Recently,β-Ga_(2)O_(3),an ultra-wide bandgap semiconductor,has shown great potential to be used in power devices blessed with its unique material properties.For instance,the measured average critical field of the ver...Recently,β-Ga_(2)O_(3),an ultra-wide bandgap semiconductor,has shown great potential to be used in power devices blessed with its unique material properties.For instance,the measured average critical field of the vertical Schottky barrier diode(SBD)based onβ-Ga_(2)O_(3) has reached 5.45 MV/cm,and no device in any material has measured a greater before.However,the high electric field of theβ-Ga_(2)O_(3) SBD makes it challenging to manage the electric field distribution and leakage current.Here,we showβ-Ga_(2)O_(3) junction barrier Schottky diode with NiO p-well floating field rings(FFRs).For the central anode,we filled a circular trench array with NiO to reduce the surface field under the Schottky contact between them to reduce the leakage current of the device.For the anode edge,experimental results have demonstrated that the produced NiO/β-Ga_(2)O_(3) heterojunction FFRs enable the spreading of the depletion region,thereby mitigating the crowding effect of electric fields at the anode edge.Additionally,simulation results indicated that the p-NiO field plate structure designed at the edges of the rings and central anode can further reduce the electric field.This work verified the feasibility of the heterojunction FFRs inβ-Ga_(2)O_(3) devices based on the experimental findings and provided ideas for managing the electric field ofβ-Ga_(2)O_(3) SBD.展开更多
WT8.BZ]A new quasi 2-dimensional analytical approach to predicting the ring voltage,edge peak fields and optimal spacing of the planar junction with a single floating field limiting ring structure has been proposed,ba...WT8.BZ]A new quasi 2-dimensional analytical approach to predicting the ring voltage,edge peak fields and optimal spacing of the planar junction with a single floating field limiting ring structure has been proposed,based on the cylindrical symmetric solution and the critical field concept.The effects of the spacing and reverse voltage on the ring junction voltage and edge peak field profiles have been analyzed.The optimal spacing and the maximum breakdown voltage of the structure have also been obtained.The analytical results are in excellent agreement with that obtained from the 2-D device simulator,MEDICI and the reported result,which proves the presented model valid.展开更多
The inner and outer oil film dynamic characteristic coefficients of floating ring bearings(FRBs) change due to the manufacturing tolerance of the floating ring, journal and intermediate, which leads to high-speed tu...The inner and outer oil film dynamic characteristic coefficients of floating ring bearings(FRBs) change due to the manufacturing tolerance of the floating ring, journal and intermediate, which leads to high-speed turbocharger's vibration too large and even causes nonlinear vibration accident. However, the investigation of floating ring bearing manufacturing tolerance clearance on the rotordynamic characteristics is less at present. In order to study the influence law of inner and outer clearance on turbocharger vibration, the rotor dynamic motion equations of turbocharger supported in FRBs are derived by analyzing the size relations between floating ring, journal and intermediate for the inner and outer oil film clearances, the time transient response analysis for combination of FRBs clearance are developed. A realistic turbocharger is taken as a research object, the FE model of the turbocharger with FRBs is modeled. Under the conditions of four kinds of limit state bearing clearances for inner and outer oil film, the nonlinear transient analyses are performed based on the established FE dynamic models of the nonlinear rotor-FRBs system applied incentive combinations of gravity and unbalance force, respectively. From the waterfall, the simulation results show that the speed for the appearance of fractional frequency is not identical and the amplitude magnitude is different under the four kinds of bearing manufacturing tolerance limit clearances, and fractional frequency does not appear in the turbocharger and the amplitude is minimum under the ODMin/IDMax bearing manufacturing tolerance clearances. The turbocharger vibration is reduced by controlling the manufacturing tolerance clearance combinations of FRBs, which is helpful for the dynamic design and production-manufacturing of high-speed turbocharger.展开更多
