We consider the problem of energy efficiency aware dynamic adaptation of data transmission rate and transmission power of the users in carrier sensing based Wireless Local Area Networks(WLANs)in the presence of path l...We consider the problem of energy efficiency aware dynamic adaptation of data transmission rate and transmission power of the users in carrier sensing based Wireless Local Area Networks(WLANs)in the presence of path loss,Rayleigh fading and log-normal shadowing.For a data packet transmission,we formulate an optimization problem,solve the problem,and propose a rate and transmission power adaptation scheme with a restriction methodology of data packet transmission for achieving the optimal energy efficiency.In the restriction methodology of data packet transmission,a user does not transmit a data packet if the instantaneous channel gain of the user is lower than a threshold.To evaluate the performance of the proposed scheme,we develop analytical models for computing the throughput and energy efficiency of WLANs under the proposed scheme considering a saturation traffic condition.We then validate the analytical models via simulation.We find that the proposed scheme provides better throughput and energy efficiency with acceptable throughput fairness if the restriction methodology of data packet transmission is included.By means of the analytical models and simulations,we demonstrate that the proposed scheme provides significantly higher throughput,energy efficiency and fairness index than a traditional non-adaptive scheme and an existing most relevant adaptive scheme.Throughput and energy efficiency gains obtained by the proposed scheme with respect to the existing adapting scheme are about 75%and 103%,respectively,for a fairness index of 0.8.We also study the effect of various system parameters on throughput and energy efficiency and provide various engineering insights.展开更多
The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 a...The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 and AISI316L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strainstress curves at the strain rate around 103 s-1 were obtained by the split Hopkinson tensile bar (SHTB). The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side. However, the strain rate sensitivity has a strong depen- dence on laser power density. The value of strain rate factor decreases with the increase of laser power density. The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance.展开更多
In order to improve the Power Quality(PQ)of traction power supply system and reduce the power rating and operation cost of compensator,a Static VAR Compensator(SVC)integrated Railway Power Conditioner(RPC)is presented...In order to improve the Power Quality(PQ)of traction power supply system and reduce the power rating and operation cost of compensator,a Static VAR Compensator(SVC)integrated Railway Power Conditioner(RPC)is presented in this paper.RPC is a widely used device in the AC electrified railway systems to enhance the PQ indices of the main network.The next generation of this equipment is Active Power Quality Compensator(APQC).The major concern of these compensators is their high kVA rating.In this paper,a hybrid technique is proposed to solve aforementioned problems.A combination of SVC as an auxiliary device is employed together with the main compensators,i.e.,RPC and APQC that leads on to the reduction of power rating of the main compensators.The use of proposed scheme will cause to reduce significantly the initial investment cost of compensation system.The main compensators are only utilized to balance active powers of two adjacent feeder sections and suppress harmonic currents.The SVCs are used to compensate reactive power and suppress the third and fifth harmonic currents.In this paper firstly,the PQ compensation procedure in AC electrified railway is analyzed step by step.Then,the control strategies for SVC and the main compensators are presented.Finally,a simulation is fulfilled using Matlab/Simulink software to verify the effectiveness and validity of the proposed scheme and compensation strategy and also demonstrate that this technique could compensate all PQ problems.展开更多
New principles of work and energy as well as power and energy rate with cross terms for polar and nonlocal polar continuum field theories were presented and from them all corresponding equations of motion and boundary...New principles of work and energy as well as power and energy rate with cross terms for polar and nonlocal polar continuum field theories were presented and from them all corresponding equations of motion and boundary conditions as well as complete equations of energy and energy rate with the help of generalized Piola's theorems were naturally derived in all and without any additional requirement. Finally, some new balance laws of energy and energy rate for generalized continuum mechanics were established. The new principles of work and energy as well as power and energy rate with cross terms presented in this paper are believed to be new and they have corrected the incompleteness of all existing corresponding principles and laws without cross terms in literatures of generalized continuum field theories.展开更多
The research of different kinds of permeable non-Newtonian fluid flow is increasing day by day owing to the development of science,technology and production modes.It is most common to use power rate equation to descri...The research of different kinds of permeable non-Newtonian fluid flow is increasing day by day owing to the development of science,technology and production modes.It is most common to use power rate equation to describe such flows.However,this equation is nonlinear and very difficult to derive explicit exact analytical solutions.Generally,people can only derive approximate solutions with numerical methods.Recently,an advanced separating variables method which can derive exact analytical solutions easier is developed by Academician CAI Ruixian(the method of separating variables with addition).It is assumed that the unknown variable may be indicated as the sum of one-dimensional functions rather than the product in the common method of separating variables.Such method is used to solve