Objective Body fluid mixtures are complex biological samples that frequently occur in crime scenes,and can provide important clues for criminal case analysis.DNA methylation assay has been applied in the identificatio...Objective Body fluid mixtures are complex biological samples that frequently occur in crime scenes,and can provide important clues for criminal case analysis.DNA methylation assay has been applied in the identification of human body fluids,and has exhibited excellent performance in predicting single-source body fluids.The present study aims to develop a methylation SNaPshot multiplex system for body fluid identification,and accurately predict the mixture samples.In addition,the value of DNA methylation in the prediction of body fluid mixtures was further explored.Methods In the present study,420 samples of body fluid mixtures and 250 samples of single body fluids were tested using an optimized multiplex methylation system.Each kind of body fluid sample presented the specific methylation profiles of the 10 markers.Results Significant differences in methylation levels were observed between the mixtures and single body fluids.For all kinds of mixtures,the Spearman’s correlation analysis revealed a significantly strong correlation between the methylation levels and component proportions(1:20,1:10,1:5,1:1,5:1,10:1 and 20:1).Two random forest classification models were trained for the prediction of mixture types and the prediction of the mixture proportion of 2 components,based on the methylation levels of 10 markers.For the mixture prediction,Model-1 presented outstanding prediction accuracy,which reached up to 99.3%in 427 training samples,and had a remarkable accuracy of 100%in 243 independent test samples.For the mixture proportion prediction,Model-2 demonstrated an excellent accuracy of 98.8%in 252 training samples,and 98.2%in 168 independent test samples.The total prediction accuracy reached 99.3%for body fluid mixtures and 98.6%for the mixture proportions.Conclusion These results indicate the excellent capability and powerful value of the multiplex methylation system in the identification of forensic body fluid mixtures.展开更多
Potential of the Random Forest Model on mapping of different desertification processes was studied in Muttuma watershed of mid-Murrumbidgee river region of New South Wales,Australia.Desertification vulnerability index...Potential of the Random Forest Model on mapping of different desertification processes was studied in Muttuma watershed of mid-Murrumbidgee river region of New South Wales,Australia.Desertification vulnerability index was developed using climate,terrain,vegetation,soil and land quality indices to identify environmentally sensitive areas for desertification.Random Forest Model(RFM)was used to predict the different desertification processes such as soil erosion,salinization and waterlogging in the watershed and the information needed to train classification algorithms was obtained from satellite imagery interpretation and ground truth data.Climatic factors(evaporation,rainfall,temperature),terrain factors(aspect,slope,slope length,steepness,and wetness index),soil properties(pH,organic carbon,clay and sand content)and vulnerability indices were used as an explanatory variable.Classification accuracy and kappa index were calculated for training and testing datasets.We recorded an overall accuracy rate of 87.7%and 72.1%for training and testing sites,respectively.We found larger discrepancies between overall accuracy rate and kappa index for testing datasets(72.2%and 27.5%,respectively)suggesting that all the classes are not predicted well.The prediction of soil erosion and no desertification process was good and poor for salinization and water-logging process.Overall,the results observed give a new idea of using the knowledge of desertification process in training areas that can be used to predict the desertification processes at unvisited areas.展开更多
Modeling the spatial distribution of soil heavy metals is important in determining the safety of contaminated soils for agricultural use. This study utilized 60 topsoil samples (0 - 30 cm), multispectral images (Senti...Modeling the spatial distribution of soil heavy metals is important in determining the safety of contaminated soils for agricultural use. This study utilized 60 topsoil samples (0 - 30 cm), multispectral images (Sentinel-2), spectral indices, and ancillary data to model the spatial distribution of heavy metals in the soils along the Nairobi River. The model was generated using the Random Forest package in R. Using R2 to assess the prediction accuracy, the Random Forest model generated satisfactory results for all the elements. It also ranked the variables in order of their importance in the overall prediction. Spectral indices were the most important variables within the rankings. From the predicted topsoil maps, there were high concentrations of Cadmium on the easterly end of the river. Cadmium is an impurity in detergents, and this section is in close proximity to the Nairobi water sewerage plant, which could be a direct source of Cadmium. Some farms had Zinc levels which were above the World Health Organization recommended limit. The Random Forest model performed satisfactorily. However, the predictions can be improved further if the spatial resolutions of the various variables are increased and through the addition of more predictor variables.展开更多