Semi-floating ring bearing(SFRB) is developed to control the vibration of turbocharger rotor. The outer clearance of SFRB affects the magnitude and frequency of nonlinear whirl motion, which is significant for the d...Semi-floating ring bearing(SFRB) is developed to control the vibration of turbocharger rotor. The outer clearance of SFRB affects the magnitude and frequency of nonlinear whirl motion, which is significant for the design of turbocharger. In order to explore the effects of outer clearance, a transient finite element analysis program for rotor and oil film bearing is built and validated by a published experimental case. The nonlinear dynamic behaviors ofrotor-SFRB system are simulated. According to the simulation results, two representative subsynchronous oscillations excited by the two hearings respectively are discovered. As the outer clearance of SFRB increases from 24 ~tm to 60 pro, the low-frequency subsynchronous oscillation experiences three steps, including a strong start, a gradual recession and a combination with the other one. At the same time, the high-frequency subsynchronous oscillation starts to appear gradually, then strengthens, and finally combines. If gravity and unbalance are neglected, the combination will start starts from high rotor speed and extents to low rotor speed, just like a "zipper". It is found from the quantitative analysis that when the outer clearance increases, the vibration amplitude experiences large value firstly, then reduction, and suddenly increasing after combination. A useful design principle of SFRB outer clearance for minimum vibration amplitude is proposed: the outer clearance value should be chosen to keep the frequency of two subsynchronous oscillations clearly separated and their amplitudes close.展开更多
Rotating experimental investigations were carried out to study the oil sealing capability of two different floating ring seals in cold/hot state for aero-engine. High-speed Floating Ring Seal(HFRS) is a seal with the ...Rotating experimental investigations were carried out to study the oil sealing capability of two different floating ring seals in cold/hot state for aero-engine. High-speed Floating Ring Seal(HFRS) is a seal with the inner diameter of 83.72 mm and maximum speed of 38000 r/min, and Low-speed Floating Ring Seal(LFRS) is another seal with the inner diameter of 40.01 mm and maximum speed of 18000 r/min. In hot state, sealing air with the temperature of 371 K and oil with the temperature of 343 K was employed to model the working conditions of an aero-engine. Comparisons between floating ring seal and labyrinth seal were done to inspect the leakage performance.More attention was paid to the critical pressure ratio where the oil leakage began. Results show that the critical pressure ratio in cold state is obviously larger than that in hot state for both seals. An underlying sealing mechanism for floating ring seal is clarified by the fluid film, which closely associates with the dimensionless parameter of clearance over rotating diameter(2 c/Dr). Another fantastic phenomenon is that the leakage coefficient in hot state, not the leakage magnitude, is unexpectedly larger than that in cold state. Overall, the leakage performance of the floating ring seal is better than the labyrinth seal.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61925110,U20A20207,62004184,62004186,and 62234007)the Key-Area Research and Development Program of Guangdong Province (Grant No.2020B010174002)+3 种基金the funding support from University of Science and Technology of China (USTC) (Grant Nos.YD2100002009 and YD2100002010)the Fundamental Research Plan (Grant No.JCKY2020110B010)Collaborative Innovation Program of Hefei Science Center,Chinese Academy of Sciences (Grant No.2022HSC-CIP024)the Opening Project of and the Key Laboratory of Nanodevices and Applications in Suzhou Institute of Nano-Tech and Nano-Bionics of CAS。
文摘Recently,β-Ga_(2)O_(3),an ultra-wide bandgap semiconductor,has shown great potential to be used in power devices blessed with its unique material properties.For instance,the measured average critical field of the vertical Schottky barrier diode(SBD)based onβ-Ga_(2)O_(3) has reached 5.45 MV/cm,and no device in any material has measured a greater before.However,the high electric field of theβ-Ga_(2)O_(3) SBD makes it challenging to manage the electric field distribution and leakage current.Here,we showβ-Ga_(2)O_(3) junction barrier Schottky diode with NiO p-well floating field rings(FFRs).For the central anode,we filled a circular trench array with NiO to reduce the surface field under the Schottky contact between them to reduce the leakage current of the device.For the anode edge,experimental results have demonstrated that the produced NiO/β-Ga_(2)O_(3) heterojunction FFRs enable the spreading of the depletion region,thereby mitigating the crowding effect of electric fields at the anode edge.Additionally,simulation results indicated that the p-NiO field plate structure designed at the edges of the rings and central anode can further reduce the electric field.This work verified the feasibility of the heterojunction FFRs inβ-Ga_(2)O_(3) devices based on the experimental findings and provided ideas for managing the electric field ofβ-Ga_(2)O_(3) SBD.
文摘WT8.BZ]A new quasi 2-dimensional analytical approach to predicting the ring voltage,edge peak fields and optimal spacing of the planar junction with a single floating field limiting ring structure has been proposed,based on the cylindrical symmetric solution and the critical field concept.The effects of the spacing and reverse voltage on the ring junction voltage and edge peak field profiles have been analyzed.The optimal spacing and the maximum breakdown voltage of the structure have also been obtained.The analytical results are in excellent agreement with that obtained from the 2-D device simulator,MEDICI and the reported result,which proves the presented model valid.
