient of root played a very important role in regulating the absorption of NaCl in maize seedlings under salt stress.展开更多
The radial profiles of electrostatic Reynolds stress,plasma poloidal rotations,radial and poloidal electric fields have been measured in the plasma boundary region on the HL 1M tokamak using a multi array of Mach/Lang...The radial profiles of electrostatic Reynolds stress,plasma poloidal rotations,radial and poloidal electric fields have been measured in the plasma boundary region on the HL 1M tokamak using a multi array of Mach/Langmuir probes.During experiments of lower hybrid wave current drive,the variations in LHW drive power will cause changes in the edge electric field,poloidal rotation velocity and Reynolds stress.The results indicate that sheared poloidal flow can be generated in the edge plasma due to radially varied Reynolds stress.展开更多
In order to study distribution properties of different types of heavy particles in light media and to link macro-properties of a system with its micro-structures,radial distribution functions(RDF)of partly charged met...In order to study distribution properties of different types of heavy particles in light media and to link macro-properties of a system with its micro-structures,radial distribution functions(RDF)of partly charged metallic particles in uni-and bi-polar systems at various shear rates were investigated by Brownian dynamics simulation.The results are good in agreement qualitatively or quantitatively compared with ones in non-polar systems and other works.The investigation indicates that dispersibility of the particles in the uni-polar system of high ionic concentrations is the largest.Therefore,it is the most unfavored to grow into clusters for precipitation.The dispersibility in the bi-polar systems is less than that in uni-polar systems,but larger than that in non-polar systems.Furthermore,all the RDFs at the same shear rates in three systems approach a limit,which implies that a threshold value exists.展开更多
Rolling path squeezes and rolling residual stresses of large diameter circular saw body for wood, generated by rolling pressure from 10 up to 120 bar were examined. X-ray diffraction, Barkhausen noise (BN) and Full Wi...Rolling path squeezes and rolling residual stresses of large diameter circular saw body for wood, generated by rolling pressure from 10 up to 120 bar were examined. X-ray diffraction, Barkhausen noise (BN) and Full Width of the peak at a Half Maximum (FWHM) (o) methods for evaluation of residual stresses were used. Dependencies of a tangential rolling residual stresses inside rolling paths upon rolling pressure p (bar) and rolling area A (mm2) were evaluated. The rolling pressure, as large as 60 bar, resulting in the rolling squeeze as high as 0.04 mm2, and, tangential residual compression stresses inside a rolling path, as large as ?TI = ?822 MPa, was considered to be the largest for the practical application.展开更多
The aim of the research work was to numerically investigate the residual stresses induced between the layers of fiber metal laminate (FML) cylinder (glass/epoxy reinforced aluminum laminates) under buckling hydrostati...The aim of the research work was to numerically investigate the residual stresses induced between the layers of fiber metal laminate (FML) cylinder (glass/epoxy reinforced aluminum laminates) under buckling hydrostatic loading. For the analysis of buckling behavior of FML cylinders, various fiber orientations such as 0/90°, 60/30°, ±45° and ±55° and different FRP thickness of 1, 2, and 3 mm were considered. The aluminum cylinder of inner diameter 80 mm, length 800 mm and wall thickness 1 mm was modeled with SHELL281 element type and a total of 1033 elements were used for computing the induced residual stresses between the layers. The results show that magnitude of residual stresses between the layers decreased along the thickness from outer layer towards the inner layer in sine wave form. The maximum residual Von-Mises stress was at inner aluminum layer while the maximum residual radial stress was at the outermost layer of FML cylinder due to the inward pressure. Among all types of FML cylinder 0/90° fiber oriented FML cylinder exhibited the least radial stress and a maximum Von-Mises stress along the FRP thickness.展开更多
In this paper, the effect of initial stress on the radial vibrations of elastic hollow cylinder with rotation is discussed. The one-dimensional equation of elastodynamic is solved in terms of radial displacement. The ...In this paper, the effect of initial stress on the radial vibrations of elastic hollow cylinder with rotation is discussed. The one-dimensional equation of elastodynamic is solved in terms of radial displacement. The frequency equation is obtained when the boundaries are free;fixed and mixed boundary condition is examined numerically. The determination is concerned with the eigenvalues of the natural frequency of the radial vibrations in the case of harmonic vibrations. The effect of rotation and initial stress on the natural frequencies was examined. It was shown that the dispersion curves of guided waves were significantly influenced by the rotation and initial stress of the elastic cylinder. Numerical results are given and illustrated graphically for each case considered. The results indicate that the effect of rotation and initial stress are very pronounced.展开更多
基金the financial support of the National Key Research and Development Program of China(2018YFC1106703)the Key Projects of the Joint Fund of the National Natural Science Foundation of China(U1804251)。
文摘The degradation of Mg alloys relates to the service performance of Mg alloy biodegradable implants.In order to investigate the degradation behavior of Mg alloys as vascular stent materials in the near service environment,the hot-extruded fine-grained Mg-Zn-Y-Nd alloy microtubes,which are employed to manufacture vascular stents,were tested under radial compressive stress in the dynamic Hanks'Balanced Salt Solution(HBSS).The results revealed that the high flow rate accelerates the degradation of Mg alloy microtubes and its degradation is sensitive to radial compressive stress.These results contribute to understanding the service performance of Mg alloys as vascular stent materials.
