Precision drilling with picosecond laser has been advocated to significantly improve the quality of micro-holes with reduced recast layer thickness and almost no heat affected zone.However,a detailed comparison betwee...Precision drilling with picosecond laser has been advocated to significantly improve the quality of micro-holes with reduced recast layer thickness and almost no heat affected zone.However,a detailed comparison between nanosecond and picosecond laser drilling techniques has rarely been reported in previous research.In the present study,a series of micro-holes are manufactured on stainless steel 304 using a nanosecond and a picosecond laser drilling system,respectively.The quality of the micro-holes,e.g.,recast layer,micro-crack,circularity,and conicity,etc,is evaluated by employing an optical microscope,an optical interferometer,and a scanning electron microscope.Additionally,the micro-structure of the samples between the edges of the micro-holes and the parent material is compared following etching treatment.The researching results show that a great amount of spattering material accumulated at the entrance ends of the nanosecond laser drilled micro-holes.The formation of a recast layer with a thickness of;5μm is detected on the side walls,associated with initiation of micro-cracks.Tapering phenomenon is also observed and the circularity of the micro-holes is rather poor.With regard to the micro-holes drilled by picosecond laser,the entrance ends,the exit ends,and the side walls are quite smooth without accumulation of spattering material,formation of recast layer and micro-cracks.The circularity of the micro-holes is fairly good without observation of tapering phenomenon.Furthermore,there is no obvious difference as for the micro-structure between the edges of the micro-holes and the parent material.This study proposes a picosecond laser helical drilling technique which can be used for effective manufacturing of high quality micro-holes.展开更多
In laser milling assisted with jet electrochemical machining(LMAJECM),the source of energy is a pulsed laser beam aligned coaxially with a jet of electrolyte,which focuses optical energy on the surface of workpiece.Th...In laser milling assisted with jet electrochemical machining(LMAJECM),the source of energy is a pulsed laser beam aligned coaxially with a jet of electrolyte,which focuses optical energy on the surface of workpiece.The impact of jet of electrolyte develops a state-of-art work to perform operations such as electrolytic etching,effective cooling,and transportation of debris.Therefore,a special jet cell is designed to obtain stable jet as to be a kind of noncontact tool,i.e.,electrode.According to the theoretical model of on-off pulse time process,laser machining and electrolytic anodization are simulated by finite element analysis(FEA)method.Grooves on a 0.5mm thick 321 stainless steel sheet produced by LMAJECM is performed with pulsed Nd:YAG laser at the second harmonic wavelength.Compared with laser milling under ambient atmosphere conditions,the recast layer and burrs are effectively diminished.And the accuracy of depth is dedicated to laser milling,whilst that of width is dominated by jet electrochemical machining.It is demonstrated that LMAJECM can be a highly potential approach for fabricating 3-D micro components.展开更多
Via material erosion in wire electrical discharge machining(WEDM),recast layers form on the surfaces of workpiece.In addition,ultra fine Wire-EDM can be usually cut once.To reduce the thickness of the recast layer as ...Via material erosion in wire electrical discharge machining(WEDM),recast layers form on the surfaces of workpiece.In addition,ultra fine Wire-EDM can be usually cut once.To reduce the thickness of the recast layer as much as possible,the wire electrical discharge-electrochemical machining(WEDCM)method was proposed,which is based on the micro conductivity of the dielectric and microelectrolytic characteristics by adjusting the no-load rate of the pulse in the machining process.Furthermore,a state discrimination and servo control system based on discharge current was designed.The experiment results of different no-load rates show that the electrolytic effects increase as the no-load rate increases,and the main machining process is spark discharge erosion with a no-load rate in the range of 10%to 80%.At 90%no-load rate,the amount of recast layer formation in the forward direction of the wire electrode is almost the same as that of electrolytic dissolution,and it can be practically processed without a recast layer.Compared with10%no-load rate,the kerf width only increases by 7.5%.展开更多
