期刊文献+
共找到6,525篇文章
< 1 2 250 >
每页显示 20 50 100
Porous metal oxides in the role of electrochemical CO_(2) reduction reaction 被引量:1
1
作者 Ziqi Zhang Jinyun Xu +9 位作者 Yu Zhang Liping Zhao Ming Li Guoqiang Zhong Di Zhao Minjing Li Xudong Hu Wenju Zhu Chunming Zheng Xiaohong Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期373-398,I0009,共27页
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me... The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction. 展开更多
关键词 CO_(2)reduction Carbon dioxide TRANSFORMATION Porous metal oxides ELECTROCATALYSIS
下载PDF
An effective strategy of constructing multi-metallic oxides of ZnO/ CoNiO_(2)/CoO/C microflowers for improved supercapacitive performance
2
作者 Wei Guo Yan Zhang +1 位作者 Xiaxin Lei Shuang Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期1-8,共8页
In this work,a new ZnO/CoNiO_(2)/CoO/C metal oxides composite is prepared by cost-effective hydrothermal method coupled with annealing process under N_(2) atmosphere.Notably,the oxidation-defect annealing environment ... In this work,a new ZnO/CoNiO_(2)/CoO/C metal oxides composite is prepared by cost-effective hydrothermal method coupled with annealing process under N_(2) atmosphere.Notably,the oxidation-defect annealing environment is conducive to both morphology and component of the composite,which flower-like ZnO/CoNiO_(2)/CoO/C is obtained.Benefited from good chemical stability of ZnO,high energy capacity of CoNiO_(2) and CoO and good conductivity of C,the as-prepared sample shows promising electrochemical behavior,including the specific capacity of 1435 C·g^(-1) at 1 A·g^(-1),capacity retention of 87.3%at 20 A·g^(-1),and cycling stability of 90.5%for 3000 cycles at 5 A·g^(-1),respectively.Furthermore,the prepared ZnO/CoNiO_(2)/CoO/C/NF//AC aqueous hybrid supercapacitors device delivers the best specific energy of 55.9 W·h·kg^(-1) at 850 W·kg^(-1).The results reflect that the as-prepared ZnO/CoNiO_(2)/CoO/C microflowers are considered as high performance electrode materials for supercapacitor,and the strategy mentioned in this paper is benefit to prepare mixed metal oxides composite for energy conversion and storage. 展开更多
关键词 COMPOSITES ELECTROCHEMISTRY HYDROTHERMAL Transition metal oxides Structural control SUPERCAPACITORS
下载PDF
Revealing the correlation between adsorption energy and activation energy to predict the catalytic activity of metal oxides for HMX using DFT
3
作者 Xiurong Yang Chi Zhang +6 位作者 Wujing Jin Zhaoqi Guo Hongxu Gao Shiyao Niu Fengqi Zhao Bo Liu Haixia Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期262-270,共9页
Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculate... Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculated using DMol3,since HMX and O are key substances in decomposition process.And the relationship between the adsorption energy of HMX,O on metal oxides(TiO_(2),Al_(2)O_(3),PbO,CuO,Fe_(2)O_(3),Co_(3)O_(4),Bi_(2)O_(3),NiO)and experimental T30 values(time required for the decomposition depth of HMX to reach 30%)was depicted as volcano plot.Thus,the T30 values of other metal oxides was predicted based on their adsorption energy on volcano plot and validated by previous experimental data.Further,the adsorption energy of HMX on ZrO_(2)and MnO_(2)was predicted based on the linear relationship between surface energy and adsorption energy,and T30 values were estimated based on volcano plot.The apparent activation energy data of HMX/MgO,HMX/SnO_(2),HMX/ZrO_(2),and HMX/MnO_(2)obtained from DSC experiments are basically consistent with our predicted T30 values,indicating that it is feasible to predict the catalytic activity based on the adsorption calculation,and it is expected that these simple structural properties can predict adsorption energy to reduce the large quantities of computation and experiment cost. 展开更多
关键词 Density functional theory HMX metal oxides Adsorption energy Activation energy
下载PDF
Research progress of alkaline earth metal iron-based oxides as anodes for lithium-ion batteries
4
作者 Mingyuan Ye Xiaorui Hao +6 位作者 Jinfeng Zeng Lin Li Pengfei Wang Chenglin Zhang Li Liu Fanian Shi Yuhan Wu 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期21-33,共13页
Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical cap... Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical capacity of 372 mA·h·g^(−1),thus hindering further development toward high-capacity and large-scale applications.Alkaline earth metal iron-based oxides are considered a promising candidate to replace graphite because of their low preparation cost,good thermal stability,superior stability,and high electrochemical performance.Nonetheless,many issues and challenges remain to be addressed.Herein,we systematically summarize the research progress of alkaline earth metal iron-based oxides as LIB anodes.Meanwhile,the material and structural properties,synthesis methods,electrochemical reaction mechanisms,and improvement strategies are introduced.Finally,existing challenges and future research directions are discussed to accelerate their practical application in commercial LIBs. 展开更多
关键词 alkali-earth metal iron-based oxides anodes lithium-ion batteries electrochemical energy storage
下载PDF
Effect of Elastic Strains on Adsorption Energies of C,H and O on Transition Metal Oxides
5
作者 XIE Tian SONG Erhong 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第11期1292-1302,共11页
Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TM... Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs. 展开更多
关键词 density functional theory adsorption energy elastic strain engineering transition metal oxide CATALYST
下载PDF
Highly dispersed MgInCe-mixed metal oxides catalyzed direct carbonylation of glycerol and CO_(2)into glycerol carbonate
6
作者 Xufang Chen Xin Shu +5 位作者 Yanru Zhu Jian Zhang Zhigang Chai Hongyan Song Zhe An Jing He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期153-163,共11页
Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The dire... Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The direct carbonylation from glycerol with CO_(2)is considered a promising route,but still tough work due to the thermodynamic stability and the kinetic inertness of CO_(2).In this work,highlyselective direct carbonylation of glycerol and CO_(2)into glycerol carbonate has been achieved over highly dispersed MgInCe-mixed metal oxides(MgInCe-MMO),which were prepared through the topological transformation derived from the MgInCe-layered double hydroxides(MgInCe-LDHs).By precisely modulating the surface basic-acidic properties and the oxygen vacancies,an efficient carbonylation of glycerol with CO_(2)has been achieved with a selectivity of up to>99%to glycerol carbonate.Deep investigation into the synergistic catalysis of base-acid sites and oxygen vacancies has been clarified. 展开更多
关键词 Catalytic reaction engineering Glycerol carbonate Direct carbonylation from glycerol Carbon dioxide Mixed metal oxides Synergistic catalysis
下载PDF
A review of ^(17)O isotopic labeling techniques for solid-state NMR structural studies of metal oxides in lithium-ion batteries
7
作者 Xiaoli Xia Lei Zhu +2 位作者 Weiping Tang Luming Peng Junchao Chen 《Magnetic Resonance Letters》 2024年第2期46-53,共8页
Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structur... Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structural and dynamic details.Herein,we commence with a brief introduction to recent research on lithium-ion battery oxide materials studied using ^(17)O solid-state NMR spectroscopy.Then we delve into a review of ^(17)O isotopic labeling methods for tagging oxygen sites in both the bulk and surfaces of metal oxides.At last,the unresolved problems and the future research directions for advancing the ^(17)O labeling technique are discussed. 展开更多
关键词 ^(17)O solid-state NMR ^(17)O isotopic labeling methods Bulk and surfaces of metal oxides DFT calculation
下载PDF
Laser‑Induced and MOF‑Derived Metal Oxide/Carbon Composite for Synergistically Improved Ethanol Sensing at Room temperature 被引量:2
8
作者 Hyeongtae Lim Hyeokjin Kwon +2 位作者 Hongki Kang Jae Eun Jang Hyuk‑Jun Kwon 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期210-220,共11页
Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing... Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices. 展开更多
关键词 metal-organic frameworks metal oxide Carbon composite LASER Gas sensor
下载PDF
Photoelectrochemical seawater oxidation with metal oxide materials:Challenges and opportunities
9
作者 Miao Kan Hangyu Hu +3 位作者 Weijie Zhuang Meng Tao Shiqun Wu Jinlong Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期767-782,I0016,共17页
