In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion ero...In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar.展开更多
The utilization of waste concrete as a raw material for recycled concrete in the domain of prefabricated components is garnering greater interest.This paper delineates and examines the concept,categorization,methodolo...The utilization of waste concrete as a raw material for recycled concrete in the domain of prefabricated components is garnering greater interest.This paper delineates and examines the concept,categorization,methodologies of preparation,applicable sectors,and evaluative metrics of recycled concrete technology,highlighting its prospective benefits.Nonetheless,for the successful integration of recycled concrete technology into prefabricated component applications,it is imperative to systematically enhance its physical,mechanical,and attributes,as well as its environmental efficacy.Moreover,to foster the continued advancement of recycled concrete technology,innovative initiatives,standardization,educational programs,demonstration projects,and collaborative efforts are crucial to promote broader adoption and realize improved outcomes within the realm of prefabricated components.In conclusion,recycled concrete technology is poised to play a pivotal role in prefabricated construction,offering robust support for propelling the construction industry towards a sustainable future.展开更多
The application of self-compacting recycled concrete can solve the problem of environmental pollution caused by construction waste but its mechanical properties have not been unified and need further study.The strengt...The application of self-compacting recycled concrete can solve the problem of environmental pollution caused by construction waste but its mechanical properties have not been unified and need further study.The strength of recycled concrete is unstable,and its performance still needs further study.The combination of fixed sand and stone volume method and free water cement ratio method is used to determine the mix ratio of self-compacting recycled concrete.24 sets of slump expansion tests and 24 sets of cube axial compression tests were carried out to study the effect of recycled aggregate replacement rate on the flow performance and axial compressive strength of self-compacting recycled concrete,and the performance conversion formula of self-compacting recycled concrete was given.The results show that with the increase of the regenerated coarse aggregate substitution rate,the fluidity and filling property of the self-compacting regenerated concrete mix decreased.The failure of self-compacting recycled concrete is mainly due to the failure of strength between old mortar and new mixture.As the substitution rate increases from 0 to 100%,the axial compressive strength decreases by 15.2%.展开更多
In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concea...In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concealed bracing detail. The four tested structures included one normal concrete model, one recycled coarse aggregate concrete model, and two recycled coarse and fi ne aggregate concrete models with or without concealed bracings inside the shear walls. The dynamic characteristics, dynamic response and failure mode of each model were compared and analyzed. Finite element models were also developed and nonlinear time-history response analysis was conducted. The test and analysis results show that the seismic performance of the recycled coarse aggregate concrete frame-shear wall structure is slightly worse than the normal concrete structure. The seismic resistance capacity of the recycled concrete frame-shear wall structure can be greatly improved by setting up concealed bracings inside the walls. With appropriate design, the recycled coarse aggregate concrete frame-shear wall structure and recycled concrete structure with concealed bracings inside the walls can be applied in buildings.展开更多
A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the eff...A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the effect of repeated cyclic loading into account. Available test results were collected and utilized to calibrate the parameters of the proposed model. A seismic test for six RCFST columns was also performed to validate the proposed damage assessment model. The main test parameters were the recycled coarse aggregate (RCA) replacement percentage and the bond-slip property. The test results indicated that the seismic performance of the RCFST member depends on the RCA contents and their damage index increases as the RCA replacement percentage increases. It is also indicated that the damage degree of RCFST changes with the variation of the RCA replacement percentage. Finally, comparisons between the RCA contents, lateral deformation ratio and damage degree were implemented. It is suggested that an improvement procedure should be implemented in order to compensate for the performance difference between the RCFST and normal concrete filled steel tubes (CFST).展开更多
Recycled concrete aggregate(RCA)derived from demolition waste has been widely explored for use in civil engineering applications.One of the promising strategies globally is to incorporate RCA into concrete products.Ho...Recycled concrete aggregate(RCA)derived from demolition waste has been widely explored for use in civil engineering applications.One of the promising strategies globally is to incorporate RCA into concrete products.However,the use of RCA in high-performance concrete,such as self-consolidating concrete(SCC),has only been studied in the past decade.This paper summarizes recent publications on the use of coarse and/or fine RCA in SCC.As expected,the high-water absorption and porous structure of RCA have posed challenges in producing a high-fluidity mixture.According to an analysis of published data,a lower strength reduction(within 23%regardless of coarse RCA content)is observed in SCC compared with vibrated concrete,possibly due to the higher paste content in the SCC matrix,which enhances the weak surface layer of RCA and interfacial transition zone.Similarly,SCC tends to become less durable with RCA substitution although the deterioration can be minimized by using treated RCA through removing or strengthening the adhered mortar.To date,the information reported on the role of RCA in the long-term performance of SCC is still limited;thus,a wide range of research is needed to demonstrate the feasibility of RCA–SCC in field applications.展开更多
