Granular activated carbon(GAC)filtration can be employed to synchronously quench residual H_(2)O_(2)from the upstream UV/H_(2)O_(2)process and further degrade dissolved organicmatter(DOM).In this study,rapid small-sca...Granular activated carbon(GAC)filtration can be employed to synchronously quench residual H_(2)O_(2)from the upstream UV/H_(2)O_(2)process and further degrade dissolved organicmatter(DOM).In this study,rapid small-scale column tests(RSSCTs)were performed to clarify the mechanisms underlying the interactions between H_(2)O_(2)and DOM during the GAC-based H_(2)O_(2)quenching process.It was observed that GAC can catalytically decompose H_(2)O_(2),with a long-lasting high efficiency(>80%for approximately 50,000 empty-bed volumes).DOM inhibited GAC-based H_(2)O_(2)quenching via a pore-blocking effect,especially at high concentrations(10 mg/L),with the adsorbed DOM molecules being oxidized by the continuously generated·OH;this further deteriorated the H_(2)O_(2)quenching efficiency.In batch experiments,H_(2)O_(2)could enhance DOM adsorption by GAC;however,in RSSCTs,it deteriorated DOM removal.This observation could be attributed to the different·OH exposure in these two systems.It was also observed that aging with H_(2)O_(2)and DOM altered the morphology,specific surface area,pore volume,and the surface functional groups of GAC,owing to the oxidation effect of H_(2)O_(2)and·OH on the GAC surface as well as the effect of DOM.Addi-tionally,the changes in the content of persistent free radicals in the GAC samples were insignificant following different aging processes.This work contributes to enhancing understanding regarding the UV/H_(2)O_(2)-GAC filtration scheme,and promoting the application in drinking water treatment.展开更多
基金This study was supported by the National Natural Science Foundation of China(No.51808268)the Science Foundation of Jiangxi Province(Nos.20171BAB216040 and GJJ160658).
文摘Granular activated carbon(GAC)filtration can be employed to synchronously quench residual H_(2)O_(2)from the upstream UV/H_(2)O_(2)process and further degrade dissolved organicmatter(DOM).In this study,rapid small-scale column tests(RSSCTs)were performed to clarify the mechanisms underlying the interactions between H_(2)O_(2)and DOM during the GAC-based H_(2)O_(2)quenching process.It was observed that GAC can catalytically decompose H_(2)O_(2),with a long-lasting high efficiency(>80%for approximately 50,000 empty-bed volumes).DOM inhibited GAC-based H_(2)O_(2)quenching via a pore-blocking effect,especially at high concentrations(10 mg/L),with the adsorbed DOM molecules being oxidized by the continuously generated·OH;this further deteriorated the H_(2)O_(2)quenching efficiency.In batch experiments,H_(2)O_(2)could enhance DOM adsorption by GAC;however,in RSSCTs,it deteriorated DOM removal.This observation could be attributed to the different·OH exposure in these two systems.It was also observed that aging with H_(2)O_(2)and DOM altered the morphology,specific surface area,pore volume,and the surface functional groups of GAC,owing to the oxidation effect of H_(2)O_(2)and·OH on the GAC surface as well as the effect of DOM.Addi-tionally,the changes in the content of persistent free radicals in the GAC samples were insignificant following different aging processes.This work contributes to enhancing understanding regarding the UV/H_(2)O_(2)-GAC filtration scheme,and promoting the application in drinking water treatment.