Photocatalytic water oxidation is a crucial counter-electrode reaction in the process of photoelectrochemical energy conversion.Despite its importance,challenges remain in effectively and sustainably converting water ... Photocatalytic water oxidation is a crucial counter-electrode reaction in the process of photoelectrochemical energy conversion.Despite its importance,challenges remain in effectively and sustainably converting water to oxygen,particularly with readily available and inexpensive electrolyte solutions such as seawater.While metal oxide materials have demonstrated their advantages in promoting efficiency by reducing overpotential and improving light utilization,stability remains limited by corrosion in multicomponent seawater.In this paper,we reviewed the relationship between four basic concepts including photoelectrochemistry,metal oxide,water oxidation and seawater to better understand the challenges and opportunities in photoelectrochemical(PEC)seawater oxidation.To overcome these challenges,the advances in material design,interfacial modification,local environment control and reactor design have been further reviewed to benefit the industrial PEC seawater oxidation.Noticeably,we demonstrate engineered layered metal oxide electrodes and cell structures that enable powerful and stable seawater oxidation.We also outline and advise on the future direction in this area. 展开更多
关键词 PHOTOELECTROCHEMISTRY ANODE Water oxidation metal oxide Seawater STABILITY
下载PDF
Advancements in transition bimetal catalysts for electrochemical 5-hydroxymethylfurfural(HMF) oxidation
10
作者 Yuwei Li Huiting Huang +4 位作者 Mingkun Jiang Wanlong Xi Junyuan Duan Marina Ratova Dan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期24-46,共23页
The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Tran... The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Transition metal catalysts offer a cost-effective alternative to precious metals for catalyzing HMF oxidation, with transition bimetallic catalysts emerging as particularly promising candidates. In this review, we delve into the intricate reaction pathways and electrochemical mechanisms underlying HMF oxidation, emphasizing the pivotal role of transition bimetallic catalysts in enhancing catalytic efficiency. Subsequently, various types of transition bimetallic catalysts are explored, detailing their synthesis methods and structural modulation strategies. By elucidating the mechanisms behind catalyst modification and performance enhancement, this review sets the stage for upcoming advancements in the field, ultimately advancing the electrochemical HMF conversion and facilitating the transition towards sustainable chemical production. 展开更多
关键词 HMF oxidation Transition metal catalysts Bimetallic catalysts Biomass valorization Electrocatalyst synthesis
下载PDF
Progress in metal oxide-based electrocatalysts for sustainable water splitting
11
作者 Aasiya S.Jamadar Rohit Sutar +2 位作者 Susmita Patil Reshma Khandekar Jyotiprakash B.Yadav 《Materials Reports(Energy)》 EI 2024年第3期19-34,共16页
Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost,abundant raw materials,and impressive stability.This review covers recent progress in va... Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost,abundant raw materials,and impressive stability.This review covers recent progress in various metal oxides tailored for hydrogen and oxygen evolution reactions,discussing their crystal structure,composition,and surface modification influence on performance.Strategies like surface engineering,doping,and nanostructuring are evaluated for enhancing catalytic activity and stability.The key considerations for commercialization are highlighted,emphasizing ongoing research,innovation,and future scope to drive widespread adoption of water-splitting technology for a cleaner and sustainable future. 展开更多
关键词 metal oxide HER OER ELECTROCATALYST Overall water spilling
下载PDF
3D printing of poly(ethyleneimine)-functionalized Mg-Al mixed metal oxide monoliths for direct air capture of CO_(2)
12
作者 Qingyang Shao Zhuozhen Gan +4 位作者 Bingyao Ge Xuyi Liu Chunping Chen Dermot O’Hare Xuancan Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期491-500,共10页
Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from t... Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from the air,lab-synthesized adsorbents in powder form may cause unacceptable gas pressure drops and poor heat and mass transfer efficiencies.A structured adsorbent is essential for the implementation of gas-solid contactors for cost-and energy-efficient DAC systems.In this study,efficient adsorbent poly(ethyleneimine)(PEI)-functionalized Mg-Al-CO_(3)layered double hydroxide(LDH)-derived mixed metal oxides(MMOs)are three-dimensional(3D)printed into monoliths for the first time with more than 90%adsorbent loadings.The printing process has been optimized by initially printing the LDH powder into monoliths followed by calcination into MMO monoliths.This structure exhibits a 32.7%higher specific surface area and a 46.1%higher pore volume,as compared to the direct printing of the MMO powder into a monolith.After impregnation of PEI,the monolith demonstrates a large adsorption capacity(1.82 mmol/g)and fast kinetics(0.7 mmol/g/h)using a CO_(2)feed gas at 400 ppm at 25℃,one of the highest values among the shaped DAC adsorbents.Smearing of the amino-polymers during the post-printing process affects the diffusion of CO_(2),resulting in slower adsorption kinetics of pre-impregnation monoliths compared to post-impregnation monoliths.The optimal PEI/MeOH ratio for the post-impregnation solution prevents pores clogging that would affect both adsorption capacity and kinetics. 展开更多
关键词 3D printing Mixed metal oxides Amine functionalization Structured adsorbent Direct air capture
下载PDF
Metal oxides heterojunction derived Bi-In hybrid electrocatalyst for robust electroreduction of CO_(2) to formate 被引量:2
13
作者 Runze Ye Jiaye Zhu +2 位作者 Yun Tong Dongmei Feng Pengzuo Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期180-188,I0007,共10页
Electrochemical reduction of Bi-based metal oxides is regarded as an effective strategy to rationally design advanced electrocatalysts for electrochemical CO_(2)reduction reaction(CO_(2)RR).Realizing high selectivity ... Electrochemical reduction of Bi-based metal oxides is regarded as an effective strategy to rationally design advanced electrocatalysts for electrochemical CO_(2)reduction reaction(CO_(2)RR).Realizing high selectivity at high current density is important for formate production,but remains challenging.Herein,the BiIn hybrid electrocatalyst,deriving from the Bi2O3/In2O3heterojunction(MOD-Biln),shows excellent catalytic performance for CO_(2)RR.The Faradaic efficiency of formate(FEHCOO-) can be realized over 90% at a wide potential window from-0.4 to-1.4 V vs.RHE,while the partial current density of formate(jHCOO-) reaches about 136.7 mA cm^(-2)at-1.4 V in flow cell without IR-compensation.In additio n,the MOD-Biln exhibits superior stability with high selectivity of formate at 100 mA cm^(-2).Systematic characterizations prove the optimized catalytic sites and interface charge transfer of MOD-Biln,while theoretical calculation confirms that the hybrid structure with dual Bi/In metal sites contribute to the optimal free energy of*H and*OCHO intermediates on MOD-Biln surface,thus accelerating the formation and desorption step of*HCOOH to final formate production.Our work provides a facile and useful strategy to develop highly-active and stable electrocatalysts for CO_(2)RR. 展开更多
关键词 metal oxide derivation Hybrid electrocatalyst Dual metal sites Electrocatalytic CO_(2)RR Formate product
下载PDF
Fast and Balanced Charge Transport Enabled by Solution-Processed Metal Oxide Layers for Efficient and Stable Inverted Perovskite Solar Cells
14
作者 Jing Zhang James Mcgettrick +11 位作者 Kangyu Ji Jinxin Bi Thomas Webb Xueping Liu Dongtao Liu Aobo Ren Yuren Xiang Bowei Li Vlad Stolojan Trystan Watson Samuel D.Stranks Wei Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期240-248,共9页
Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocol... Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocols,high-temperature heating process,incompatible solvents,etc.),it is still challenging to achieve efficient and reliable all-metal-oxide-based devices.Here,we developed efficient inverted PSCs(IPSCs)based on solution-processed nickel oxide(NiO_(x))and tin oxide(SnO_(2))nanoparticles,working as hole and electron transport materials respectively,enabling a fast and balanced charge transfer for photogenerated charge carriers.Through further understanding and optimizing the perovskite/metal oxide interfaces,we have realized an outstanding power conversion efficiency(PCE)of 23.5%(the bandgap of the perovskite is 1.62 eV),which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials.Thanks to these stable metal oxides and improved interface properties,ambient stability(retaining 95%of initial PCE after 1 month),thermal stability(retaining 80%of initial PCE after 2 weeks)and light stability(retaining 90%of initial PCE after 1000 hours aging)of resultant devices are enhanced significantly.In addition,owing to the low-temperature fabrication procedures of the entire device,we have obtained a PCE of over 21%for flexible IPSCs with enhanced operational stability. 展开更多