Previous studies have demonstrated the effectiveness of a novel three-layer landfill cover system constructed with recycled concrete aggregates(RCAs)without geomembrane in both laboratory and field.However,no systemat...Previous studies have demonstrated the effectiveness of a novel three-layer landfill cover system constructed with recycled concrete aggregates(RCAs)without geomembrane in both laboratory and field.However,no systematic investigation has been carried out to optimize the combination of the particle sizes for fine-grained RCAs(FRC)and coarse-grained RCAs(CRC)that can be used for the three-layer landfill cover system.The aim of this paper is to assist engineers in designing the three-layer landfill cover system under a rainfall of 100-year return period in humid climate conditions using an easily controlled soil parameter D10 of RCAs.The numerical study reveals that when D10 of FRC increases from 0.05 mm to 0.16 mm,its saturated permeability increases by 10 times.As a result,a larger amount of rainwater infiltrates into the cover system,causing a higher lateral diversion in both the top FRC and middle CRC layers.No further changes in the lateral diversion are observed when the D10 value of FRC is larger than 0.16 mm.Both the particle sizes of FRC and CRC layers are shown to have a minor influence on the percolation under the extreme rainfall event.This implies that the selection of particle sizes for the FRC and CRC layers can be based on the availability of materials.Although it is well known that the bottom layer of the cover system should be constructed with very fine-grained soils if possible,this study provides an upper limit to the particle size that can be used in the bottom layer(D10 not larger than 0.02 mm).With this limit,the three-layer system can still minimize the water percolation to meet the design criterion(30 mm/yr)even under a 100-year return period of rainfall in humid climates.展开更多
To improve the resource utilization of recycled aggregate concrete(RAC)and make use of the unique pozzolanic activation characteristics of iron ore tailing(IOT),the constitutive curves of tailing recycled concrete(TRC...To improve the resource utilization of recycled aggregate concrete(RAC)and make use of the unique pozzolanic activation characteristics of iron ore tailing(IOT),the constitutive curves of tailing recycled concrete(TRC)before and after carbonization were analyzed theoretically,experimentally and microscopically.Firstly,according to the experimental data,the damage constitutive and related damage parameters of TRC were theoretically established by Weibull probability distribution function.Secondly,the comprehensive damage parameter b under different working conditions was studied.Finally,the damage mechanism was formed by EDS and SEM.The results showed that the damage constitutive model based on Weibull probability distribution function was in good agreement with the experimental results.Under each carbonization period,the b first decreased and then rose with the increase of tailings content.When its content was 30%,the b values of TRC were minimized,which were 22.14%,20.99%,25.39%lower than those of NAC,and 41.09%,34.89%,35.44%lower than those of RAC,indicating that IOT had a relatively good optimization effect on the constitutive curve of RAC.The microscopic analysis results also proved that the IOT addition with a proper amount would improve the matrix structure of RAC and increased its compactness,but when the content was higher,it would also cause harmful cracks in its matrix structure and reduced its density.Therefore,the optimal tailing content was about 30%.This paper provided a new method for damage constitutive calculation and analysis of TRC before and after carbonization.展开更多
Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated car...Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated carbonation on the macro-properties and micro-properties of RCA under different pressure(0.05,0.15,0.30 MPa).The macro-property tests included colour change,apparent density,water absorption,and crushing value of RCA.The micro-property tests included scanning electron microscopy (SEM),X-ray diffraction (XRD),thermogravimetry-differential scanning calorimetry (TG-DSC),and Vickers micro-hardness(VMH).The results showed that the change trends of apparent density,water absorption,and crushing value of RCA displayed exponential relationships as pressure increasing,with the optimum pressure of 0.30 MPa.SEM images indicated that the calcite caused by the hydration products in RCA and the Ca(OH)_(2) derived from saturated lime water improved the properties of RCA;as the apparent density increased,the water absorption and crushing value decreased.The results of XRD and TG-DSC indicated that,as the pressure increased,the masses of Ca(OH)_(2) in carbonated RCA gradually decreased,while those of CaCO_(3) gradually increased,which demonstrated that the carbonation degree gradually increased.Besides,ITZ-2 was the weakest phase in RCA,but its improvement degree of VMH by accelerated carbonation was higher than that of OM.However,RCA was not completely carbonated,but only carbonated in a certain depth after 24 h accelerated carbonation.展开更多