Random forest model is the mainstream research method used to accurately describe the distribution law and impact mechanism of regional population.We took Shijiazhuang as the research area,with comprehensive zoning ba...Random forest model is the mainstream research method used to accurately describe the distribution law and impact mechanism of regional population.We took Shijiazhuang as the research area,with comprehensive zoning based on endowments as the modeling unit,conducted stratified sampling on a hectare grid cell,and systematically carried out incremental selection experiments of population density impact factors,optimizing the population density random forest model throughout the process(zonal modeling,stratified sampling,factor selection,weighted output).The results are as follows:(1)Zonal modeling addresses the issue of confusion in population distribution laws caused by a single model.Sampling on a grid cell not only ensures the quality of training data by avoiding the modifiable areal unit problem(MAUP)but also attempts to mitigate the adverse effects of the ecological fallacy.Stratified sampling ensures the stability of population density label values(target variable)in the training sample.(2)Zonal selection experiments on population density impact factors help identify suitable combinations of factors,leading to a significant improvement in the goodness of fit(R^(2))of the zonal models.(3)Weighted combination output of the population density prediction dataset substantially enhances the model's robustness.(4)The population density dataset exhibits multi-scale superposition characteristics.On a large scale,the population density in plains is higher than that in mountainous areas,while on a small scale,urban areas have higher density compared to rural areas.The optimization scheme for the population density random forest model that we propose offers a unified technical framework for uncovering local population distribution law and the impact mechanisms.展开更多
This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting de...This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.展开更多
The car-following models are the research basis of traffic flow theory and microscopic traffic simulation. Among the previous work, the theory-driven models are dominant, while the data-driven ones are relatively rare...The car-following models are the research basis of traffic flow theory and microscopic traffic simulation. Among the previous work, the theory-driven models are dominant, while the data-driven ones are relatively rare. In recent years, the related technologies of Intelligent Transportation System (ITS) re</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">presented by the Vehicles to Everything (V2X) technology have been developing rapidly. Utilizing the related technologies of ITS, the large-scale vehicle microscopic trajectory data with high quality can be acquired, which provides the research foundation for modeling the car-following behavior based on the data-driven methods. According to this point, a data-driven car-following model based on the Random Forest (RF) method was constructed in this work, and the Next Generation Simulation (NGSIM) dataset was used to calibrate and train the constructed model. The Artificial Neural Network (ANN) model, GM model, and Full Velocity Difference (FVD) model are em</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">ployed to comparatively verify the proposed model. The research results suggest that the model proposed in this work can accurately describe the car-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">following behavior with better performance under multiple performance indicators.展开更多
Tree height (H) in a natural stand or forest plantation is a fundamental variable in management, and the use of mathematical expressions that estimate H as a function of diameter at breast height (d) or variables at t...Tree height (H) in a natural stand or forest plantation is a fundamental variable in management, and the use of mathematical expressions that estimate H as a function of diameter at breast height (d) or variables at the stand level is a valuable support tool in forest inventories. The objective was to fit and propose a generalized H-d model for Pinus montezumae and Pinus pseudostrobus established in forest plantations of Nuevo San Juan Parangaricutiro, Michoacan, Mexico. Using nonlinear least squares (NLS), 10 generalized H-d models were fitted to 883 and 1226 pairs of H-d data from Pinus montezumae and Pinus pseudostrobus, respectively. The best model was refitted with the maximum likelihood mixed effects model (MEM) approach by including the site as a classification variable and a known variance structure. The Wang and Tang equation was selected as the best model with NLS;the MEM with an additive effect on two of its parameters and an exponential variance function improved the fit statistics for Pinus montezumae and Pinus pseudostrobus, respectively. The model validation showed equality of means among the estimates for both species and an independent subsample. The calibration of the MEM at the plot level was efficient and might increase the applicability of these results. The inclusion of dominant height in the MEM approach helped to reduce bias in the estimates and also to better explain the variability among plots.展开更多