关键词 fast and balanced charge transfer inverted perovskite solar cells long-term stability low-temperature processing metal oxides
下载PDF
Screening non-noble metal oxides to boost the low-temperature combustion of polyethylene waste in air 被引量:1
15
作者 Xinyao Sun Liu Zhao +5 位作者 Xu Hou Hao Zhou Huimin Qiao Chenggong Song Jing Huang Enxian Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期155-162,共8页
Globally,the efficient utilization of polymer wastes is one of the most important issues for current sustainable development topics.Herein,a green and efficient low-temperature combustion approach is proposed to deal ... Globally,the efficient utilization of polymer wastes is one of the most important issues for current sustainable development topics.Herein,a green and efficient low-temperature combustion approach is proposed to deal with polymer wastes and recover heat energy,simultaneously alleviating the environment and energy crisis.Non-noble metal oxides(Al_(2)O_(3),Fe_(2)O_(3),NiO_(2),ZrO_(2),La_(2)O_(3)and CeO_(2)) were prepared,characterized and screened to boost the low-temperature combustion of polyethylene waste at 300℃ in air.The mass change,heat release and CO_(x) formation were studied in details and employed to evaluate the combustion rate and efficiency.It was found that CeO_(2)significantly enhanced the combustion rate and efficiency,which was respectively 2 and 7 times that of non-catalytic case.An interesting phenomenon was observed that the catalytic performance of CeO_(2) in polyethylene low-temperature combustion was significantly improved by the 7-day storage in the room environment or water treatment.XPS analysis confirmed the co-existence of Ce^(3+) and Ce^(4+) in CeO_(2),and the 7-day storage and water treatment promoted the amount of Ce^(3+),which facilitated the formation of the oxygen vacancies.That may be the reason why CeO_(2) exhibited excellent catalytic performance in polyethylene low-temperature combustion. 展开更多
关键词 Polymer wastes Low-temperature combustion metal oxides CeO_(2)
下载PDF
A Generalized Polymer Precursor Ink Design for 3D Printing of Functional Metal Oxides 被引量:1
16
作者 Hehao Chen Jizhe Wang +7 位作者 Siying Peng Dongna Liu Wei Yan Xinggang Shang Boyu Zhang Yuan Yao Yue Hui Nanjia Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期433-448,共16页
Three-dimensional-structured metal oxides have myriad applications for optoelectronic devices.Comparing to conventional lithography-based manufacturing methods which face significant challenges for 3D device architect... Three-dimensional-structured metal oxides have myriad applications for optoelectronic devices.Comparing to conventional lithography-based manufacturing methods which face significant challenges for 3D device architectures,additive manufacturing approaches such as direct ink writing offer convenient,on-demand manufacturing of 3D oxides with high resolutions down to sub-micrometer scales.However,the lack of a universal ink design strategy greatly limits the choices of printable oxides.Here,a universal,facile synthetic strategy is developed for direct ink writable polymer precursor inks based on metal-polymer coordination effect.Specifically,polyethyleneimine functionalized by ethylenediaminetetraacetic acid is employed as the polymer matrix for adsorbing targeted metal ions.Next,glucose is introduced as a crosslinker for endowing the polymer precursor inks with a thermosetting property required for 3D printing via the Maillard reaction.For demonstrations,binary(i.e.,ZnO,CuO,In_(2)O_(3),Ga_(2)O_(3),TiO_(2),and Y_(2)O_(3)) and ternary metal oxides(i.e.,BaTiO_(3) and SrTiO_(3)) are printed into 3D architectures with sub-micrometer resolution by extruding the inks through ultrafine nozzles.Upon thermal crosslinking and pyrolysis,the 3D microarchitectures with woodpile geometries exhibit strong light-matter coupling in the mid-infrared region.The design strategy for printable inks opens a new pathway toward 3D-printed optoelectronic devices based on functional oxides. 展开更多