the radial permeable power rate flow unsteady nonlinear equations on account of making the process simple.Four concise(no special functions and infinite series) exact analytical solutions is derived with the new method about this flow to develop the theory of non-Newtonian permeable fluid,which are exponential solution,two-dimensional function with time and radius,logarithmic solution,and double logarithmic solution,respectively.In addition,the method of separating variables with addition is developed and applied instead of the conventional multiplication one.It is proven to be promising and encouraging by the deducing.The solutions yielded will be valuable to the theory of the permeable power rate flow and can be used as standard solutions to check numerical methods and their differencing schemes,grid generation ways,etc.They also can be used to verify the accuracy,convergency and stability of the numerical solutions and to develop the numerical computational approaches.展开更多
To study the role of autonomic nervous system in the period of developing syncope induced by head-up tilt test(HUT), we analysed the changes of heart rate power spectral density(HRPSD) in 50 patients with unexplained ...To study the role of autonomic nervous system in the period of developing syncope induced by head-up tilt test(HUT), we analysed the changes of heart rate power spectral density(HRPSD) in 50 patients with unexplained syncope, including 15 positive patients (Group 1) and 35 negative patients(Group 2), and 15 negative healthy persons(Group 3) in 5 minute periods before and after tilting and 5 minutes before the end of test. HRPSD and their changes in total(T), very low-frequence(VLF), low-frequence(LF), high-frequence(HF) and the ratio of low/high frequence(LF/HF) were similar (P>0.05) 5 minutes before and after tilting among three groups. Five minutes before the end of test, Group 1 had obvious increase of T, VLF, LF and LF/HF while Group 2 and 3 had not such significant changes. There was significant difference(P<0.01) compared Group 1 with Group 2, 3. The results showed that the abnormal regulatory function of autonomic nervous system played an important role in the mechanism of symcope induced by HUT, the positive group had abnormal increase of sympathetic tone and imbalance of sympathetic/parasympathetic neural tone before syncope appeared.展开更多
In general,simple subsystems like series or parallel are integrated to produce a complex hybrid system.The reliability of a system is determined by the reliability of its constituent components.It is often extremely d...In general,simple subsystems like series or parallel are integrated to produce a complex hybrid system.The reliability of a system is determined by the reliability of its constituent components.It is often extremely difficult or impossible to get specific information about the component that caused the system to fail.Unknown failure causes are instances in which the actual cause of systemfailure is unknown.On the other side,thanks to current advanced technology based on computers,automation,and simulation,products have become incredibly dependable and trustworthy,and as a result,obtaining failure data for testing such exceptionally reliable items have become a very costly and time-consuming procedure.Therefore,because of its capacity to produce rapid and adequate failure data in a short period of time,accelerated life testing(ALT)is the most utilized approach in the field of product reliability and life testing.Based on progressively hybrid censored(PrHC)data froma three-component parallel series hybrid system that failed to owe to unknown causes,this paper investigates a challenging problem of parameter estimation and reliability assessment under a step stress partially accelerated life-test(SSPALT).Failures of components are considered to follow a power linear hazard rate(PLHR),which can be used when the failure rate displays linear,decreasing,increasing or bathtub failure patterns.The Tempered random variable(TRV)model is considered to reflect the effect of the high stress level used to induce early failure data.The maximum likelihood estimation(MLE)approach is used to estimate the parameters of the PLHR distribution and the acceleration factor.A variance covariance matrix(VCM)is then obtained to construct the approximate confidence intervals(ACIs).In addition,studentized bootstrap confidence intervals(ST-B CIs)are also constructed and compared with ACIs in terms of their respective interval lengths(ILs).Moreover,a simulation study is conducted to demonstrate the performance of the estimation procedures and the methodology discussed in this paper.Finally,real failure data from the air conditioning systems of an airplane is used to illustrate further the performance of the suggested estimation technique.展开更多
The aim of this paper is to establish new principles of power and energy rate of incremental type in generalized continuum mechanics BY combining new principles of virtual velocity and virtual angular velocity as well...The aim of this paper is to establish new principles of power and energy rate of incremental type in generalized continuum mechanics BY combining new principles of virtual velocity and virtual angular velocity as well as of virtual stress anti virtual couple stress with c ross terms of incremental rate type a new principle of power anti energy rate of incremental rate type with cross terms for micropolar continuum field theories is presented and from it all corresponding equations of motion and boundary conditions as well as power and energy rate equations of incremental rate type for micropolar and nonlocal micropolar continua with the help of generalized Piola's theorems in all and without any additional requirement are derived. Complete results for micromorphic continua could be similarly derived. The derived results in the present paper are believed to be new. They could be used to establish corresponding finite element methods of incremental rate type for generalized continuum mechanics.展开更多
