Purpose – This study aims to analyze the factors, evaluation techniques of the durability of existing railwayengineering.Design/methodology/approach – China has built a railway network of over 150,000 km. Ensuring t...Purpose – This study aims to analyze the factors, evaluation techniques of the durability of existing railwayengineering.Design/methodology/approach – China has built a railway network of over 150,000 km. Ensuring thesafety of the existing railway engineering is of great significance for maintaining normal railway operationorder. However, railway engineering is a strip structure that crosses multiple complex environments. Andrailway engineering will withstand high-frequency impact loads from trains. The above factors have led todifferences in the deterioration characteristics and maintenance strategies of railway engineering compared toconventional concrete structures. Therefore, it is very important to analyze the key factors that affect thedurability of railway structures and propose technologies for durability evaluation.Findings – The factors that affect the durability and reliability of railway engineering are mainly divided intothree categories: material factors, environmental factors and load factors. Among them, material factors alsoinclude influencing factors, such as raw materials, mix proportions and so on. Environmental factors varydepending on the service environment of railway engineering, and the durability and deterioration of concretehave different failure mechanisms. Load factors include static load and train dynamic load. The on-site rapiddetection methods for five common diseases in railway engineering are also proposed in this paper. Thesemethods can quickly evaluate the durability of existing railway engineering concrete.Originality/value – The research can provide some new evaluation techniques and methods for thedurability of existing railway engineering.展开更多
In view of the problems of inconsistent data semantics,inconsistent data formats,and difficult data quality assurance between the railway engineering design phase and the construction and operation phase,as well as th...In view of the problems of inconsistent data semantics,inconsistent data formats,and difficult data quality assurance between the railway engineering design phase and the construction and operation phase,as well as the difficulty in fully realizing the value of design results,this paper proposes a design and implementation scheme for a railway engineering collaborative design platform.The railway engineering collaborative design platform mainly includes functional modules such as metadata management,design collaboration,design delivery management,model component library,model rendering services,and Building Information Modeling(BIM)application services.Based on this,research is conducted on multi-disciplinary parameterized collaborative design technology for railway engineering,infrastructure data management and delivery technology,and design multi-source data fusion and application technology.The railway engineering collaborative design platform is compared with other railway design software to further validate its advantages and advanced features.The platform has been widely applied in multiple railway construction projects,greatly improving the design and project management efficiency.展开更多
At present,rail transit is developing rapidly in the world,and this means new and changing requirements for the training of talents in railway engineering experiments.Given the current problems of limited laboratory/f...At present,rail transit is developing rapidly in the world,and this means new and changing requirements for the training of talents in railway engineering experiments.Given the current problems of limited laboratory/field instruments for railway engineering experimentsand the safety/administrative difficulties of going to the frontline of railway lines to teach railway engineering experiemnts in the field,the Department of Railway Engineering of Central South University tried to introduce virtual reality(VR)technology to teach students experiments in the field of railway engineering.Through the virtualized experimental methods,students can carry out railway engineering experiments such as;vehicle wheel pair off-axis experiments,track geometry and position detection,etc.by immersive means.It was observed that after performing virtual simulation experiments,students appeared conversant in subsequent field experiments.Thus,VR greatly improves the teaching efficiency of railway engineering experiments.展开更多
The railway engineering major shows extremely strong applicability,with the internationalization of railway engineering teaching and communication,how to solve the problem of cultivating the international students of ...The railway engineering major shows extremely strong applicability,with the internationalization of railway engineering teaching and communication,how to solve the problem of cultivating the international students of the railway engineering major experimental teaching is a core problem that the railway engineering majors in universities need to solve at this stage.Through reform,a new type of experimental teaching system for railway engineering specialty was constructed,that is,the experimental course system and content system determined by the international students training program were taken as the core,the construction of teachers,experimental facilities,practice bases and other conditions as the basis,and the system construction and operation organization to build an organic whole composed of four elements for guarantee.It is closely integrated with the theoretical teaching system and relatively independent.It guarantees the realization of the goal of international students training.And it can integrate and optimize the experimental teaching links,content,methods and evaluation system,and build a“gradual experimentprofessional experiment-comprehensive experiment”progressive gradient experiment teaching system.Form a benign pattern of collaborative training of laboratories,practice bases and scientific research bases,mutual promotion of teaching and scientific research,and effectively promote the improvement of students’experimental innovation ability.展开更多