关键词 3D printing Maillard reaction Polymer-assisted deposition metal oxide Photonic crystal
下载PDF
Recovery of Solid Oxide Fuel CellWaste Heat by Thermoelectric Generators and AlkaliMetal Thermoelectric Converters
17
作者 Wenxia Zhu Baishu Chen +1 位作者 Lexin Wang Chunxiang Wang 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1559-1573,共15页
A Solid Oxide Fuel Cell(SOFC)is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism.The electrochemical reaction of a solid oxide ... A Solid Oxide Fuel Cell(SOFC)is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism.The electrochemical reaction of a solid oxide fuel cell(SOFC)generates heat,and this heat can be recovered and put to use in a waste heat recovery system.In addition to preheating the fuel and oxidant,producing steam for industrial use,and heating and cooling enclosed rooms,this waste heat can be used for many more productive uses.The large waste heat produced by SOFCs is a worry that must be managed if they are to be adopted as a viable option in the power generation business.In light of these findings,a novel approach to SOFC waste heat recovery is proposed.The SOFC is combined with a“Thermoelectric Generator and an Alkali Metal Thermoelectric Converter(TG-AMTC)”to transform the excess heat generated by both the SOFC and the TG-AMTC.The proposed TG-AMTC is evaluated using a number of performance indicators including power density,operating temperature,heat recovery rate,exergetic efficiency,energy efficiency,and recovery time.The experimental results state that TG-AMTC has provided an exergetic efficiency,energetic efficiency,and recovery time of 97%,98%,and 23%,respectively.The study proves that the proposed TG-AMTC for SOFC is an efficient method of recovering waste heat. 展开更多
关键词 Alkali metal thermoelectric converters waste heat thermoelectric generators solid oxide fuel cell
下载PDF
Homogenous metallic deposition regulated by abundant lithiophilic sites in nickel/cobalt oxides nanoneedle arrays for lithium metal batteries
18
作者 Fenqiang Luo Dawei Xu +4 位作者 Yongchao Liao Minghao Chen Shuirong Li Dechao Wang Zhifeng Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期11-18,I0001,共9页
Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li util... Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li utilization.Inducing uniform Li plating/stripping is the core of solving these problems.Herein,we design a highly lithiophilic carbon film with an outer sheath of the nanoneedle arrays to induce homogeneous Li plating/stripping.The excellent conductivity and 3D framework of the carbon film not only offer fast charge transport across the entire electrode but also mitigate the volume change of Li metal during cycling.The abundant lithiophilic sites ensure stable Li plating/stripping,thereby inhibiting the Li dendritic growth and"dead"Li formation.The resulting composite anode allows for stable Li stripping/plating under 0.5 mA cm^(-2) with a capacity of 0.5 mA h cm^(-2) for 4000 h and 3 mA cm^(-2) with a capacity of3 mA h cm^(-2) for 1000 h.The Ex-SEM analysis reveals that lithiophilic property is different at the bottom,top,or channel in the structu re,which can regulate a bottom-up uniform Li deposition behavior.Full cells paired with LFP show a stable capacity of 155 mA h g^(-1) under a current density of 0.5C.The pouch cell can keep powering light-emitting diode even under 180°bending,suggesting its good flexibility and great practical applications. 展开更多
关键词 Nickel/cobalt oxides Nanoneedle arrays Lithiophilic sites Lithium metal batteries
下载PDF
Neutron Diffraction Study of Self-Curing and Self-Crystallization Phenomena of Low-Temperature Dehydrogenating Products of Powder Crystals of Rare-Earth Metals Trihydroxides
19
作者 Khidirov Irisali 《Journal of Crystallization Process and Technology》 2013年第4期156-162,共7页