In this paper, the difference of income and consumption levels between Chinese and Japanese town dwellers' is compared, based on the purchasing power parity of each currency. The results using a historical series of ...In this paper, the difference of income and consumption levels between Chinese and Japanese town dwellers' is compared, based on the purchasing power parity of each currency. The results using a historical series of the data and cross section data of the two countries are shown. And whenever the classification of Chinese and Japanese data is inconsistent, we reclassify Chinese material according to the Japanese classification.展开更多
We analyze the topside ionosphere power line radiation(PLR)at 60 Hz over the US using electric field data collected by CSES satellite between January 2019 and December 2022.The study aimed to further investigate the m...We analyze the topside ionosphere power line radiation(PLR)at 60 Hz over the US using electric field data collected by CSES satellite between January 2019 and December 2022.The study aimed to further investigate the month-to-month variation characteristic of PLR occurrence rate observed by satellite and its several influencing factors,including solar radiation,lightning activity,and try to clarify the influence of electricity consumption.The results show that the solar radiation(solar zenith angle and F10.7)plays a major role in the variation of the PLR occurrence rate,and that there is no direct connection with the number of lightning.For the relationship between PLR occurrence rate and electricity consumption,the low occurrence rate associated with decreased weekend electricity consumption was not observed in the US.However,there is a significant difference in PLR occurrence rate between the East and West Coasts of the US at the same latitude during the same time period,suggesting that the significant difference in PLR occurrence rate is caused by the significant difference in electricity consumption between the two coasts.After excluding the effect of solar radiation on PLR occurrence rate,we concluded that only a significant difference in regional electricity consumption could lead to a corresponding change in PLR occurrence rate detected by the Low-Earth-Orbit satellite.Finally,we also found there is seasonal variation in the diurnal differences of the PLR occurrence rate caused by seasonal variation of the lower ionosphere.展开更多
To maximize conversion efficiency,photovoltaic(PV)systems generally operate in the maximum power point tracking(MPPT)mode.However,due to the increasing penetra tion level of PV systems,there is a need for more develop...To maximize conversion efficiency,photovoltaic(PV)systems generally operate in the maximum power point tracking(MPPT)mode.However,due to the increasing penetra tion level of PV systems,there is a need for more developed control functions in terms of frequency support services and voltage control to maintain the reliability and stability of the power grid.Therefore,flexible active power control is a manda tory task for grid-connected PV systems to meet part of the grid requirements.Hence,a significant number of flexible pow er point tracking(FPPT)algorithms have been introduced in the existing literature.The purpose of such algorithms is to real ize a cost-effective method to provide grid support functional ities while minimizing the reliance on energy storage systems.This paper provides a comprehensive overview of grid support functionalities that can be obtained with the FPPT control of PV systems such as frequency support and volt-var control.Each of these grid support functionalities necessitates PV sys tems to operate under one of the three control strategies,which can be provided with FPPT algorithms.The three control strate gies are classified as:①constant power generation control(CP GC),②power reserve control(PRC),and③power ramp rate control(PRRC).A detailed discussion on available FPPT algo rithms for each control strategy is also provided.This paper can serve as a comprehensive review of the state-of-the-art FPPT algorithms that can equip PV systems with various grid support functionalities.展开更多
An analytical moment-based method for calculating structuralfirst failure times under non-Gaussian stochastic behavior is proposed. In the method, a power series that constants can be obtained from response moments (...An analytical moment-based method for calculating structuralfirst failure times under non-Gaussian stochastic behavior is proposed. In the method, a power series that constants can be obtained from response moments (skewness, kurtosis, etc.) is used firstly to map a non-Gaussian structural response into a standard Gaussian process, then mean up-crossing rates, mean clump size and the initial passage probability of a critical barrier level by the original structural response are estimated, and finally, the formula for calculating first failure times is established on the assur^ption that corrected up-crossing rates are independent. An analysis of a nonlinear single-degree-of-freedom dynamical system excited by a Gaussian model of load not only demonstrates the usage of the proposed method but also shows the accuracy and efficiency of the proposed method by comparisons between the present method and other methods such as Monte Carlo simulation and the traditional Gaussian model.展开更多
The dynamical theories of elastic solids with microstructure are restudied and the reason why so many notations have been introduced for derivation of basic equations for such theories is given. In view of the existin...The dynamical theories of elastic solids with microstructure are restudied and the reason why so many notations have been introduced for derivation of basic equations for such theories is given. In view of the existing problems in those theories the rather general principle of power and energy rate is postulated and the equations of motion, the balance equations of energy rate and energy and the boundary conditions for local and nonlocal theories are naturally derived with help of that principle and the generalized Piola's theorem. These basic equations and the boundary conditions together with the initial conditions may be. used to solve the mixed problems of the dynamical theory of elastic solids with microstructure.展开更多