Virtual simulation teaching is an addendum to the experimental teaching mode of railway engineering,and the two teaching methods complement each other and merge with each other.In view of the current research,there is...Virtual simulation teaching is an addendum to the experimental teaching mode of railway engineering,and the two teaching methods complement each other and merge with each other.In view of the current research,there is little discussion about the integration path of the two above.Based on the connotation and design of virtual simulation teaching,this research systematically expounds the integration of the real path and path optimization problems,and puts forward the railway engineering experimental teaching principles based on virtual simulation teaching.On the basis of this research,a virtual simulation experiment platform for vibration mechanics and its application in the floating slab vibration damping track was developed to make full use of three-dimensional modeling,virtual reality,human-computer interaction and other technologies,which can realistically simulate the vibration law and vibration damping effect of the rail transit system,and in the hope that the virtual simulation teaching can be widely used in the experimental teaching mode of railway engineering in the future.展开更多
Intelligent construction technology has been widely used in the field of railway engineering.This work first analyzes the connotation,function,and characteristics of intelligent construction of railway engineering(ICR...Intelligent construction technology has been widely used in the field of railway engineering.This work first analyzes the connotation,function,and characteristics of intelligent construction of railway engineering(ICRE)and establishes its system structure from three dimensions,namely,life cycle,layers of management,and intelligent function,to deeply understand the development situation of intelligent railway construction in China.Second,seven key technical support systems of ICRE,which include building information modeling(BIM)standard system for China’s railway sector,technology management platform and life cycle management based on BIM-hGIS(geography information system),ubiquitous intelligent perception system,intelligent Intemet-of-Things(IoT)communication system based on mobile interconnection,construction management platform based on cloud computing and big data,unmanned operation system based on artificial intelligence,intelligent machinery and robot,and intelligent operation and maintenance system based on BIM and PHM(prediction and health management),are established.Third,ICRE is divided into three development stages:primary(perception),intermediate(substitution),and advanced(intelligence).The evaluation index system of each stage is provided from the aspects of technology and function.Finally,this work summarizes and analyzes the application situation of ICRE in the entire railway sector of China,represented by Beijing-Zhangjiakou and Beijing-Xiong’an high-speed railways.Result shows that the technical support systems of the ICRE have emerged in China and are still in the process of deepening basic technology research and preliminary application.In the future,the ICRE of China’s railway sector will develop toward a higher stage.展开更多
At present,BIM platforms rely on foreign software.Homemade software and industry applications are mostly secondary developments,which present stranglehold problems caused by interruptions to the software supply.To sol...At present,BIM platforms rely on foreign software.Homemade software and industry applications are mostly secondary developments,which present stranglehold problems caused by interruptions to the software supply.To solve the problem,key technical research on the 3D integrated design of railway engineering was stuedied based on homemade graphics engines to propose an innovative railway BIM platform framework.The entire process was completed from the top-level design to the engineering verification of the platform.The co-designed mechanism of a"center model and link"hybrid mode was constructed,which solved the difficulties of data management and increment synchronization at a large scale,achieving teamwork among surveying and mapping,alignments,and bridges.The results of this study could provide strong support for the development of BIM software for a whole railway and all majors.展开更多
Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative mat...Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body.展开更多
WHEN railway constructionworkers first came to theQinghai-Tibet Plateau, they were amazed at the majesty ofits snowfield scenery. Cut off from theoutside world, everything on the plateau- its snow-capped mountains, gr...WHEN railway constructionworkers first came to theQinghai-Tibet Plateau, they were amazed at the majesty ofits snowfield scenery. Cut off from theoutside world, everything on the plateau- its snow-capped mountains, grassland,lamas, prayer banners, the Potala Palace,and the Tibetan people living 4,000 metersor more above sea level, has an aura ofmystery.Beautiful it may be, but Tibet lags behind other areas of China. Inadequate transportation facilities restrict its economic development, as it is only accessible by highway or air transportation.展开更多
The planned Yunnan-Tibet railway goes through the northwest of Yunnan Province and the southeast of the Tibet Autonomous Region. Because of its location near the collision belt of the Eurasian and Indian plates, compl...The planned Yunnan-Tibet railway goes through the northwest of Yunnan Province and the southeast of the Tibet Autonomous Region. Because of its location near the collision belt of the Eurasian and Indian plates, complex engineering geological conditions and difficult engineering geological problems are encountered. The study is aimed at making the zoning assessment of crustal stability along the railway line so as to provide a better base for its construction, especially its line selection. For this purpose, the following seven influencing factors of crustal stability were selected and quantified by grading and scoring: active fault, seismic activity, geo-stress field, geo-strain field, geothermal field, geo-hazard, and lithologic character. Of these factors, the active fault, seismic activity and geo-hazard are the three most prominent factors influencing the railway construction. Along the railway line there are 1731703 calculation units to be divided. The zoning assessment calculation was completed by ArcGIS-based information fusion method. The assessment results aid railway line selection and show that there are 10 stable sectors, 28 relatively stable sectors, 23 relatively unstable sectors, and 20 unstable sectors along the Yunnan-Tibet railway line.展开更多