This paper presents new trading models for the stock market and test whether they are able to consistently generate excess returns from the Singapore Exchange (SGX). Instead of conventional ways of modeling stock pric...This paper presents new trading models for the stock market and test whether they are able to consistently generate excess returns from the Singapore Exchange (SGX). Instead of conventional ways of modeling stock prices, we construct models which relate the market indicators to a trading decision directly. Furthermore, unlike a reversal trading system or a binary system of buy and sell, we allow three modes of trades, namely, buy, sell or stand by, and the stand-by case is important as it caters to the market conditions where a model does not produce a strong signal of buy or sell. Linear trading models are firstly developed with the scoring technique which weights higher on successful indicators, as well as with the Least Squares technique which tries to match the past perfect trades with its weights. The linear models are then made adaptive by using the forgetting factor to address market changes. Because stock markets could be highly nonlinear sometimes, the Random Forest is adopted as a nonlinear trading model, and improved with Gradient Boosting to form a new technique—Gradient Boosted Random Forest. All the models are trained and evaluated on nine stocks and one index, and statistical tests such as randomness, linear and nonlinear correlations are conducted on the data to check the statistical significance of the inputs and their relation with the output before a model is trained. Our empirical results show that the proposed trading methods are able to generate excess returns compared with the buy-and-hold strategy.展开更多
BACKGROUND Type 2 diabetes mellitus(T2DM)is associated with periodontitis.Currently,there are few studies proposing predictive models for periodontitis in patients with T2DM.AIM To determine the factors influencing pe...BACKGROUND Type 2 diabetes mellitus(T2DM)is associated with periodontitis.Currently,there are few studies proposing predictive models for periodontitis in patients with T2DM.AIM To determine the factors influencing periodontitis in patients with T2DM by constructing logistic regression and random forest models.METHODS In this a retrospective study,300 patients with T2DM who were hospitalized at the First People’s Hospital of Wenling from January 2022 to June 2022 were selected for inclusion,and their data were collected from hospital records.We used logistic regression to analyze factors associated with periodontitis in patients with T2DM,and random forest and logistic regression prediction models were established.The prediction efficiency of the models was compared using the area under the receiver operating characteristic curve(AUC).RESULTS Of 300 patients with T2DM,224 had periodontitis,with an incidence of 74.67%.Logistic regression analysis showed that age[odds ratio(OR)=1.047,95%confidence interval(CI):1.017-1.078],teeth brushing frequency(OR=4.303,95%CI:2.154-8.599),education level(OR=0.528,95%CI:0.348-0.800),glycosylated hemoglobin(HbA1c)(OR=2.545,95%CI:1.770-3.661),total cholesterol(TC)(OR=2.872,95%CI:1.725-4.781),and triglyceride(TG)(OR=3.306,95%CI:1.019-10.723)influenced the occurrence of periodontitis(P<0.05).The random forest model showed that the most influential variable was HbA1c followed by age,TC,TG, education level, brushing frequency, and sex. Comparison of the prediction effects of the two models showedthat in the training dataset, the AUC of the random forest model was higher than that of the logistic regressionmodel (AUC = 1.000 vs AUC = 0.851;P < 0.05). In the validation dataset, there was no significant difference in AUCbetween the random forest and logistic regression models (AUC = 0.946 vs AUC = 0.915;P > 0.05).CONCLUSION Both random forest and logistic regression models have good predictive value and can accurately predict the riskof periodontitis in patients with T2DM.展开更多
BACKGROUND Gestational diabetes mellitus(GDM)is a condition characterized by high blood sugar levels during pregnancy.The prevalence of GDM is on the rise globally,and this trend is particularly evident in China,which...BACKGROUND Gestational diabetes mellitus(GDM)is a condition characterized by high blood sugar levels during pregnancy.The prevalence of GDM is on the rise globally,and this trend is particularly evident in China,which has emerged as a significant issue impacting the well-being of expectant mothers and their fetuses.Identifying and addressing GDM in a timely manner is crucial for maintaining the health of both expectant mothers and their developing fetuses.Therefore,this study aims to establish a risk prediction model for GDM and explore the effects of serum ferritin,blood glucose,and body mass index(BMI)on the occurrence of GDM.AIM To