Analyzing the effects of heat rejection from condensers of split-type air-conditioning units at lower-floors of MLABs (multi-level apartment buildings), using field measurements to monitor environmental conditions a...Analyzing the effects of heat rejection from condensers of split-type air-conditioning units at lower-floors of MLABs (multi-level apartment buildings), using field measurements to monitor environmental conditions and condenser operation, revealed increases in the inlet air temperature at the condensers at the upper floors, which in turn increased the power and energy requirements for these units and decreased their cooling capacities. Results indicated that a decrease of up to 16,000 tons in cooling capacity and an increase of up to 67.2 MW in the national peak load demand might be reached for a 4 ℃ temperature differential for Kuwait conditions. It is recommended that the condensers be placed in the wind pathway to minimize the impact of heat rejection and stack effect and to optimize the operation of split-type air-conditioning units, and that other factors regarding installation setup and location are investigated.展开更多
The iUPQC is a Unified Power Quality Conditioner in which the series converter emulates a sinusoidal current source and the shunt converter emulates a sinusoidal voltage source. This approach provides indirect power q...The iUPQC is a Unified Power Quality Conditioner in which the series converter emulates a sinusoidal current source and the shunt converter emulates a sinusoidal voltage source. This approach provides indirect power quality compensation of the load voltage and the source current. Recent studies have suggested that the iUPQC has technical advantages in comparison with the conventional UPQC due to its reduced switching frequency characteristic. In this paper, these technical advantages are investigated. Thus, the iUPQC performance is verified through a 150 kVA industrial equipment and technical design specifications are discussed: the iUPQC power circuit design, the converters arrangement and the driver configuration. Experimental results are provided to validate the technical feasibility and power quality compensation performance.展开更多
Wind energy represents a clean,abundant and cost-effective power source,fostering job growth and environmental mitigation.Although wind energy harnesses several gigawatts today,its availability hinges on diverse facto...Wind energy represents a clean,abundant and cost-effective power source,fostering job growth and environmental mitigation.Although wind energy harnesses several gigawatts today,its availability hinges on diverse factors,with geographical location standing out.Commercial turbines,with varying capacity ranges,saturate the market.Locating site-specific suitability and matching the appropriate turbine to meet specific requirements are of paramount importance.This study aims to assess the feasibility of wind energy in Surat,Gujarat,India and select an optimal small commercial turbine for residential use.The research involves Rayleigh and Weibull probability distribution functions based on yearlong velocity data.These distributions are fitted with actual data,revealing the most probable velocity(v_(mf)=3 m/s)and velocity at maximum power(v_(pmax)=5 m/s).The power availability of the site has been assessed as 42.6 W/m^(2)using both graphical and analytical methods.Several commercial turbines have been shortlisted based on on-site power criteria and their specifications are evaluated against site power availability.A comparative analysis culminates in identifying the most suitable turbine for the location.The best suitable turbine for the site with an annual energy yield of 8 MW has been suggested amongst selected turbines for small-scale residential applications.展开更多
Climate and weather-propelled wind power is characterized by significant spatial and temporal variability.It has been substantiated that the variability of wind power,in addition to contributing hugely to the instabil...Climate and weather-propelled wind power is characterized by significant spatial and temporal variability.It has been substantiated that the variability of wind power,in addition to contributing hugely to the instability of power grids,can also send the balancing costs of electricity markets soaring.Existing studies on the same establish that curtailment of such variability can be achieved through the geographic aggregation of various widespread production sites;however,there exists a dearth of comprehensive evaluation concerning different levels/scales of such aggregation,especially from a global perspective.This paper primarily offers a fundamental understanding of the relationship between the wind power variations and aggregations from a systematic viewpoint based on extensive wind power data,thereby enabling the benefits of these aggregations to be quantified from a state scale ranging up to a global scale.Firstly,a meticulous analysis of the wind power variations is undertaken at 6 different levels by converting the 7-year hourly meteorological re-analysis data with a high spatial resolution of 0.25◦×0.25◦(approximate 28 km×28 km)into a wind power series globally.Subsequently,the proposed assessment framework employs a coefficient of variation of wind power as well as a standard deviation of wind power ramping rate to quantify the variations of wind power and wind power ramping rate to exhibit the characteristics and benefits yielded by the wind power aggregation at 6 different levels.A system planning example is adopted to illustrate the correlation between the coefficient of variation reduction of wind power and investment reduction,thereby emphasizing the benefits pertaining to significant investment reduction via aggregation.Furthermore,a wind power duration curve is used to exemplify the availability of wind power aggregated at different levels.Finally,the results provide insights into devising a universal approach towards the deployment of wind power,principally along the lines of Net-Zero.展开更多