The surface integrity of metal micro-hole structures produced by electrochemical discharge machining is unsatisfactory owing to the insufficient reaction area and strength of electrolysis action.A novel ultrahigh-spee...The surface integrity of metal micro-hole structures produced by electrochemical discharge machining is unsatisfactory owing to the insufficient reaction area and strength of electrolysis action.A novel ultrahigh-speed Rotary Electrochemical Discharge Machining(R-ECDM)using non-water-based electrolyte is proposed to improve surface integrity by changing the breakdown medium of spark discharge and increasing the reaction area and strength of electrolysis.A mathematical model was developed to establish the relationship between rotational speed and forces acting on the bubble.Based on the magnitude of forces,controlling rotational speed changed the behavior and departure radius of bubbles on the cathode surface.High-speed photographs validate that,in the mathematical model,the number and departure radius of bubbles on the cathode surface gradually decrease with the increase of rotational speed.The experimental results show that the roughness(Ra)of the micro-hole sidewall decreases from 2.54μm to 0.20μm when the rotational speed increases from 500 r/min to 40000 r/min.The length loss and wear ratio of the cathode are only 9.75μm and 6.5%,respectively.Finally,the micro-holes array with recast-free and surface roughness of 0.20μm is fabricated,demonstrating that the proposed approach contributes to improving surface integrity of metal micro-holes.展开更多
As two kinds of defects, recast layers and spatters, commonly accompanied by laser-drilled holes always prevent the laser drilling technique from extending its applications in aerospace and aircraft industries, theref...As two kinds of defects, recast layers and spatters, commonly accompanied by laser-drilled holes always prevent the laser drilling technique from extending its applications in aerospace and aircraft industries, therefore, a novel hybrid process incorpo- rating laser drilling with jet electrochemical machining (JECM-LD) has been developed to solve these problems as well as improve the overall quality of laser-drilled holes. It is executed by directing an electrolyte jet coaxially aligned with a laser beam onto the workpiece surface. During the process, the electrolyte jet produces electrochemical reaction with the surface material, effective cooling of it and carries away the process scraps. A two-dimensional mathematical model is proposed to describe the shape of the holes machined by JECM-LD. The model is verified through comparison between the results from simulation and those from experiments conducted on the test pieces made of 321 stainless steel 0.5 mm thick processed by the pulsed Nd:YAG laser at second harmonic wavelength. An examination of the experimental results under an optical microscope discovers that, by contrast with the laser drilling in air, the JECM-LD has effectively removed the recast layers and spatters, but its efficiency dropped by about 30%.展开更多
Compared with a copper wire electrode, molybdenum wire with a poor conductor is usually used as the electrode in high speed wire-cut electrical discharge machining(HSWEDM), so the resistance of an ultra-fine wire cann...Compared with a copper wire electrode, molybdenum wire with a poor conductor is usually used as the electrode in high speed wire-cut electrical discharge machining(HSWEDM), so the resistance of an ultra-fine wire cannot be ignored. To study the differences of discharge characteristics between the ultra-fine wire and the conventional diameter wire, the continuous discharge waveform of two kinds of wire electrodes was compared. It was found that there was a multichannel discharge phenomenon in the discharge waveform cutting by ultra-fine wire. Through the establishment of a discharge equivalent circuit model and the simulation analysis of the electrostatic field, it was found that the reason why ultra-fine wire is easy to form multi-channel discharge phenomenon is that the potential difference between the wire and the workpiece increased linearly along the axis of the wire. Besides, etching products like metal particles will distort the electric field between the electrodes. Both of them make it easy to form a multi-channel discharge in machining.The results show that the distributions of the equivalent resistance and the peak current are affected by the multi-channel discharge position. Multi-channel discharge can disperse energy and increase effective discharge frequency. Compared with the 0 mm spacing, at a spacing of 100 mm, the machining efficiency increases by 8.7%, the surface roughness decreases by 37.7%, and the average recast layer thickness decreases by 46.6% under the condition of ultra-fine wire-EDM.展开更多
Film cooling holes are widely used in aero-engine turbine blades.These blades feature large numbers of holes with complex angles and require a high level of surface integrity.Electrochemical discharge drilling(ECDD)co...Film cooling holes are widely used in aero-engine turbine blades.These blades feature large numbers of holes with complex angles and require a high level of surface integrity.Electrochemical discharge drilling(ECDD)combines the high efficiency of electrical discharge drilling(EDD)with high quality of electrochemical drilling(ECD).However,due to the existence of a variety of energy for material removal,accurate and timely detection of breakthroughs is fraught with difficulties.An insufficient preset setting distance results in a tiny exit aperture,influencing the structure's shape.In addition,the electrode is prone to bending at a large overfeeding distance,causing secondary discharge damaging sidewall surface integrity.This paper compares and analyzes the characteristics of processing waveforms using EDD and ECDD.A novel breakthrough detection method is proposed based on the variance signal of average voltage(VSAV)to increase machining stability and achieve fabrication without a recast layer.This method extracts the fluctuation transformation by calculating the variance of the average.Following signal detection,the overfeeding distance is quantified.An experiment is used to validate the breakthrough detection with 100%accuracy in all tests.The optimum overfeeding distances for hole angles of 0°,30°,and 60° are obtained,and the stable removal of the recast layer is realized.Finally,the effectiveness of the method is verified on a typical workpiece with a double-wall structure and a nickel-based single crystal blade.展开更多