This paper develops a dual-indicator discrete method(DDM)for evaluating the system reliability performance of long soil subgrade slopes.First,they are segmented into many slope sections using the random finite element...This paper develops a dual-indicator discrete method(DDM)for evaluating the system reliability performance of long soil subgrade slopes.First,they are segmented into many slope sections using the random finite element method,to ensure each section statistically contains one potential local instability.Then,the k-out-of-n system model is used to describe the relationship between the total number of sections n,the acceptable number of failure sections m,the reliability of sections R_(sec),and the system reliability R_(sys).Finally,m and R_(sys)are jointly used to assess the system reliability performance.For cases lacking spatial data of soil properties,a simplified DDM is provided in which long subgrade slopes are segmented by the empirical value of section length and R_(sec)is substituted by that of crosssections taken from them.The results show that(1)DDM can provide the probability that the actual number of local instabilities does not exceed a desired threshold.(2)R_(sys)decreases with increasing n or decreasing R_(sec);that is,it is likely to encounter more local instabilities for longer or weaker subgrade slopes.n is negatively related to the horizontal scale of fluctuation of soil properties and positively related to the total length of subgrade slopes L.(3)When L is sufficiently large,there is a considerable opportunity to meet local instabilities even if R_(sec)is large enough.展开更多
German engineer Heinrich Hildebrand came to China as a spy in 1891,serving at the German Embassy in Beijing and collecting Chinese railway information.In 1892,he began to work for Zhang Zhidong and participated in the...German engineer Heinrich Hildebrand came to China as a spy in 1891,serving at the German Embassy in Beijing and collecting Chinese railway information.In 1892,he began to work for Zhang Zhidong and participated in the construction of the Daye railway and Hanyang Iron Works,among other projects.Recommended by Zhang Zhidong,he was appointed as counselor of the China Railway Company by Sheng Xuanhuai.After Germany took Jiaozhou Bay in 1897,Hildebrand presided over the survey and construction of the Shandong Railway.He served as its General Director and chief engineer for ten years,which was the most important period of his career.As his identity switched from German spy in Zhang Zhidong’s staff to General Director of the Shandong Railway,his colonialist mentality gradually came to the fore,and he took a tough stance when dealing with Chinese officials and workers.He was highly appreciated by Zhang Zhidong and strongly opposed by Yuan Shikai.Western engineers in early modern China played a dual role in the course of China’s modernization.On the one hand,they promoted the cause of China’s modernization as professionals,and on the other hand,they often became spokesmen for and active agents of imperialism.展开更多
In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solut...In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solution method(abbreviated as mI-nE-MTS method).The TTS system is divided into train-track subsystem and substruc-ture subsystem.Considering that the root cause of low effi-ciency of obtaining TTS solution lies in solving the alge-braic equation of the substructures,the high-efficient Zhai method,an explicit integration scheme,can be introduced to avoid matrix inversion process.The train-track system is solved by implicitly Park method.Moreover,it is known that the requirement of time step size differs for different sub-systems,integration methods and structural frequency response characteristics.A multi-time-step solution is pro-posed,in which time step size for the train-track subsystem and the substructure subsystem can be arbitrarily chosen once satisfying stability and precision demand,namely the time spent for m implicit integral steps is equal to n explicit integral steps,i.e.,mI=nE as mentioned above.The numeri-cal examples show the accuracy,efficiency,and engineering practicality of the proposed method.展开更多
A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement ...A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement (among) the rail, the sleeper and the beam is taken into account. An example is presented and numerical results are compared. The results show that the additional longitudinal forces calculated with the new model are less than those of the previous, especially in the case of the flexible pier bridges. The new model is also suitable for the analysis of the additional longitudinal force transmission between rails and bridges of ballastless track with small resistance fasteners without taking the sleeper displacement into account, and compared with the ballast bridges, the ballastless bridges have a much stronger additional longitudinal force transmission between the continuously welded rails and the bridges.展开更多
Deep mixed column (DMC) is known as one of the effective methods for stabilizing the natural earth beneath road or railway embankments to control stability and settlements under traffic loads. The load distribution ...Deep mixed column (DMC) is known as one of the effective methods for stabilizing the natural earth beneath road or railway embankments to control stability and settlements under traffic loads. The load distribution mechanism of embankment overlying on loose subgrades stabilized with DMCs considerably depends on the columns' mechanical and geometrical specifications. The present study uses the laboratory investigation to understand the behavior of embankments lying on loose sandy subgrade in three different conditions: (1) subgrade without reinforcement, (2) subgrade reinforced with DMCs in a triangular pattern and horizontal plan, and (3) subgrade reinforced with DMCs in a square pattern and horizontal plan. For this purpose, by adopting the scale factor of 1:10, a reference embankment with 20 cm height, 250 cm length, and 93% maximum dry density achieved in standard Proctor compaction test was constructed over a 70 cm thick loose sandy bed with the relative density of 50% in a loading chamber, and its load-displacement behavior was evaluated until the failure occurred. In the next two tests, DMCs (with 10 cm diameter, 40 cm length, and 25 cm center-to-center spacing) were placed in groups in two different patterns (square and triangular) in the same sandy bed beneath the embankment and, consequently, the embankments were constructed over the reinforced subgrades and gradually loaded until the failure happened. In all the three tests, the load-displacement behaviors of the embankment and the selected DMCs were instrumented for monitoring purpose. The obtained results implied 64% increase in failure load and 40% decrease in embankment crest settlement when using the square pattern of DMCs compared with those of the reference embankment, while these values were 63% and 12%, respectively, for DMCs in triangular pattern. This confirmed generally better performance of DMCs with a triangular pattern.展开更多