An ultra-low power output-capacitorless low-dropout(LDO) regulator with a slew-rate-enhanced(SRE)circuit is introduced. The increased slew rate is achieved by sensing the transient output voltage of the LDO and th...An ultra-low power output-capacitorless low-dropout(LDO) regulator with a slew-rate-enhanced(SRE)circuit is introduced. The increased slew rate is achieved by sensing the transient output voltage of the LDO and then charging(or discharging) the gate capacitor quickly. In addition, a buffer with ultra-low output impedance is presented to improve line and load regulations. This design is fabricated by SMIC 0.18 μm CMOS technology. Experimental results show that, the proposed LDO regulator only consumes an ultra-low quiescent current of 1.2 μA.The output current range is from 10 μA to 200 m A and the corresponding variation of output voltage is less than 40 m V. Moreover, the measured line regulation and load regulation are 15.38 m V/V and 0.4 m V/m A respectively.展开更多
Pressure fluctuations signals of a lab-scale fiuidized bed (15 cm inner diameter and 2 m height) at different superficial gas velocities were measured. Recurrence plot (RP) and recurrence rate (RR), and the simp...Pressure fluctuations signals of a lab-scale fiuidized bed (15 cm inner diameter and 2 m height) at different superficial gas velocities were measured. Recurrence plot (RP) and recurrence rate (RR), and the simplest variable of recurrence quantification analysis (RQA) were used to analyze the pressure signals. Different patterns observed in RP reflect different dynamic behavior of the system under study. It was also found that the variance of RR (a2R) Could reveal the peak dominant frequencies (PDF) of different dynamic systems: completely periodic, completely stochastic, Lorenz system, and fluidized bed. The results were compared with power spectral density. Additionally, the diagram of σ^2RR provides a new technique for prediction of transition velocity from bubbling to turbulent fluidization regime.展开更多
文摘We consider the problem of energy efficiency aware dynamic adaptation of data transmission rate and transmission power of the users in carrier sensing based Wireless Local Area Networks(WLANs)in the presence of path loss,Rayleigh fading and log-normal shadowing.For a data packet transmission,we formulate an optimization problem,solve the problem,and propose a rate and transmission power adaptation scheme with a restriction methodology of data packet transmission for achieving the optimal energy efficiency.In the restriction methodology of data packet transmission,a user does not transmit a data packet if the instantaneous channel gain of the user is lower than a threshold.To evaluate the performance of the proposed scheme,we develop analytical models for computing the throughput and energy efficiency of WLANs under the proposed scheme considering a saturation traffic condition.We then validate the analytical models via simulation.We find that the proposed scheme provides better throughput and energy efficiency with acceptable throughput fairness if the restriction methodology of data packet transmission is included.By means of the analytical models and simulations,we demonstrate that the proposed scheme provides significantly higher throughput,energy efficiency and fairness index than a traditional non-adaptive scheme and an existing most relevant adaptive scheme.Throughput and energy efficiency gains obtained by the proposed scheme with respect to the existing adapting scheme are about 75%and 103%,respectively,for a fairness index of 0.8.We also study the effect of various system parameters on throughput and energy efficiency and provide various engineering insights.
基金supported by the National Natural Science Foundation of China (10832011)
文摘The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 and AISI316L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strainstress curves at the strain rate around 103 s-1 were obtained by the split Hopkinson tensile bar (SHTB). The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side. However, the strain rate sensitivity has a strong depen- dence on laser power density. The value of strain rate factor decreases with the increase of laser power density. The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance.
文摘In order to improve the Power Quality(PQ)of traction power supply system and reduce the power rating and operation cost of compensator,a Static VAR Compensator(SVC)integrated Railway Power Conditioner(RPC)is presented in this paper.RPC is a widely used device in the AC electrified railway systems to enhance the PQ indices of the main network.The next generation of this equipment is Active Power Quality Compensator(APQC).The major concern of these compensators is their high kVA rating.In this paper,a hybrid technique is proposed to solve aforementioned problems.A combination of SVC as an auxiliary device is employed together with the main compensators,i.e.,RPC and APQC that leads on to the reduction of power rating of the main compensators.The use of proposed scheme will cause to reduce significantly the initial investment cost of compensation system.The main compensators are only utilized to balance active powers of two adjacent feeder sections and suppress harmonic currents.The SVCs are used to compensate reactive power and suppress the third and fifth harmonic currents.In this paper firstly,the PQ compensation procedure in AC electrified railway is analyzed step by step.Then,the control strategies for SVC and the main compensators are presented.Finally,a simulation is fulfilled using Matlab/Simulink software to verify the effectiveness and validity of the proposed scheme and compensation strategy and also demonstrate that this technique could compensate all PQ problems.
文摘New principles of work and energy as well as power and energy rate with cross terms for polar and nonlocal polar continuum field theories were presented and from them all corresponding equations of motion and boundary conditions as well as complete equations of energy and energy rate with the help of generalized Piola's theorems were naturally derived in all and without any additional requirement. Finally, some new balance laws of energy and energy rate for generalized continuum mechanics were established. The new principles of work and energy as well as power and energy rate with cross terms presented in this paper are believed to be new and they have corrected the incompleteness of all existing corresponding principles and laws without cross terms in literatures of generalized continuum field theories.