文摘In this paper, an analytical and numerical study of strain fields, stress fields and displacements in a rotating hollow cylinder, whose walls were completely made in Functionally Graded Materials (FGM), was conducted. We have considered the rotating hollow cylinder submitted to an asymmetric radial loading. It is assumed that, because of the functional graduation of the material, the mechanical properties such as Young elastic modulus and the density varies in the radial direction, in accordance with a the power law function. The inhomogeneity parameter was selected between -1 and 1. On the basis of the second law of Newton, Hooke’s law and the strain-stress relationship, we established the differential equation which governs the equilibrium for a rotating hollow cylinder. We found the analytical solution and compared to the numerical solution obtained by using the shooting method and the fourth order Runge-Kutta algorithm. The analytical and numerical results lead to the conclusion that the magnitude of the tangential stresses is greater than that of the radial stresses. The changes due to the graduation of FGM does not produce consistent variations in the distribution of radial stresses, but strongly affects the distribution of tangential stresses. The tangential stresses, tangential strains and displacements are much higher at the inner surface of the cylinder wall. The internal radial pressure intensely affects the radial stresses and the radial strain.
基金supported by the National Natural Science Foundation of China (30471044)
文摘When maize seedlings were subjected to salt stress,a decline in root xylem pressure was observed within seconds,followed by a gradual increase in Na+ deposition in the seedlings.The magnitude of xylem pressure response was positively correlated with,but not proportional to the intensity of the stress.A continuous recording of the xylem pressure profile showed that self-regulation of the xylem pressure existed before and after the imposition of salt stress when the environmental conditions were relatively stable.The salt induced increase in xylem tension dominated the total water potential of the plant when the salt stress was mild,but the osmotic potential became more prominent when the NaCl concentration in the root bathing solution was raised to over 100 mol m-3.The average transpiration rate of the seedlings dropped by 40% when the NaCl concentration in the root ambient was increased to 150 mol m-3.Although salt stress resulted in the decline of both the xylem pressure potential and the osmotic potential in the root xylem,the changes in the total water potential of the root xylem solution were always smaller than the changes in the water (osmotic) potentials of the solution bathing the root.An analysis to the water relations of maize seedlings showed that not only the water potential components,but the radial reflection coefficient of the roots was also dependent on the level of salinity.When the NaCl level in the root bathing solution was raised from 25 to 150 mol m-3,the radial reflection coefficient of the root declined from 0.43 to 0.31.This small change resulted in a remarkable increase in the normalised relative NaCl absorption by 2.4 times,indicating that the radial reflection coefficient of root played a very important role in regulating the absorption of NaCl in maize seedlings under salt stress.
文摘The radial profiles of electrostatic Reynolds stress,plasma poloidal rotations,radial and poloidal electric fields have been measured in the plasma boundary region on the HL 1M tokamak using a multi array of Mach/Langmuir probes.During experiments of lower hybrid wave current drive,the variations in LHW drive power will cause changes in the edge electric field,poloidal rotation velocity and Reynolds stress.The results indicate that sheared poloidal flow can be generated in the edge plasma due to radially varied Reynolds stress.
基金Project(50474037)supported by the National Natural Science Foundation of ChinaProject(BK2006078)supported by the Department ofScience and Technology of Jiangsu Province,China
文摘In order to study distribution properties of different types of heavy particles in light media and to link macro-properties of a system with its micro-structures,radial distribution functions(RDF)of partly charged metallic particles in uni-and bi-polar systems at various shear rates were investigated by Brownian dynamics simulation.The results are good in agreement qualitatively or quantitatively compared with ones in non-polar systems and other works.The investigation indicates that dispersibility of the particles in the uni-polar system of high ionic concentrations is the largest.Therefore,it is the most unfavored to grow into clusters for precipitation.The dispersibility in the bi-polar systems is less than that in uni-polar systems,but larger than that in non-polar systems.Furthermore,all the RDFs at the same shear rates in three systems approach a limit,which implies that a threshold value exists.