By building the finite element model, the track parameters, including the ultimate longitudinal resistance, the length of the intermediate straight line, and the gap between spacer blocks, were analyzed for their infl...By building the finite element model, the track parameters, including the ultimate longitudinal resistance, the length of the intermediate straight line, and the gap between spacer blocks, were analyzed for their influences on the longitudinal forces and displacements of the single turnout and turnout group, respectively. The results indicate that when the longitudinal resistance drops from 32 to 20 N/cm, the maximum additional longitudinal force of the turnout group increases by 19. 2%, and the maximum additional longitudinal displacement of the turnout group grows by 85.3% compared with 50.4% for the single turnout. When the length of intermediate straight line rises from 0 m to infinite, the maximum additional longitudinal force decreases by 38.8%, and the maximum additional longitudinal displacement by 80.3%.展开更多
In recent years,with the development of road and railway transportation industries,a variety of complicated decisionmaking problems have emerged in real-world applications.It is urgent to analyze these problems from t...In recent years,with the development of road and railway transportation industries,a variety of complicated decisionmaking problems have emerged in real-world applications.It is urgent to analyze these problems from the perspective of theoretical and methodological innovations,and provide methods in management,decision-making and application so as to achieve efficient operations of traffic and transportation systems.These problems have展开更多
PLANNED in 2003,construction of the 1,092-meter-long ShanghaiNantong Railway Yangtze River Bridge–the world’s longest rail-cumroad cable-stayed steel bridge–started in 2014.On completion in 2019,it will span the 13...PLANNED in 2003,construction of the 1,092-meter-long ShanghaiNantong Railway Yangtze River Bridge–the world’s longest rail-cumroad cable-stayed steel bridge–started in 2014.On completion in 2019,it will span the 130 km.between the two cities,shortening to one hour the drive from Shanghai to Nantong.展开更多
This review evaluated research results on polyvinyl alcohol fiber cement-stabilized macadam(PVA-FCSM)to further improve the long-term durability of road structures and promote its in-depth study and high-quality appli...This review evaluated research results on polyvinyl alcohol fiber cement-stabilized macadam(PVA-FCSM)to further improve the long-term durability of road structures and promote its in-depth study and high-quality application.The suitable PVA fiber technical indexes for ordinary cement-stabilized macadam(CSM)were recommended.The difference in the mechanical properties between CSM and PVA-FCSM was described.The extent to which PVA fibers enhance the durability of CSM were clarified.Additionally,the mechanism of enhancement of CSM by PVA fibers was revealed.Finally,the performance of each type of fiber cement-stabilized macadam(FCSM)was compared and evaluated.The results indicated that the suggested PVA fiber length and content for CSM were 12-30 mm and 0.6-1.2 kg/m^(3),respectively.At different ages,the mean degree of improvement in the unconfined compressive strength was 14%,20%,and 14%,that in the compressive resilience modulus was 8%,11%,and 6%,and that in the splitting strength was 29%,15%,and 22%,respectively.At different ages,the mean degree of decreased in the dry shrinkage coefficient was 21%,16%,and 15%and that in the temperature shrinkage coefficient(20℃-30℃)was 23%,23%,and 18%,respectively.The coefficients increased with extended curing age.Moreover,at the same stress level,PVA-FCSM has a higher fatigue life compared to CSM.The bridging effect,high strength,and high modulus of PVA fiber enhance the strength and anti-cracking of CSM.The recommended fiber type for CSM is PVA fiber.展开更多
China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than ...China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than rail. And the track-bridge interaction is weakened by the sliding layer installed between base plate and bridge deck. In order to study the dynamic response of CRTS II slab ballastless track on bridge under seismic action, a 3D nonlinear dynamic model for simply-supported bridges and CRTS II track was established, which considered structures such as steel rail, fasteners, track plate, mortar layer, base plate, sliding layer, bridge, consolidation, anchors, stoppers, etc. Then its force and deformation features under different intensities of seismic excitation were studied. As revealed, the seismic response of the system increases with the increase of seismic intensity. The peak stresses of rail, track plate and base plate all occur at the abutment or anchors. Both track plate and base plate are about to crack. Besides, the rapid relative displacement between base plate and bridge deck due to the small friction coefficient of sliding layer is beneficial to improve the seismic performance of the system. During the earthquake, a large vertical displacement appears in base plate which leads to frequent collisions between stoppers and base plate, as a result, stoppers may be damaged.展开更多
基金funded by the National Key Research and Development Program of China(No:2020YFC1909900)the National Natural Science Foundation of China(No:51908550)the Scientific Research Project of China Academy of Railway Sciences Group Corporation Limited(No:2021YJ173).