基金supported by National Natural Science Foundation of China(Grant No.50876106)
文摘The research of different kinds of permeable non-Newtonian fluid flow is increasing day by day owing to the development of science,technology and production modes.It is most common to use power rate equation to describe such flows.However,this equation is nonlinear and very difficult to derive explicit exact analytical solutions.Generally,people can only derive approximate solutions with numerical methods.Recently,an advanced separating variables method which can derive exact analytical solutions easier is developed by Academician CAI Ruixian(the method of separating variables with addition).It is assumed that the unknown variable may be indicated as the sum of one-dimensional functions rather than the product in the common method of separating variables.Such method is used to solve the radial permeable power rate flow unsteady nonlinear equations on account of making the process simple.Four concise(no special functions and infinite series) exact analytical solutions is derived with the new method about this flow to develop the theory of non-Newtonian permeable fluid,which are exponential solution,two-dimensional function with time and radius,logarithmic solution,and double logarithmic solution,respectively.In addition,the method of separating variables with addition is developed and applied instead of the conventional multiplication one.It is proven to be promising and encouraging by the deducing.The solutions yielded will be valuable to the theory of the permeable power rate flow and can be used as standard solutions to check numerical methods and their differencing schemes,grid generation ways,etc.They also can be used to verify the accuracy,convergency and stability of the numerical solutions and to develop the numerical computational approaches.
文摘To study the role of autonomic nervous system in the period of developing syncope induced by head-up tilt test(HUT), we analysed the changes of heart rate power spectral density(HRPSD) in 50 patients with unexplained syncope, including 15 positive patients (Group 1) and 35 negative patients(Group 2), and 15 negative healthy persons(Group 3) in 5 minute periods before and after tilting and 5 minutes before the end of test. HRPSD and their changes in total(T), very low-frequence(VLF), low-frequence(LF), high-frequence(HF) and the ratio of low/high frequence(LF/HF) were similar (P>0.05) 5 minutes before and after tilting among three groups. Five minutes before the end of test, Group 1 had obvious increase of T, VLF, LF and LF/HF while Group 2 and 3 had not such significant changes. There was significant difference(P<0.01) compared Group 1 with Group 2, 3. The results showed that the abnormal regulatory function of autonomic nervous system played an important role in the mechanism of symcope induced by HUT, the positive group had abnormal increase of sympathetic tone and imbalance of sympathetic/parasympathetic neural tone before syncope appeared.
文摘In general,simple subsystems like series or parallel are integrated to produce a complex hybrid system.The reliability of a system is determined by the reliability of its constituent components.It is often extremely difficult or impossible to get specific information about the component that caused the system to fail.Unknown failure causes are instances in which the actual cause of systemfailure is unknown.On the other side,thanks to current advanced technology based on computers,automation,and simulation,products have become incredibly dependable and trustworthy,and as a result,obtaining failure data for testing such exceptionally reliable items have become a very costly and time-consuming procedure.Therefore,because of its capacity to produce rapid and adequate failure data in a short period of time,accelerated life testing(ALT)is the most utilized approach in the field of product reliability and life testing.Based on progressively hybrid censored(PrHC)data froma three-component parallel series hybrid system that failed to owe to unknown causes,this paper investigates a challenging problem of parameter estimation and reliability assessment under a step stress partially accelerated life-test(SSPALT).Failures of components are considered to follow a power linear hazard rate(PLHR),which can be used when the failure rate displays linear,decreasing,increasing or bathtub failure patterns.The Tempered random variable(TRV)model is considered to reflect the effect of the high stress level used to induce early failure data.The maximum likelihood estimation(MLE)approach is used to estimate the parameters of the PLHR distribution and the acceleration factor.A variance covariance matrix(VCM)is then obtained to construct the approximate confidence intervals(ACIs).In addition,studentized bootstrap confidence intervals(ST-B CIs)are also constructed and compared with ACIs in terms of their respective interval lengths(ILs).Moreover,a simulation study is conducted to demonstrate the performance of the estimation procedures and the methodology discussed in this paper.Finally,real failure data from the air conditioning systems of an airplane is used to illustrate further the performance of the suggested estimation technique.
文摘The aim of this paper is to establish new principles of power and energy rate of incremental type in generalized continuum mechanics BY combining new principles of virtual velocity and virtual angular velocity as well as of virtual stress anti virtual couple stress with c ross terms of incremental rate type a new principle of power anti energy rate of incremental rate type with cross terms for micropolar continuum field theories is presented and from it all corresponding equations of motion and boundary conditions as well as power and energy rate equations of incremental rate type for micropolar and nonlocal micropolar continua with the help of generalized Piola's theorems in all and without any additional requirement are derived. Complete results for micromorphic continua could be similarly derived. The derived results in the present paper are believed to be new. They could be used to establish corresponding finite element methods of incremental rate type for generalized continuum mechanics.
文摘In this paper, the difference of income and consumption levels between Chinese and Japanese town dwellers' is compared, based on the purchasing power parity of each currency. The results using a historical series of the data and cross section data of the two countries are shown. And whenever the classification of Chinese and Japanese data is inconsistent, we reclassify Chinese material according to the Japanese classification.