基金Supported by National Basic Research Program of China(Grant No.2011CB013004)National Natural Science Foundation of China(Grant No.51005130)Research Fund of State Key Laboratory of Tribology,Tsinghua University(Grant no.SKLT12B06)
文摘Precision drilling with picosecond laser has been advocated to significantly improve the quality of micro-holes with reduced recast layer thickness and almost no heat affected zone.However,a detailed comparison between nanosecond and picosecond laser drilling techniques has rarely been reported in previous research.In the present study,a series of micro-holes are manufactured on stainless steel 304 using a nanosecond and a picosecond laser drilling system,respectively.The quality of the micro-holes,e.g.,recast layer,micro-crack,circularity,and conicity,etc,is evaluated by employing an optical microscope,an optical interferometer,and a scanning electron microscope.Additionally,the micro-structure of the samples between the edges of the micro-holes and the parent material is compared following etching treatment.The researching results show that a great amount of spattering material accumulated at the entrance ends of the nanosecond laser drilled micro-holes.The formation of a recast layer with a thickness of;5μm is detected on the side walls,associated with initiation of micro-cracks.Tapering phenomenon is also observed and the circularity of the micro-holes is rather poor.With regard to the micro-holes drilled by picosecond laser,the entrance ends,the exit ends,and the side walls are quite smooth without accumulation of spattering material,formation of recast layer and micro-cracks.The circularity of the micro-holes is fairly good without observation of tapering phenomenon.Furthermore,there is no obvious difference as for the micro-structure between the edges of the micro-holes and the parent material.This study proposes a picosecond laser helical drilling technique which can be used for effective manufacturing of high quality micro-holes.
基金Supported by the National Natural Science Foundation of China(51205212)the Natural ScienceFoundation of Jiangsu Province(BK2012233)
文摘In laser milling assisted with jet electrochemical machining(LMAJECM),the source of energy is a pulsed laser beam aligned coaxially with a jet of electrolyte,which focuses optical energy on the surface of workpiece.The impact of jet of electrolyte develops a state-of-art work to perform operations such as electrolytic etching,effective cooling,and transportation of debris.Therefore,a special jet cell is designed to obtain stable jet as to be a kind of noncontact tool,i.e.,electrode.According to the theoretical model of on-off pulse time process,laser machining and electrolytic anodization are simulated by finite element analysis(FEA)method.Grooves on a 0.5mm thick 321 stainless steel sheet produced by LMAJECM is performed with pulsed Nd:YAG laser at the second harmonic wavelength.Compared with laser milling under ambient atmosphere conditions,the recast layer and burrs are effectively diminished.And the accuracy of depth is dedicated to laser milling,whilst that of width is dominated by jet electrochemical machining.It is demonstrated that LMAJECM can be a highly potential approach for fabricating 3-D micro components.
基金the National Natural Science Foundation of China(Nos.51575271 and 51975290)。
文摘Via material erosion in wire electrical discharge machining(WEDM),recast layers form on the surfaces of workpiece.In addition,ultra fine Wire-EDM can be usually cut once.To reduce the thickness of the recast layer as much as possible,the wire electrical discharge-electrochemical machining(WEDCM)method was proposed,which is based on the micro conductivity of the dielectric and microelectrolytic characteristics by adjusting the no-load rate of the pulse in the machining process.Furthermore,a state discrimination and servo control system based on discharge current was designed.The experiment results of different no-load rates show that the electrolytic effects increase as the no-load rate increases,and the main machining process is spark discharge erosion with a no-load rate in the range of 10%to 80%.At 90%no-load rate,the amount of recast layer formation in the forward direction of the wire electrode is almost the same as that of electrolytic dissolution,and it can be practically processed without a recast layer.Compared with10%no-load rate,the kerf width only increases by 7.5%.
基金The authors acknowledged the financial support provided by the National Natural Science Foundation of China(No.91960204)the Natural Science Foundation of Jiangsu Province,China(No.BK20222010)+3 种基金the National Natural Science Foundation of China for Creative Research Groups(No.51921003)the Project of Science Center for Gas Turbine Project,China(No.HT-P2022-B-IV-010-001)the Fundamental Research Funds for the Central Universities,China(No.NP2022422)the Experimental Technology Research and Development Project in Nanjing University of Aeronautics and Astronautics,China(No.SYJS202203Z).