文摘Purpose – This study aims to analyze the factors, evaluation techniques of the durability of existing railwayengineering.Design/methodology/approach – China has built a railway network of over 150,000 km. Ensuring thesafety of the existing railway engineering is of great significance for maintaining normal railway operationorder. However, railway engineering is a strip structure that crosses multiple complex environments. Andrailway engineering will withstand high-frequency impact loads from trains. The above factors have led todifferences in the deterioration characteristics and maintenance strategies of railway engineering compared toconventional concrete structures. Therefore, it is very important to analyze the key factors that affect thedurability of railway structures and propose technologies for durability evaluation.Findings – The factors that affect the durability and reliability of railway engineering are mainly divided intothree categories: material factors, environmental factors and load factors. Among them, material factors alsoinclude influencing factors, such as raw materials, mix proportions and so on. Environmental factors varydepending on the service environment of railway engineering, and the durability and deterioration of concretehave different failure mechanisms. Load factors include static load and train dynamic load. The on-site rapiddetection methods for five common diseases in railway engineering are also proposed in this paper. Thesemethods can quickly evaluate the durability of existing railway engineering concrete.Originality/value – The research can provide some new evaluation techniques and methods for thedurability of existing railway engineering.
基金supported by the National Key Research and Development Program of China(2021YFB2600405).
文摘In view of the problems of inconsistent data semantics,inconsistent data formats,and difficult data quality assurance between the railway engineering design phase and the construction and operation phase,as well as the difficulty in fully realizing the value of design results,this paper proposes a design and implementation scheme for a railway engineering collaborative design platform.The railway engineering collaborative design platform mainly includes functional modules such as metadata management,design collaboration,design delivery management,model component library,model rendering services,and Building Information Modeling(BIM)application services.Based on this,research is conducted on multi-disciplinary parameterized collaborative design technology for railway engineering,infrastructure data management and delivery technology,and design multi-source data fusion and application technology.The railway engineering collaborative design platform is compared with other railway design software to further validate its advantages and advanced features.The platform has been widely applied in multiple railway construction projects,greatly improving the design and project management efficiency.
基金Education and Teaching Reform Project of Central South University(2019jy097).
文摘At present,rail transit is developing rapidly in the world,and this means new and changing requirements for the training of talents in railway engineering experiments.Given the current problems of limited laboratory/field instruments for railway engineering experimentsand the safety/administrative difficulties of going to the frontline of railway lines to teach railway engineering experiemnts in the field,the Department of Railway Engineering of Central South University tried to introduce virtual reality(VR)technology to teach students experiments in the field of railway engineering.Through the virtualized experimental methods,students can carry out railway engineering experiments such as;vehicle wheel pair off-axis experiments,track geometry and position detection,etc.by immersive means.It was observed that after performing virtual simulation experiments,students appeared conversant in subsequent field experiments.Thus,VR greatly improves the teaching efficiency of railway engineering experiments.
文摘The railway engineering major shows extremely strong applicability,with the internationalization of railway engineering teaching and communication,how to solve the problem of cultivating the international students of the railway engineering major experimental teaching is a core problem that the railway engineering majors in universities need to solve at this stage.Through reform,a new type of experimental teaching system for railway engineering specialty was constructed,that is,the experimental course system and content system determined by the international students training program were taken as the core,the construction of teachers,experimental facilities,practice bases and other conditions as the basis,and the system construction and operation organization to build an organic whole composed of four elements for guarantee.It is closely integrated with the theoretical teaching system and relatively independent.It guarantees the realization of the goal of international students training.And it can integrate and optimize the experimental teaching links,content,methods and evaluation system,and build a“gradual experimentprofessional experiment-comprehensive experiment”progressive gradient experiment teaching system.Form a benign pattern of collaborative training of laboratories,practice bases and scientific research bases,mutual promotion of teaching and scientific research,and effectively promote the improvement of students’experimental innovation ability.
基金The research is financially supported by First-class Undergraduate Course Funding Project in Hunan Province-Virtual Simulation Experimental Teaching Course(Xiang Jiao Tong[2021]No.28),Hunan Engineering Teaching Team)(Xiang Jiao Tong[2019]No.370)National Experimental Teaching Center of Civil Engineering Virtual Simulation(Central South University)Open Project(202001)Education and Teaching Reform Project of Central South University(2020jy063),which is gratefully acknowledged by the authors.