基金Supported by National Natural Science Foundation of China(Grant Nos.51205121,51375162)Scientific Research Foundation of Hunan Provincial Education Department of China(Grant No.13A023)Postgraduate Innovation Foundation of Hunan University of Science and Technology,China(Grant No.S140020)
文摘The inner and outer oil film dynamic characteristic coefficients of floating ring bearings(FRBs) change due to the manufacturing tolerance of the floating ring, journal and intermediate, which leads to high-speed turbocharger's vibration too large and even causes nonlinear vibration accident. However, the investigation of floating ring bearing manufacturing tolerance clearance on the rotordynamic characteristics is less at present. In order to study the influence law of inner and outer clearance on turbocharger vibration, the rotor dynamic motion equations of turbocharger supported in FRBs are derived by analyzing the size relations between floating ring, journal and intermediate for the inner and outer oil film clearances, the time transient response analysis for combination of FRBs clearance are developed. A realistic turbocharger is taken as a research object, the FE model of the turbocharger with FRBs is modeled. Under the conditions of four kinds of limit state bearing clearances for inner and outer oil film, the nonlinear transient analyses are performed based on the established FE dynamic models of the nonlinear rotor-FRBs system applied incentive combinations of gravity and unbalance force, respectively. From the waterfall, the simulation results show that the speed for the appearance of fractional frequency is not identical and the amplitude magnitude is different under the four kinds of bearing manufacturing tolerance limit clearances, and fractional frequency does not appear in the turbocharger and the amplitude is minimum under the ODMin/IDMax bearing manufacturing tolerance clearances. The turbocharger vibration is reduced by controlling the manufacturing tolerance clearance combinations of FRBs, which is helpful for the dynamic design and production-manufacturing of high-speed turbocharger.
基金Supported by National Natural Science Foundation of China(Grant No51506108)
文摘Semi-floating ring bearing(SFRB) is developed to control the vibration of turbocharger rotor. The outer clearance of SFRB affects the magnitude and frequency of nonlinear whirl motion, which is significant for the design of turbocharger. In order to explore the effects of outer clearance, a transient finite element analysis program for rotor and oil film bearing is built and validated by a published experimental case. The nonlinear dynamic behaviors ofrotor-SFRB system are simulated. According to the simulation results, two representative subsynchronous oscillations excited by the two hearings respectively are discovered. As the outer clearance of SFRB increases from 24 ~tm to 60 pro, the low-frequency subsynchronous oscillation experiences three steps, including a strong start, a gradual recession and a combination with the other one. At the same time, the high-frequency subsynchronous oscillation starts to appear gradually, then strengthens, and finally combines. If gravity and unbalance are neglected, the combination will start starts from high rotor speed and extents to low rotor speed, just like a "zipper". It is found from the quantitative analysis that when the outer clearance increases, the vibration amplitude experiences large value firstly, then reduction, and suddenly increasing after combination. A useful design principle of SFRB outer clearance for minimum vibration amplitude is proposed: the outer clearance value should be chosen to keep the frequency of two subsynchronous oscillations clearly separated and their amplitudes close.
基金supported by the National Natural Science Foundation of China (Nos. 51706223 and 51576193)
文摘Rotating experimental investigations were carried out to study the oil sealing capability of two different floating ring seals in cold/hot state for aero-engine. High-speed Floating Ring Seal(HFRS) is a seal with the inner diameter of 83.72 mm and maximum speed of 38000 r/min, and Low-speed Floating Ring Seal(LFRS) is another seal with the inner diameter of 40.01 mm and maximum speed of 18000 r/min. In hot state, sealing air with the temperature of 371 K and oil with the temperature of 343 K was employed to model the working conditions of an aero-engine. Comparisons between floating ring seal and labyrinth seal were done to inspect the leakage performance.More attention was paid to the critical pressure ratio where the oil leakage began. Results show that the critical pressure ratio in cold state is obviously larger than that in hot state for both seals. An underlying sealing mechanism for floating ring seal is clarified by the fluid film, which closely associates with the dimensionless parameter of clearance over rotating diameter(2 c/Dr). Another fantastic phenomenon is that the leakage coefficient in hot state, not the leakage magnitude, is unexpectedly larger than that in cold state. Overall, the leakage performance of the floating ring seal is better than the labyrinth seal.