基金supported by the Specialized Research Fund for State Key Laboratories,National Space Science Center,Chinese Academy of Sciences,Talent startup research grants from National Space Science Center,Chinese Academy of Sciences(Grant Nos.2023000034,E3RC2TQ4,and E3RC2TQ5)the National Natural Science Foundation of China(Grant No.41704156)+2 种基金the China Research Institute of Radiowave Propagation(Research on low ionosphere satellite detection)a project funded by China National Space Administration(CNSA)the China Earthquake Administration(CEA)。
文摘We analyze the topside ionosphere power line radiation(PLR)at 60 Hz over the US using electric field data collected by CSES satellite between January 2019 and December 2022.The study aimed to further investigate the month-to-month variation characteristic of PLR occurrence rate observed by satellite and its several influencing factors,including solar radiation,lightning activity,and try to clarify the influence of electricity consumption.The results show that the solar radiation(solar zenith angle and F10.7)plays a major role in the variation of the PLR occurrence rate,and that there is no direct connection with the number of lightning.For the relationship between PLR occurrence rate and electricity consumption,the low occurrence rate associated with decreased weekend electricity consumption was not observed in the US.However,there is a significant difference in PLR occurrence rate between the East and West Coasts of the US at the same latitude during the same time period,suggesting that the significant difference in PLR occurrence rate is caused by the significant difference in electricity consumption between the two coasts.After excluding the effect of solar radiation on PLR occurrence rate,we concluded that only a significant difference in regional electricity consumption could lead to a corresponding change in PLR occurrence rate detected by the Low-Earth-Orbit satellite.Finally,we also found there is seasonal variation in the diurnal differences of the PLR occurrence rate caused by seasonal variation of the lower ionosphere.
基金supported in part by the Future Battery Industries Cooperative Research Center(www.fbicrc.com.au)as part of the Australian Government’s CRC Program(www.business.gov.au),which supports industry-led collaborations between industry,researchers and the community.
文摘To maximize conversion efficiency,photovoltaic(PV)systems generally operate in the maximum power point tracking(MPPT)mode.However,due to the increasing penetra tion level of PV systems,there is a need for more developed control functions in terms of frequency support services and voltage control to maintain the reliability and stability of the power grid.Therefore,flexible active power control is a manda tory task for grid-connected PV systems to meet part of the grid requirements.Hence,a significant number of flexible pow er point tracking(FPPT)algorithms have been introduced in the existing literature.The purpose of such algorithms is to real ize a cost-effective method to provide grid support functional ities while minimizing the reliance on energy storage systems.This paper provides a comprehensive overview of grid support functionalities that can be obtained with the FPPT control of PV systems such as frequency support and volt-var control.Each of these grid support functionalities necessitates PV sys tems to operate under one of the three control strategies,which can be provided with FPPT algorithms.The three control strate gies are classified as:①constant power generation control(CP GC),②power reserve control(PRC),and③power ramp rate control(PRRC).A detailed discussion on available FPPT algo rithms for each control strategy is also provided.This paper can serve as a comprehensive review of the state-of-the-art FPPT algorithms that can equip PV systems with various grid support functionalities.
基金Project supported by the National Natural Science Foundation Of China (No.50478017)
文摘An analytical moment-based method for calculating structuralfirst failure times under non-Gaussian stochastic behavior is proposed. In the method, a power series that constants can be obtained from response moments (skewness, kurtosis, etc.) is used firstly to map a non-Gaussian structural response into a standard Gaussian process, then mean up-crossing rates, mean clump size and the initial passage probability of a critical barrier level by the original structural response are estimated, and finally, the formula for calculating first failure times is established on the assur^ption that corrected up-crossing rates are independent. An analysis of a nonlinear single-degree-of-freedom dynamical system excited by a Gaussian model of load not only demonstrates the usage of the proposed method but also shows the accuracy and efficiency of the proposed method by comparisons between the present method and other methods such as Monte Carlo simulation and the traditional Gaussian model.
文摘The dynamical theories of elastic solids with microstructure are restudied and the reason why so many notations have been introduced for derivation of basic equations for such theories is given. In view of the existing problems in those theories the rather general principle of power and energy rate is postulated and the equations of motion, the balance equations of energy rate and energy and the boundary conditions for local and nonlocal theories are naturally derived with help of that principle and the generalized Piola's theorem. These basic equations and the boundary conditions together with the initial conditions may be. used to solve the mixed problems of the dynamical theory of elastic solids with microstructure.
文摘Analyzing the effects of heat rejection from condensers of split-type air-conditioning units at lower-floors of MLABs (multi-level apartment buildings), using field measurements to monitor environmental conditions and condenser operation, revealed increases in the inlet air temperature at the condensers at the upper floors, which in turn increased the power and energy requirements for these units and decreased their cooling capacities. Results indicated that a decrease of up to 16,000 tons in cooling capacity and an increase of up to 67.2 MW in the national peak load demand might be reached for a 4 ℃ temperature differential for Kuwait conditions. It is recommended that the condensers be placed in the wind pathway to minimize the impact of heat rejection and stack effect and to optimize the operation of split-type air-conditioning units, and that other factors regarding installation setup and location are investigated.