文摘Virtual simulation teaching is an addendum to the experimental teaching mode of railway engineering,and the two teaching methods complement each other and merge with each other.In view of the current research,there is little discussion about the integration path of the two above.Based on the connotation and design of virtual simulation teaching,this research systematically expounds the integration of the real path and path optimization problems,and puts forward the railway engineering experimental teaching principles based on virtual simulation teaching.On the basis of this research,a virtual simulation experiment platform for vibration mechanics and its application in the floating slab vibration damping track was developed to make full use of three-dimensional modeling,virtual reality,human-computer interaction and other technologies,which can realistically simulate the vibration law and vibration damping effect of the rail transit system,and in the hope that the virtual simulation teaching can be widely used in the experimental teaching mode of railway engineering in the future.
文摘Intelligent construction technology has been widely used in the field of railway engineering.This work first analyzes the connotation,function,and characteristics of intelligent construction of railway engineering(ICRE)and establishes its system structure from three dimensions,namely,life cycle,layers of management,and intelligent function,to deeply understand the development situation of intelligent railway construction in China.Second,seven key technical support systems of ICRE,which include building information modeling(BIM)standard system for China’s railway sector,technology management platform and life cycle management based on BIM-hGIS(geography information system),ubiquitous intelligent perception system,intelligent Intemet-of-Things(IoT)communication system based on mobile interconnection,construction management platform based on cloud computing and big data,unmanned operation system based on artificial intelligence,intelligent machinery and robot,and intelligent operation and maintenance system based on BIM and PHM(prediction and health management),are established.Third,ICRE is divided into three development stages:primary(perception),intermediate(substitution),and advanced(intelligence).The evaluation index system of each stage is provided from the aspects of technology and function.Finally,this work summarizes and analyzes the application situation of ICRE in the entire railway sector of China,represented by Beijing-Zhangjiakou and Beijing-Xiong’an high-speed railways.Result shows that the technical support systems of the ICRE have emerged in China and are still in the process of deepening basic technology research and preliminary application.In the future,the ICRE of China’s railway sector will develop toward a higher stage.
基金supported in part by CHN RAILWAY(Grant Number L2021G012)in part by CHN NSFC under(Grant U2268203).
文摘At present,BIM platforms rely on foreign software.Homemade software and industry applications are mostly secondary developments,which present stranglehold problems caused by interruptions to the software supply.To solve the problem,key technical research on the 3D integrated design of railway engineering was stuedied based on homemade graphics engines to propose an innovative railway BIM platform framework.The entire process was completed from the top-level design to the engineering verification of the platform.The co-designed mechanism of a"center model and link"hybrid mode was constructed,which solved the difficulties of data management and increment synchronization at a large scale,achieving teamwork among surveying and mapping,alignments,and bridges.The results of this study could provide strong support for the development of BIM software for a whole railway and all majors.
文摘Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body.
文摘WHEN railway constructionworkers first came to theQinghai-Tibet Plateau, they were amazed at the majesty ofits snowfield scenery. Cut off from theoutside world, everything on the plateau- its snow-capped mountains, grassland,lamas, prayer banners, the Potala Palace,and the Tibetan people living 4,000 metersor more above sea level, has an aura ofmystery.Beautiful it may be, but Tibet lags behind other areas of China. Inadequate transportation facilities restrict its economic development, as it is only accessible by highway or air transportation.
基金supported by the Special Project of Basic Work of Science and Technology(grant No. 2011FY110100)the Geological Survey of the Ministry of Land and Resources(grant No.1212010541404)the Project of the 12th Five-year National Sci-Tech Support Plan(grant No.2011BAK12B09)
文摘The planned Yunnan-Tibet railway goes through the northwest of Yunnan Province and the southeast of the Tibet Autonomous Region. Because of its location near the collision belt of the Eurasian and Indian plates, complex engineering geological conditions and difficult engineering geological problems are encountered. The study is aimed at making the zoning assessment of crustal stability along the railway line so as to provide a better base for its construction, especially its line selection. For this purpose, the following seven influencing factors of crustal stability were selected and quantified by grading and scoring: active fault, seismic activity, geo-stress field, geo-strain field, geothermal field, geo-hazard, and lithologic character. Of these factors, the active fault, seismic activity and geo-hazard are the three most prominent factors influencing the railway construction. Along the railway line there are 1731703 calculation units to be divided. The zoning assessment calculation was completed by ArcGIS-based information fusion method. The assessment results aid railway line selection and show that there are 10 stable sectors, 28 relatively stable sectors, 23 relatively unstable sectors, and 20 unstable sectors along the Yunnan-Tibet railway line.