文摘The surface integrity of metal micro-hole structures produced by electrochemical discharge machining is unsatisfactory owing to the insufficient reaction area and strength of electrolysis action.A novel ultrahigh-speed Rotary Electrochemical Discharge Machining(R-ECDM)using non-water-based electrolyte is proposed to improve surface integrity by changing the breakdown medium of spark discharge and increasing the reaction area and strength of electrolysis.A mathematical model was developed to establish the relationship between rotational speed and forces acting on the bubble.Based on the magnitude of forces,controlling rotational speed changed the behavior and departure radius of bubbles on the cathode surface.High-speed photographs validate that,in the mathematical model,the number and departure radius of bubbles on the cathode surface gradually decrease with the increase of rotational speed.The experimental results show that the roughness(Ra)of the micro-hole sidewall decreases from 2.54μm to 0.20μm when the rotational speed increases from 500 r/min to 40000 r/min.The length loss and wear ratio of the cathode are only 9.75μm and 6.5%,respectively.Finally,the micro-holes array with recast-free and surface roughness of 0.20μm is fabricated,demonstrating that the proposed approach contributes to improving surface integrity of metal micro-holes.
基金National Natural Science Foundation of China (50675103)Aeronautical Science Fundation of China (20080352008)+1 种基金Natural Science Foundation of Jiangsu Province (BK2008394)Doctoral Innovative Foundation of Nanjing University of Aeronautics and Astronautics (BCXJ06-12)
文摘As two kinds of defects, recast layers and spatters, commonly accompanied by laser-drilled holes always prevent the laser drilling technique from extending its applications in aerospace and aircraft industries, therefore, a novel hybrid process incorpo- rating laser drilling with jet electrochemical machining (JECM-LD) has been developed to solve these problems as well as improve the overall quality of laser-drilled holes. It is executed by directing an electrolyte jet coaxially aligned with a laser beam onto the workpiece surface. During the process, the electrolyte jet produces electrochemical reaction with the surface material, effective cooling of it and carries away the process scraps. A two-dimensional mathematical model is proposed to describe the shape of the holes machined by JECM-LD. The model is verified through comparison between the results from simulation and those from experiments conducted on the test pieces made of 321 stainless steel 0.5 mm thick processed by the pulsed Nd:YAG laser at second harmonic wavelength. An examination of the experimental results under an optical microscope discovers that, by contrast with the laser drilling in air, the JECM-LD has effectively removed the recast layers and spatters, but its efficiency dropped by about 30%.
基金co-supported by the National Natural Science Foundation of China (Nos. 51575271 and 51975290)。
文摘Compared with a copper wire electrode, molybdenum wire with a poor conductor is usually used as the electrode in high speed wire-cut electrical discharge machining(HSWEDM), so the resistance of an ultra-fine wire cannot be ignored. To study the differences of discharge characteristics between the ultra-fine wire and the conventional diameter wire, the continuous discharge waveform of two kinds of wire electrodes was compared. It was found that there was a multichannel discharge phenomenon in the discharge waveform cutting by ultra-fine wire. Through the establishment of a discharge equivalent circuit model and the simulation analysis of the electrostatic field, it was found that the reason why ultra-fine wire is easy to form multi-channel discharge phenomenon is that the potential difference between the wire and the workpiece increased linearly along the axis of the wire. Besides, etching products like metal particles will distort the electric field between the electrodes. Both of them make it easy to form a multi-channel discharge in machining.The results show that the distributions of the equivalent resistance and the peak current are affected by the multi-channel discharge position. Multi-channel discharge can disperse energy and increase effective discharge frequency. Compared with the 0 mm spacing, at a spacing of 100 mm, the machining efficiency increases by 8.7%, the surface roughness decreases by 37.7%, and the average recast layer thickness decreases by 46.6% under the condition of ultra-fine wire-EDM.
基金the financial support provided by the National Natural Science Foundation of China(91960204)the Innovative Research Group Project of the National Natural Science Foundation of China(51921003).
文摘Film cooling holes are widely used in aero-engine turbine blades.These blades feature large numbers of holes with complex angles and require a high level of surface integrity.Electrochemical discharge drilling(ECDD)combines the high efficiency of electrical discharge drilling(EDD)with high quality of electrochemical drilling(ECD).However,due to the existence of a variety of energy for material removal,accurate and timely detection of breakthroughs is fraught with difficulties.An insufficient preset setting distance results in a tiny exit aperture,influencing the structure's shape.In addition,the electrode is prone to bending at a large overfeeding distance,causing secondary discharge damaging sidewall surface integrity.This paper compares and analyzes the characteristics of processing waveforms using EDD and ECDD.A novel breakthrough detection method is proposed based on the variance signal of average voltage(VSAV)to increase machining stability and achieve fabrication without a recast layer.This method extracts the fluctuation transformation by calculating the variance of the average.Following signal detection,the overfeeding distance is quantified.An experiment is used to validate the breakthrough detection with 100%accuracy in all tests.The optimum overfeeding distances for hole angles of 0°,30°,and 60° are obtained,and the stable removal of the recast layer is realized.Finally,the effectiveness of the method is verified on a typical workpiece with a double-wall structure and a nickel-based single crystal blade.