文摘The iUPQC is a Unified Power Quality Conditioner in which the series converter emulates a sinusoidal current source and the shunt converter emulates a sinusoidal voltage source. This approach provides indirect power quality compensation of the load voltage and the source current. Recent studies have suggested that the iUPQC has technical advantages in comparison with the conventional UPQC due to its reduced switching frequency characteristic. In this paper, these technical advantages are investigated. Thus, the iUPQC performance is verified through a 150 kVA industrial equipment and technical design specifications are discussed: the iUPQC power circuit design, the converters arrangement and the driver configuration. Experimental results are provided to validate the technical feasibility and power quality compensation performance.
文摘Wind energy represents a clean,abundant and cost-effective power source,fostering job growth and environmental mitigation.Although wind energy harnesses several gigawatts today,its availability hinges on diverse factors,with geographical location standing out.Commercial turbines,with varying capacity ranges,saturate the market.Locating site-specific suitability and matching the appropriate turbine to meet specific requirements are of paramount importance.This study aims to assess the feasibility of wind energy in Surat,Gujarat,India and select an optimal small commercial turbine for residential use.The research involves Rayleigh and Weibull probability distribution functions based on yearlong velocity data.These distributions are fitted with actual data,revealing the most probable velocity(v_(mf)=3 m/s)and velocity at maximum power(v_(pmax)=5 m/s).The power availability of the site has been assessed as 42.6 W/m^(2)using both graphical and analytical methods.Several commercial turbines have been shortlisted based on on-site power criteria and their specifications are evaluated against site power availability.A comparative analysis culminates in identifying the most suitable turbine for the location.The best suitable turbine for the site with an annual energy yield of 8 MW has been suggested amongst selected turbines for small-scale residential applications.
基金This work was supported partly by the Engineering and Physical Sciences Research Council(EPSRC)under Grant EP/N032888/1 and Grant EP/L017725/1by GEIDCO under Grant 1474100.
文摘Climate and weather-propelled wind power is characterized by significant spatial and temporal variability.It has been substantiated that the variability of wind power,in addition to contributing hugely to the instability of power grids,can also send the balancing costs of electricity markets soaring.Existing studies on the same establish that curtailment of such variability can be achieved through the geographic aggregation of various widespread production sites;however,there exists a dearth of comprehensive evaluation concerning different levels/scales of such aggregation,especially from a global perspective.This paper primarily offers a fundamental understanding of the relationship between the wind power variations and aggregations from a systematic viewpoint based on extensive wind power data,thereby enabling the benefits of these aggregations to be quantified from a state scale ranging up to a global scale.Firstly,a meticulous analysis of the wind power variations is undertaken at 6 different levels by converting the 7-year hourly meteorological re-analysis data with a high spatial resolution of 0.25◦×0.25◦(approximate 28 km×28 km)into a wind power series globally.Subsequently,the proposed assessment framework employs a coefficient of variation of wind power as well as a standard deviation of wind power ramping rate to quantify the variations of wind power and wind power ramping rate to exhibit the characteristics and benefits yielded by the wind power aggregation at 6 different levels.A system planning example is adopted to illustrate the correlation between the coefficient of variation reduction of wind power and investment reduction,thereby emphasizing the benefits pertaining to significant investment reduction via aggregation.Furthermore,a wind power duration curve is used to exemplify the availability of wind power aggregated at different levels.Finally,the results provide insights into devising a universal approach towards the deployment of wind power,principally along the lines of Net-Zero.
基金Project supported by the National Natural Science Foundation of China(Nos.61401137,61404043,61674049)
文摘An ultra-low power output-capacitorless low-dropout(LDO) regulator with a slew-rate-enhanced(SRE)circuit is introduced. The increased slew rate is achieved by sensing the transient output voltage of the LDO and then charging(or discharging) the gate capacitor quickly. In addition, a buffer with ultra-low output impedance is presented to improve line and load regulations. This design is fabricated by SMIC 0.18 μm CMOS technology. Experimental results show that, the proposed LDO regulator only consumes an ultra-low quiescent current of 1.2 μA.The output current range is from 10 μA to 200 m A and the corresponding variation of output voltage is less than 40 m V. Moreover, the measured line regulation and load regulation are 15.38 m V/V and 0.4 m V/m A respectively.
基金Supports from the Iran National Science Foundation(INSF) in lran(No.91001766)
文摘Pressure fluctuations signals of a lab-scale fiuidized bed (15 cm inner diameter and 2 m height) at different superficial gas velocities were measured. Recurrence plot (RP) and recurrence rate (RR), and the simplest variable of recurrence quantification analysis (RQA) were used to analyze the pressure signals. Different patterns observed in RP reflect different dynamic behavior of the system under study. It was also found that the variance of RR (a2R) Could reveal the peak dominant frequencies (PDF) of different dynamic systems: completely periodic, completely stochastic, Lorenz system, and fluidized bed. The results were compared with power spectral density. Additionally, the diagram of σ^2RR provides a new technique for prediction of transition velocity from bubbling to turbulent fluidization regime.