develop a risk prediction model to analyze factors leading to GDM,and evaluate its efficiency for early prevention.METHODS The clinical data of 406 pregnant women who underwent routine prenatal examination in Fujian Maternity and Child Health Hospital from April 2020 to December 2022 were retrospectively analyzed.According to whether GDM occurred,they were divided into two groups to analyze the related factors affecting GDM.Then,according to the weight of the relevant risk factors,the training set and the verification set were divided at a ratio of 7:3.Subsequently,a risk prediction model was established using logistic regression and random forest models,and the model was evaluated and verified.RESULTS Pre-pregnancy BMI,previous history of GDM or macrosomia,hypertension,hemoglobin(Hb)level,triglyceride level,family history of diabetes,serum ferritin,and fasting blood glucose levels during early pregnancy were determined.These factors were found to have a significant impact on the development of GDM(P<0.05).According to the nomogram model’s prediction of GDM in pregnancy,the area under the curve(AUC)was determined to be 0.883[95%confidence interval(CI):0.846-0.921],and the sensitivity and specificity were 74.1%and 87.6%,respectively.The top five variables in the random forest model for predicting the occurrence of GDM were serum ferritin,fasting blood glucose in early pregnancy,pre-pregnancy BMI,Hb level and triglyceride level.The random forest model achieved an AUC of 0.950(95%CI:0.927-0.973),the sensitivity was 84.8%,and the specificity was 91.4%.The Delong test showed that the AUC value of the random forest model was higher than that of the decision tree model(P<0.05).CONCLUSION The random forest model is superior to the nomogram model in predicting the risk of GDM.This method is helpful for early diagnosis and appropriate intervention of GDM.展开更多
Height–diameter relationships are essential elements of forest assessment and modeling efforts.In this work,two linear and eighteen nonlinear height–diameter equations were evaluated to find a local model for Orient...Height–diameter relationships are essential elements of forest assessment and modeling efforts.In this work,two linear and eighteen nonlinear height–diameter equations were evaluated to find a local model for Oriental beech(Fagus orientalis Lipsky) in the Hyrcanian Forest in Iran.The predictive performance of these models was first assessed by different evaluation criteria: adjusted R^2(R^2_(adj)),root mean square error(RMSE),relative RMSE(%RMSE),bias,and relative bias(%bias) criteria.The best model was selected for use as the base mixed-effects model.Random parameters for test plots were estimated with different tree selection options.Results show that the Chapman–Richards model had better predictive ability in terms of adj R^2(0.81),RMSE(3.7 m),%RMSE(12.9),bias(0.8),%Bias(2.79) than the other models.Furthermore,the calibration response,based on a selection of four trees from the sample plots,resulted in a reduction percentage for bias and RMSE of about 1.6–2.7%.Our results indicate that the calibrated model produced the most accurate results.展开更多
The dead fuel moisture content(DFMC)is the key driver leading to fire occurrence.Accurately estimating the DFMC could help identify locations facing fire risks,prioritise areas for fire monitoring,and facilitate timel...The dead fuel moisture content(DFMC)is the key driver leading to fire occurrence.Accurately estimating the DFMC could help identify locations facing fire risks,prioritise areas for fire monitoring,and facilitate timely deployment of fire-suppression resources.In this study,the DFMC and environmental variables,including air temperature,relative humidity,wind speed,solar radiation,rainfall,atmospheric pressure,soil temperature,and soil humidity,were simultaneously measured in a grassland of Ergun City,Inner Mongolia Autonomous Region of China in 2021.We chose three regression models,i.e.,random forest(RF)model,extreme gradient boosting(XGB)model,and boosted regression tree(BRT)model,to model the seasonal DFMC according to the data collected.To ensure accuracy,we added time-lag variables of 3 d to the models.The results showed that the RF model had the best fitting effect with an R2value of 0.847 and a prediction accuracy with a mean absolute error score of 4.764%among the three models.The accuracies of the models in spring and autumn were higher than those in the other two seasons.In addition,different seasons had different key influencing factors,and the degree of influence of these factors on the DFMC changed with time lags.Moreover,time-lag variables within 44 h clearly improved the fitting effect and prediction accuracy,indicating that environmental conditions within approximately 48 h greatly influence the DFMC.This study highlights the importance of considering 48 h time-lagged variables when predicting the DFMC of grassland fuels and mapping grassland fire risks based on the DFMC to help locate high-priority areas for grassland fire monitoring and prevention.展开更多
基金supported by the grants from the Natural Science Foundation of Hubei Province(No.2020CFB780)the Fundamental Research Funds for the Central Universities(No.2017KFYXJJ020).