基金supported by the National Natural Science Foundation of China(Nos.52078435 and 51878560)the financial support from the open research fund of MOE Key Laboratory of High-Speed Railway Engineering。
文摘This paper develops a dual-indicator discrete method(DDM)for evaluating the system reliability performance of long soil subgrade slopes.First,they are segmented into many slope sections using the random finite element method,to ensure each section statistically contains one potential local instability.Then,the k-out-of-n system model is used to describe the relationship between the total number of sections n,the acceptable number of failure sections m,the reliability of sections R_(sec),and the system reliability R_(sys).Finally,m and R_(sys)are jointly used to assess the system reliability performance.For cases lacking spatial data of soil properties,a simplified DDM is provided in which long subgrade slopes are segmented by the empirical value of section length and R_(sec)is substituted by that of crosssections taken from them.The results show that(1)DDM can provide the probability that the actual number of local instabilities does not exceed a desired threshold.(2)R_(sys)decreases with increasing n or decreasing R_(sec);that is,it is likely to encounter more local instabilities for longer or weaker subgrade slopes.n is negatively related to the horizontal scale of fluctuation of soil properties and positively related to the total length of subgrade slopes L.(3)When L is sufficiently large,there is a considerable opportunity to meet local instabilities even if R_(sec)is large enough.
基金funded by a Knowledge Innovation Project of the Chinese Academy of Sciences,“Comparative Study of Science and Technology between China and Foreign Countries”(GZ01-07-01).
文摘German engineer Heinrich Hildebrand came to China as a spy in 1891,serving at the German Embassy in Beijing and collecting Chinese railway information.In 1892,he began to work for Zhang Zhidong and participated in the construction of the Daye railway and Hanyang Iron Works,among other projects.Recommended by Zhang Zhidong,he was appointed as counselor of the China Railway Company by Sheng Xuanhuai.After Germany took Jiaozhou Bay in 1897,Hildebrand presided over the survey and construction of the Shandong Railway.He served as its General Director and chief engineer for ten years,which was the most important period of his career.As his identity switched from German spy in Zhang Zhidong’s staff to General Director of the Shandong Railway,his colonialist mentality gradually came to the fore,and he took a tough stance when dealing with Chinese officials and workers.He was highly appreciated by Zhang Zhidong and strongly opposed by Yuan Shikai.Western engineers in early modern China played a dual role in the course of China’s modernization.On the one hand,they promoted the cause of China’s modernization as professionals,and on the other hand,they often became spokesmen for and active agents of imperialism.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.52008404,U1934217 and 11790283)Science and Technology Research and Development Program Project of China Railway Group Limited(Major Special Project,No.2020-Special-02)the National Natural Science Foundation of Hunan Province(Grant No.2021JJ30850).
文摘In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solution method(abbreviated as mI-nE-MTS method).The TTS system is divided into train-track subsystem and substruc-ture subsystem.Considering that the root cause of low effi-ciency of obtaining TTS solution lies in solving the alge-braic equation of the substructures,the high-efficient Zhai method,an explicit integration scheme,can be introduced to avoid matrix inversion process.The train-track system is solved by implicitly Park method.Moreover,it is known that the requirement of time step size differs for different sub-systems,integration methods and structural frequency response characteristics.A multi-time-step solution is pro-posed,in which time step size for the train-track subsystem and the substructure subsystem can be arbitrarily chosen once satisfying stability and precision demand,namely the time spent for m implicit integral steps is equal to n explicit integral steps,i.e.,mI=nE as mentioned above.The numeri-cal examples show the accuracy,efficiency,and engineering practicality of the proposed method.
文摘A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement (among) the rail, the sleeper and the beam is taken into account. An example is presented and numerical results are compared. The results show that the additional longitudinal forces calculated with the new model are less than those of the previous, especially in the case of the flexible pier bridges. The new model is also suitable for the analysis of the additional longitudinal force transmission between rails and bridges of ballastless track with small resistance fasteners without taking the sleeper displacement into account, and compared with the ballast bridges, the ballastless bridges have a much stronger additional longitudinal force transmission between the continuously welded rails and the bridges.
基金the financial support of Iran Transportation Research Institute for doing this project(Grant No.91/1/5306)
文摘Deep mixed column (DMC) is known as one of the effective methods for stabilizing the natural earth beneath road or railway embankments to control stability and settlements under traffic loads. The load distribution mechanism of embankment overlying on loose subgrades stabilized with DMCs considerably depends on the columns' mechanical and geometrical specifications. The present study uses the laboratory investigation to understand the behavior of embankments lying on loose sandy subgrade in three different conditions: (1) subgrade without reinforcement, (2) subgrade reinforced with DMCs in a triangular pattern and horizontal plan, and (3) subgrade reinforced with DMCs in a square pattern and horizontal plan. For this purpose, by adopting the scale factor of 1:10, a reference embankment with 20 cm height, 250 cm length, and 93% maximum dry density achieved in standard Proctor compaction test was constructed over a 70 cm thick loose sandy bed with the relative density of 50% in a loading chamber, and its load-displacement behavior was evaluated until the failure occurred. In the next two tests, DMCs (with 10 cm diameter, 40 cm length, and 25 cm center-to-center spacing) were placed in groups in two different patterns (square and triangular) in the same sandy bed beneath the embankment and, consequently, the embankments were constructed over the reinforced subgrades and gradually loaded until the failure happened. In all the three tests, the load-displacement behaviors of the embankment and the selected DMCs were instrumented for monitoring purpose. The obtained results implied 64% increase in failure load and 40% decrease in embankment crest settlement when using the square pattern of DMCs compared with those of the reference embankment, while these values were 63% and 12%, respectively, for DMCs in triangular pattern. This confirmed generally better performance of DMCs with a triangular pattern.