基金support of the Poznan Networking&Supercomputing Center(PCSS)calculation grant
文摘Rolling path squeezes and rolling residual stresses of large diameter circular saw body for wood, generated by rolling pressure from 10 up to 120 bar were examined. X-ray diffraction, Barkhausen noise (BN) and Full Width of the peak at a Half Maximum (FWHM) (o) methods for evaluation of residual stresses were used. Dependencies of a tangential rolling residual stresses inside rolling paths upon rolling pressure p (bar) and rolling area A (mm2) were evaluated. The rolling pressure, as large as 60 bar, resulting in the rolling squeeze as high as 0.04 mm2, and, tangential residual compression stresses inside a rolling path, as large as ?TI = ?822 MPa, was considered to be the largest for the practical application.
文摘The aim of the research work was to numerically investigate the residual stresses induced between the layers of fiber metal laminate (FML) cylinder (glass/epoxy reinforced aluminum laminates) under buckling hydrostatic loading. For the analysis of buckling behavior of FML cylinders, various fiber orientations such as 0/90°, 60/30°, ±45° and ±55° and different FRP thickness of 1, 2, and 3 mm were considered. The aluminum cylinder of inner diameter 80 mm, length 800 mm and wall thickness 1 mm was modeled with SHELL281 element type and a total of 1033 elements were used for computing the induced residual stresses between the layers. The results show that magnitude of residual stresses between the layers decreased along the thickness from outer layer towards the inner layer in sine wave form. The maximum residual Von-Mises stress was at inner aluminum layer while the maximum residual radial stress was at the outermost layer of FML cylinder due to the inward pressure. Among all types of FML cylinder 0/90° fiber oriented FML cylinder exhibited the least radial stress and a maximum Von-Mises stress along the FRP thickness.
文摘In this paper, the effect of initial stress on the radial vibrations of elastic hollow cylinder with rotation is discussed. The one-dimensional equation of elastodynamic is solved in terms of radial displacement. The frequency equation is obtained when the boundaries are free;fixed and mixed boundary condition is examined numerically. The determination is concerned with the eigenvalues of the natural frequency of the radial vibrations in the case of harmonic vibrations. The effect of rotation and initial stress on the natural frequencies was examined. It was shown that the dispersion curves of guided waves were significantly influenced by the rotation and initial stress of the elastic cylinder. Numerical results are given and illustrated graphically for each case considered. The results indicate that the effect of rotation and initial stress are very pronounced.
文摘煤的层理面倾角(bedding plane angle,BPA)对射流破岩的效果影响显著。为探讨真三轴应力下不同BPA煤的射流破坏机制,开展了不同BPA煤在真三轴应力下的纯水射流冲蚀试验。结果表明,当煤的BPA较低或较高时,射流冲击分别容易形成锥形破碎坑和裂缝坑,破碎坑开口随着BPA的增大由圆形逐步向椭圆形过渡,煤的破坏模式由剪切破坏主导转变为拉伸-水楔效应主导。随着BPA增至60°,破岩体积增加了154.35%。当施加三轴应力时,煤层理面对射流破煤性能的影响被抑制,不同BPA煤的破坏模式仅呈现圆孔破碎坑,水锤压力引起的剪切破坏是煤在三轴应力下破坏的主要原因,60°BPA煤样的破坏体积减少了95.60%,相比其他倾角降低幅度达到最大。BPA对煤的轴向损伤演化具有驱动作用,随着倾角增大,轴向损伤发生波动。当施加三轴应力时,三轴应力抑制了射流破煤的损伤演化,煤的轴向损伤出现收缩。煤的破碎坑壁面的扫描电子显微镜(scanning electron microscope,SEM)结果表明:当施加三轴应力时,0°BPA煤样的破碎孔壁不再出现微裂隙与脆性剪切破坏的痕迹,并且孔隙的数量与尺寸大幅减小;60°BPA煤样的破碎孔壁不再出现水楔作用导致的大量锯齿状痕迹,三轴应力下不同BPA煤的破碎孔壁面均出现明显的延性剪切破坏特征。