文摘Objective Body fluid mixtures are complex biological samples that frequently occur in crime scenes,and can provide important clues for criminal case analysis.DNA methylation assay has been applied in the identification of human body fluids,and has exhibited excellent performance in predicting single-source body fluids.The present study aims to develop a methylation SNaPshot multiplex system for body fluid identification,and accurately predict the mixture samples.In addition,the value of DNA methylation in the prediction of body fluid mixtures was further explored.Methods In the present study,420 samples of body fluid mixtures and 250 samples of single body fluids were tested using an optimized multiplex methylation system.Each kind of body fluid sample presented the specific methylation profiles of the 10 markers.Results Significant differences in methylation levels were observed between the mixtures and single body fluids.For all kinds of mixtures,the Spearman’s correlation analysis revealed a significantly strong correlation between the methylation levels and component proportions(1:20,1:10,1:5,1:1,5:1,10:1 and 20:1).Two random forest classification models were trained for the prediction of mixture types and the prediction of the mixture proportion of 2 components,based on the methylation levels of 10 markers.For the mixture prediction,Model-1 presented outstanding prediction accuracy,which reached up to 99.3%in 427 training samples,and had a remarkable accuracy of 100%in 243 independent test samples.For the mixture proportion prediction,Model-2 demonstrated an excellent accuracy of 98.8%in 252 training samples,and 98.2%in 168 independent test samples.The total prediction accuracy reached 99.3%for body fluid mixtures and 98.6%for the mixture proportions.Conclusion These results indicate the excellent capability and powerful value of the multiplex methylation system in the identification of forensic body fluid mixtures.
文摘Potential of the Random Forest Model on mapping of different desertification processes was studied in Muttuma watershed of mid-Murrumbidgee river region of New South Wales,Australia.Desertification vulnerability index was developed using climate,terrain,vegetation,soil and land quality indices to identify environmentally sensitive areas for desertification.Random Forest Model(RFM)was used to predict the different desertification processes such as soil erosion,salinization and waterlogging in the watershed and the information needed to train classification algorithms was obtained from satellite imagery interpretation and ground truth data.Climatic factors(evaporation,rainfall,temperature),terrain factors(aspect,slope,slope length,steepness,and wetness index),soil properties(pH,organic carbon,clay and sand content)and vulnerability indices were used as an explanatory variable.Classification accuracy and kappa index were calculated for training and testing datasets.We recorded an overall accuracy rate of 87.7%and 72.1%for training and testing sites,respectively.We found larger discrepancies between overall accuracy rate and kappa index for testing datasets(72.2%and 27.5%,respectively)suggesting that all the classes are not predicted well.The prediction of soil erosion and no desertification process was good and poor for salinization and water-logging process.Overall,the results observed give a new idea of using the knowledge of desertification process in training areas that can be used to predict the desertification processes at unvisited areas.
文摘Modeling the spatial distribution of soil heavy metals is important in determining the safety of contaminated soils for agricultural use. This study utilized 60 topsoil samples (0 - 30 cm), multispectral images (Sentinel-2), spectral indices, and ancillary data to model the spatial distribution of heavy metals in the soils along the Nairobi River. The model was generated using the Random Forest package in R. Using R2 to assess the prediction accuracy, the Random Forest model generated satisfactory results for all the elements. It also ranked the variables in order of their importance in the overall prediction. Spectral indices were the most important variables within the rankings. From the predicted topsoil maps, there were high concentrations of Cadmium on the easterly end of the river. Cadmium is an impurity in detergents, and this section is in close proximity to the Nairobi water sewerage plant, which could be a direct source of Cadmium. Some farms had Zinc levels which were above the World Health Organization recommended limit. The Random Forest model performed satisfactorily. However, the predictions can be improved further if the spatial resolutions of the various variables are increased and through the addition of more predictor variables.