基金The Doctoral Fund of Ministry of Educa-tionof China (No. 20050613007)
文摘By building the finite element model, the track parameters, including the ultimate longitudinal resistance, the length of the intermediate straight line, and the gap between spacer blocks, were analyzed for their influences on the longitudinal forces and displacements of the single turnout and turnout group, respectively. The results indicate that when the longitudinal resistance drops from 32 to 20 N/cm, the maximum additional longitudinal force of the turnout group increases by 19. 2%, and the maximum additional longitudinal displacement of the turnout group grows by 85.3% compared with 50.4% for the single turnout. When the length of intermediate straight line rises from 0 m to infinite, the maximum additional longitudinal force decreases by 38.8%, and the maximum additional longitudinal displacement by 80.3%.
文摘In recent years,with the development of road and railway transportation industries,a variety of complicated decisionmaking problems have emerged in real-world applications.It is urgent to analyze these problems from the perspective of theoretical and methodological innovations,and provide methods in management,decision-making and application so as to achieve efficient operations of traffic and transportation systems.These problems have
文摘PLANNED in 2003,construction of the 1,092-meter-long ShanghaiNantong Railway Yangtze River Bridge–the world’s longest rail-cumroad cable-stayed steel bridge–started in 2014.On completion in 2019,it will span the 130 km.between the two cities,shortening to one hour the drive from Shanghai to Nantong.
基金supported by the Innovation Capability Support Program of Shaanxi(No.2022TD-07)。
文摘This review evaluated research results on polyvinyl alcohol fiber cement-stabilized macadam(PVA-FCSM)to further improve the long-term durability of road structures and promote its in-depth study and high-quality application.The suitable PVA fiber technical indexes for ordinary cement-stabilized macadam(CSM)were recommended.The difference in the mechanical properties between CSM and PVA-FCSM was described.The extent to which PVA fibers enhance the durability of CSM were clarified.Additionally,the mechanism of enhancement of CSM by PVA fibers was revealed.Finally,the performance of each type of fiber cement-stabilized macadam(FCSM)was compared and evaluated.The results indicated that the suggested PVA fiber length and content for CSM were 12-30 mm and 0.6-1.2 kg/m^(3),respectively.At different ages,the mean degree of improvement in the unconfined compressive strength was 14%,20%,and 14%,that in the compressive resilience modulus was 8%,11%,and 6%,and that in the splitting strength was 29%,15%,and 22%,respectively.At different ages,the mean degree of decreased in the dry shrinkage coefficient was 21%,16%,and 15%and that in the temperature shrinkage coefficient(20℃-30℃)was 23%,23%,and 18%,respectively.The coefficients increased with extended curing age.Moreover,at the same stress level,PVA-FCSM has a higher fatigue life compared to CSM.The bridging effect,high strength,and high modulus of PVA fiber enhance the strength and anti-cracking of CSM.The recommended fiber type for CSM is PVA fiber.
基金supported by the National Natural Science Foundation of China (Grant No. 51608542)Project of Science and Technology Research and Development Program of China Railway Corporation (Grant No.2015G001-G)
文摘China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than rail. And the track-bridge interaction is weakened by the sliding layer installed between base plate and bridge deck. In order to study the dynamic response of CRTS II slab ballastless track on bridge under seismic action, a 3D nonlinear dynamic model for simply-supported bridges and CRTS II track was established, which considered structures such as steel rail, fasteners, track plate, mortar layer, base plate, sliding layer, bridge, consolidation, anchors, stoppers, etc. Then its force and deformation features under different intensities of seismic excitation were studied. As revealed, the seismic response of the system increases with the increase of seismic intensity. The peak stresses of rail, track plate and base plate all occur at the abutment or anchors. Both track plate and base plate are about to crack. Besides, the rapid relative displacement between base plate and bridge deck due to the small friction coefficient of sliding layer is beneficial to improve the seismic performance of the system. During the earthquake, a large vertical displacement appears in base plate which leads to frequent collisions between stoppers and base plate, as a result, stoppers may be damaged.