The phenomenon of hydrogen thermoemission out of a crystal lattice of powder rare-earth metals trihydrooxides R(OH)3 (R is La, Pr, Nd) was found. The hydrogen thermoemission out of a crystal lattice is partial or full... The phenomenon of hydrogen thermoemission out of a crystal lattice of powder rare-earth metals trihydrooxides R(OH)3 (R is La, Pr, Nd) was found. The hydrogen thermoemission out of a crystal lattice is partial or full removal of hydrogen out of the crystal lattice of powder hydrogen-containing crystal without change of symmetry of such crystal at continuous evacuation of high vacuum at evacuation temperature of Тev. which is lower than recrystallization Тrecrys. or disintegration (Tdisinteg.) temperature of this crystal: Тev. Тrecrys. Tdisineg.. By neutron diffraction it is found that low- temperature (Тevacuation = 400 - 420 K ) removal of hydrogen (by hydrogen thermoemission) out of a crystal lattice of trihydrooxide R(OH)3 under continuous high vacuum evacuating makes possible to obtain metastable “trioxide” R[O]3. Existence of such substance contradicts to the valence law (oxygen is bivalent and Pr is trivalent in hydroxides). Such “trioxide” has a superfluous negative charge: R3+O6-. So they aspire to “capture” three more protons (hydrogen ions) from a water molecules. Obviously, this substance can be stable at low temperatures and in the mediums, which are not containing hydrogen. In the air at room temperature this substance, most likely, interacting with water molecules, gradually again turns into trihydroxide R(OH)3, compensating the superfluous negative charge by three hydrogen atoms. From this it follows that substance R[O3] can simultaneously be an absorber of hydrogen and generator of oxygen at atmospheric conditions and in any mediums which contains water molecules, without any prior processing like heating or high pressure. Thus, the obtained material, without any prior processing like heating or high pressure, can simultaneously be oxygen generator and hydrogen accumulator in any mediums characteristic of R[O3] to transform into stable form R(OH)3 by selective bonding of hydrogen from the hydrogen-containing environment allowing implication of Pr[O3] as the hydrogen selective absorber. Separation (by low-temperature removal) of hydrogen out of R(OH)3 lattice can again lead to restoration of its capabilities to be a simultaneous hydrogen accumulator and oxygen generator in a medium containing water molecules. 展开更多
关键词 Hydrogen Termoemission rare-earth metals Trihydrooxides Neutron Diffraction High Vacuum Continuous EVACUATION METASTABLE “Trioxide” R[O3]
下载PDF
Promotional effect of spherical alumina loading with manganese-based bimetallic oxides on nitric-oxide deep oxidation by ozone 被引量:7
20
作者 林法伟 王智化 +4 位作者 邵嘉铭 袁定琨 何勇 朱燕群 岑可法 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第7期1270-1280,共11页
Nitric oxide (NO) deep oxidation to dinitrogen pentoxide (N2O5) by ozone together with wet scrub-bing has become a promising technology for nitrogen-oxide (NOx) removal in industrial boilers. Catalysts wer... Nitric oxide (NO) deep oxidation to dinitrogen pentoxide (N2O5) by ozone together with wet scrub-bing has become a promising technology for nitrogen-oxide (NOx) removal in industrial boilers. Catalysts were introduced to enhance the N2O5 formation rate with less ozone injection and leakage. A series of monometallic catalysts (manganese, cobalt, cerium, iron, copper, and chromium) as pre-pared by the sol-gel method were tested. The manganese oxides achieved an almost 80% conver-sion efficiency at an ozone (O3)/NO molar ratio of 2.0 in 0.12 s. The crystalline structure and porous parameters were determined. The thermodynamic reaction threshold of NO conversion to N2O5 is oxidation with an O3/NO molar ratio of 1.5. Spherical alumina was selected as the support to achieve the threshold, which was believed to improve the catalytic activity by increasing the surface area and the gas-solid contact time. Based on the manganese oxides, cerium, iron, chromium, cop-per, and cobalt were introduced as promoters. Cerium and iron improved the deep-oxidation effi-ciency compared with manganese/spherical alumina, with less than 50 mg/m3 of outlet NO + nitro-gen oxide, and less than 25 mg/m3 of residual ozone at an O3/NO molar ratio of 1.5. The other three metal oxides inhibited catalytic activity. X-ray diffraction, nitrogen adsorption, hydrogen tempera-ture-programmed reduction, and X-ray photoelectron spectroscopy results indicate that the cata-lytic activity is affected by the synergistic action of NOx oxidation and ozone decomposition. 展开更多
关键词 Nitric oxide Deep oxidation Catalyst OZONE Transition metal oxide
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部