基金National Natural Science Foundation of China,No.42071167,No.42201197,No.40871073The Second Tibetan Plateau Scientific Expedition and Research Program,No.2019QZKK0406Natural Science Foundation of Hebei Province,No.D2007000272。
文摘Random forest model is the mainstream research method used to accurately describe the distribution law and impact mechanism of regional population.We took Shijiazhuang as the research area,with comprehensive zoning based on endowments as the modeling unit,conducted stratified sampling on a hectare grid cell,and systematically carried out incremental selection experiments of population density impact factors,optimizing the population density random forest model throughout the process(zonal modeling,stratified sampling,factor selection,weighted output).The results are as follows:(1)Zonal modeling addresses the issue of confusion in population distribution laws caused by a single model.Sampling on a grid cell not only ensures the quality of training data by avoiding the modifiable areal unit problem(MAUP)but also attempts to mitigate the adverse effects of the ecological fallacy.Stratified sampling ensures the stability of population density label values(target variable)in the training sample.(2)Zonal selection experiments on population density impact factors help identify suitable combinations of factors,leading to a significant improvement in the goodness of fit(R^(2))of the zonal models.(3)Weighted combination output of the population density prediction dataset substantially enhances the model's robustness.(4)The population density dataset exhibits multi-scale superposition characteristics.On a large scale,the population density in plains is higher than that in mountainous areas,while on a small scale,urban areas have higher density compared to rural areas.The optimization scheme for the population density random forest model that we propose offers a unified technical framework for uncovering local population distribution law and the impact mechanisms.
基金This work was supported in part by the National Natural Science Foundation of China(61601418,41602362,61871259)in part by the Opening Foundation of Hunan Engineering and Research Center of Natural Resource Investigation and Monitoring(2020-5)+1 种基金in part by the Qilian Mountain National Park Research Center(Qinghai)(grant number:GKQ2019-01)in part by the Geomatics Technology and Application Key Laboratory of Qinghai Province,Grant No.QHDX-2019-01.
文摘This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.
文摘The car-following models are the research basis of traffic flow theory and microscopic traffic simulation. Among the previous work, the theory-driven models are dominant, while the data-driven ones are relatively rare. In recent years, the related technologies of Intelligent Transportation System (ITS) re</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">presented by the Vehicles to Everything (V2X) technology have been developing rapidly. Utilizing the related technologies of ITS, the large-scale vehicle microscopic trajectory data with high quality can be acquired, which provides the research foundation for modeling the car-following behavior based on the data-driven methods. According to this point, a data-driven car-following model based on the Random Forest (RF) method was constructed in this work, and the Next Generation Simulation (NGSIM) dataset was used to calibrate and train the constructed model. The Artificial Neural Network (ANN) model, GM model, and Full Velocity Difference (FVD) model are em</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">ployed to comparatively verify the proposed model. The research results suggest that the model proposed in this work can accurately describe the car-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">following behavior with better performance under multiple performance indicators.
文摘Tree height (H) in a natural stand or forest plantation is a fundamental variable in management, and the use of mathematical expressions that estimate H as a function of diameter at breast height (d) or variables at the stand level is a valuable support tool in forest inventories. The objective was to fit and propose a generalized H-d model for Pinus montezumae and Pinus pseudostrobus established in forest plantations of Nuevo San Juan Parangaricutiro, Michoacan, Mexico. Using nonlinear least squares (NLS), 10 generalized H-d models were fitted to 883 and 1226 pairs of H-d data from Pinus montezumae and Pinus pseudostrobus, respectively. The best model was refitted with the maximum likelihood mixed effects model (MEM) approach by including the site as a classification variable and a known variance structure. The Wang and Tang equation was selected as the best model with NLS;the MEM with an additive effect on two of its parameters and an exponential variance function improved the fit statistics for Pinus montezumae and Pinus pseudostrobus, respectively. The model validation showed equality of means among the estimates for both species and an independent subsample. The calibration of the MEM at the plot level was efficient and might increase the applicability of these results. The inclusion of dominant height in the MEM approach helped to reduce bias in the estimates and also to better explain the variability among plots.
文摘This paper presents new trading models for the stock market and test whether they are able to consistently generate excess returns from the Singapore Exchange (SGX). Instead of conventional ways of modeling stock prices, we construct models which relate the market indicators to a trading decision directly. Furthermore, unlike a reversal trading system or a binary system of buy and sell, we allow three modes of trades, namely, buy, sell or stand by, and the stand-by case is important as it caters to the market conditions where a model does not produce a strong signal of buy or sell. Linear trading models are firstly developed with the scoring technique which weights higher on successful indicators, as well as with the Least Squares technique which tries to match the past perfect trades with its weights. The linear models are then made adaptive by using the forgetting factor to address market changes. Because stock markets could be highly nonlinear sometimes, the Random Forest is adopted as a nonlinear trading model, and improved with Gradient Boosting to form a new technique—Gradient Boosted Random Forest. All the models are trained and evaluated on nine stocks and one index, and statistical tests such as randomness, linear and nonlinear correlations are conducted on the data to check the statistical significance of the inputs and their relation with the output before a model is trained. Our empirical results show that the proposed trading methods are able to generate excess returns compared with the buy-and-hold strategy.
基金the First People’s Hospital of Wenling(approval No.KY-2023-2035-01).
文摘BACKGROUND Type 2 diabetes mellitus(T2DM)is associated with periodontitis.Currently,there are few studies proposing predictive models for periodontitis in patients with T2DM.AIM To determine the factors influencing periodontitis in patients with T2DM by constructing logistic regression and random forest models.METHODS In this a retrospective study,300 patients with T2DM who were hospitalized at the First People’s Hospital of Wenling from January 2022 to June 2022 were selected for inclusion,and their data were collected from hospital records.We used logistic regression to analyze factors associated with periodontitis in patients with T2DM,and random forest and logistic regression prediction models were established.The prediction efficiency of the models was compared using the area under the receiver operating characteristic curve(AUC).RESULTS Of 300 patients with T2DM,224 had periodontitis,with an incidence of 74.67%.Logistic regression analysis showed that age[odds ratio(OR)=1.047,95%confidence interval(CI):1.017-1.078],teeth brushing frequency(OR=4.303,95%CI:2.154-8.599),education level(OR=0.528,95%CI:0.348-0.800),glycosylated hemoglobin(HbA1c)(OR=2.545,95%CI:1.770-3.661),total cholesterol(TC)(OR=2.872,95%CI:1.725-4.781),and triglyceride(TG)(OR=3.306,95%CI:1.019-10.723)influenced the occurrence of periodontitis(P<0.05).The random forest model showed that the most influential variable was HbA1c followed by age,TC,TG, education level, brushing frequency, and sex. Comparison of the prediction effects of the two models showedthat in the training dataset, the AUC of the random forest model was higher than that of the logistic regressionmodel (AUC = 1.000 vs AUC = 0.851;P < 0.05). In the validation dataset, there was no significant difference in AUCbetween the random forest and logistic regression models (AUC = 0.946 vs AUC = 0.915;P > 0.05).CONCLUSION Both random forest and logistic regression models have good predictive value and can accurately predict the riskof periodontitis in patients with T2DM.
文摘BACKGROUND Gestational diabetes mellitus(GDM)is a condition characterized by high blood sugar levels during pregnancy.The prevalence of GDM is on the rise globally,and this trend is particularly evident in China,which has emerged as a significant issue impacting the well-being of expectant mothers and their fetuses.Identifying and addressing GDM in a timely manner is crucial for maintaining the health of both expectant mothers and their developing fetuses.Therefore,this study aims to establish a risk prediction model for GDM and explore the effects of serum ferritin,blood glucose,and body mass index(BMI)on the occurrence of GDM.AIM To develop a risk prediction model to analyze factors leading to GDM,and evaluate its efficiency for early prevention.METHODS The clinical data of 406 pregnant women who underwent routine prenatal examination in Fujian Maternity and Child Health Hospital from April 2020 to December 2022 were retrospectively analyzed.According to whether GDM occurred,they were divided into two groups to analyze the related factors affecting GDM.Then,according to the weight of the relevant risk factors,the training set and the verification set were divided at a ratio of 7:3.Subsequently,a risk prediction model was established using logistic regression and random forest models,and the model was evaluated and verified.RESULTS Pre-pregnancy BMI,previous history of GDM or macrosomia,hypertension,hemoglobin(Hb)level,triglyceride level,family history of diabetes,serum ferritin,and fasting blood glucose levels during early pregnancy were determined.These factors were found to have a significant impact on the development of GDM(P<0.05).According to the nomogram model’s prediction of GDM in pregnancy,the area under the curve(AUC)was determined to be 0.883[95%confidence interval(CI):0.846-0.921],and the sensitivity and specificity were 74.1%and 87.6%,respectively.The top five variables in the random forest model for predicting the occurrence of GDM were serum ferritin,fasting blood glucose in early pregnancy,pre-pregnancy BMI,Hb level and triglyceride level.The random forest model achieved an AUC of 0.950(95%CI:0.927-0.973),the sensitivity was 84.8%,and the specificity was 91.4%.The Delong test showed that the AUC value of the random forest model was higher than that of the decision tree model(P<0.05).CONCLUSION The random forest model is superior to the nomogram model in predicting the risk of GDM.This method is helpful for early diagnosis and appropriate intervention of GDM.
基金This research received no specific grant from any funding agency in the public,commercial,or not-for-profit sectors
文摘Height–diameter relationships are essential elements of forest assessment and modeling efforts.In this work,two linear and eighteen nonlinear height–diameter equations were evaluated to find a local model for Oriental beech(Fagus orientalis Lipsky) in the Hyrcanian Forest in Iran.The predictive performance of these models was first assessed by different evaluation criteria: adjusted R^2(R^2_(adj)),root mean square error(RMSE),relative RMSE(%RMSE),bias,and relative bias(%bias) criteria.The best model was selected for use as the base mixed-effects model.Random parameters for test plots were estimated with different tree selection options.Results show that the Chapman–Richards model had better predictive ability in terms of adj R^2(0.81),RMSE(3.7 m),%RMSE(12.9),bias(0.8),%Bias(2.79) than the other models.Furthermore,the calibration response,based on a selection of four trees from the sample plots,resulted in a reduction percentage for bias and RMSE of about 1.6–2.7%.Our results indicate that the calibrated model produced the most accurate results.
基金funded by the National Key Research and Development Program of China Strategic International Cooperation in Science and Technology Innovation Program (2018YFE0207800)the National Natural Science Foundation of China (31971483)。
文摘The dead fuel moisture content(DFMC)is the key driver leading to fire occurrence.Accurately estimating the DFMC could help identify locations facing fire risks,prioritise areas for fire monitoring,and facilitate timely deployment of fire-suppression resources.In this study,the DFMC and environmental variables,including air temperature,relative humidity,wind speed,solar radiation,rainfall,atmospheric pressure,soil temperature,and soil humidity,were simultaneously measured in a grassland of Ergun City,Inner Mongolia Autonomous Region of China in 2021.We chose three regression models,i.e.,random forest(RF)model,extreme gradient boosting(XGB)model,and boosted regression tree(BRT)model,to model the seasonal DFMC according to the data collected.To ensure accuracy,we added time-lag variables of 3 d to the models.The results showed that the RF model had the best fitting effect with an R2value of 0.847 and a prediction accuracy with a mean absolute error score of 4.764%among the three models.The accuracies of the models in spring and autumn were higher than those in the other two seasons.In addition,different seasons had different key influencing factors,and the degree of influence of these factors on the DFMC changed with time lags.Moreover,time-lag variables within 44 h clearly improved the fitting effect and prediction accuracy,indicating that environmental conditions within approximately 48 h greatly influence the DFMC.This study highlights the importance of considering 48 h time-lagged variables when predicting the DFMC of grassland fuels and mapping grassland fire risks based on the DFMC to help locate high-priority areas for grassland fire monitoring and prevention.