Under extreme loading condition,a shelter will provide a safe place to protect people from injury caused by blast wave and fragments.In order to save resource and reuse waste materi-als,a new design concept for blast ...Under extreme loading condition,a shelter will provide a safe place to protect people from injury caused by blast wave and fragments.In order to save resource and reuse waste materi-als,a new design concept for blast protection shelter was explored.The new construction was composed of I-section steel panel or C-channel steel panel filled with recycled concrete aggregate.The compaction process of the recycled concrete aggregate filled in the steel construction was ex-perimentally investigated.A single storey shelter based on the proposed design concept was nu-merically simulated by using LS-DYNA software.In the 3D numerical model,three walls were de-signed using I-section steel and one wall using C-channel steel,and all of the four walls were filled with recycled concrete aggregate.The penetration analysis was done by using ConWep.Some penetration tests were also carried out by using a gas gun.It is found that the proposed shelter based on the design concept is effective for blast protection.展开更多
Recycled concrete powder(RCP)is used more and more in cement-based materials,but its influence on the hydration process is still unclear.Therefore,this paper studied the influence of recycled concrete powder(RCP)on th...Recycled concrete powder(RCP)is used more and more in cement-based materials,but its influence on the hydration process is still unclear.Therefore,this paper studied the influence of recycled concrete powder(RCP)on the hydration process of cement and provides a theoretical basis for the hydration mechanism of cement composite materials.The hydration heat method was used to systematically analyze the thermal evolution process of cement paste with or without RCP.Hydration products were identified using X-ray diffraction(XRD)and thermal analysis(TG–DSC).The pore structure change of cement pastes was analyzed by mercury intrusion porosimetry(MIP)method.The mechanical properties of mortar were also evaluated.Four recycled concrete powder(RCP)dosages,such as 10%,20%,30%and 40%are considered.The results indicate that with the increase of RCP content,the hydration heat release rate and total heat release amount of paste decreased,but the second heat release peak of hydration reaction advanced;the proportion of harmful pores and more harmful pores increases,the total porosity and the most probable pore size also increase;the fluidity and mechanical strength of mortar decrease,but the crystal type of hydration products does not change.When the content of RCP is less than 20%,it has little effect on the mechanical strength of mortar.When fly ash and silica fume are mixed,the fluidity difference of mortar decreases,and when the content of fly ash is the highest,the fluidity of mortar is the highest,which is 15mm higher than that of the control group.When RCP content is 15%,fly ash and silica fume content is 15%(FA:SF=3:2),the hydration heat of the clean pulp is the highest among all the compounding ratios,and the hydration reaction is the most complete;the proportion of harmless pores increased by 9.672%,the proportion of harmful pores and more harmful pores decreased,and the compactness of material structure increased;the compressive strength and flexural strength of mortar reached 50.6 MPa and 9 MPa respectively,both exceeding those of control mortar.展开更多
The regeneration aggregate, natural aggregate, POO42.5 R Portland cement, coal fly ash, and slag powders S95 graining blast furnace, homemade P(AA-co-MA)/PEG carboxylic acid water reducing agent, were used together ...The regeneration aggregate, natural aggregate, POO42.5 R Portland cement, coal fly ash, and slag powders S95 graining blast furnace, homemade P(AA-co-MA)/PEG carboxylic acid water reducing agent, were used together with recycled concrete aggregate in different regeneration rates to prepare recycled concrete (RC). The influences of different renewable aggregate ratios on the basic RC replacement mechanical properties, uniaxial compression stress and strain curve, and the elastic modulus and rebound value were investigated.The results show that RC mechanical properties decreases with renewable aggregate replacement rate increasing. The prolongation can reduce the reduced span.展开更多
The mechanical and thermal properties of steel reinforced concrete columns with CFRP reinforcement were examined after exposure to a high temperature of 500℃. The concrete made with normal and recycled coarse aggreg...The mechanical and thermal properties of steel reinforced concrete columns with CFRP reinforcement were examined after exposure to a high temperature of 500℃. The concrete made with normal and recycled coarse aggregate(RCA) was fabricated and three different RCA replacement ratios(0, 50%, and 100%) were investigated. The fatigue properties of steel reinforced concrete with RCA and CFRP reinforcement were tested for two million cycles at a frequency of 2.5 Hz. The test results show that the failure of strengthened specimens is mainly caused by rupture of CFRP jacket and buckling of inner section steel reinforcement. However, for the unstrengthened specimen, both of inner steel buckling and core concrete cracking are the main contributors to the damage. The load-bearing capacity, deformation and energy dissipation of the specimens during the fatigue test could be strengthened greatly by CFRP reinforcement. However, the CFRP reinforcement has little influence on the improvement of the stiffness of the specimens, which may be caused by a plastic damage accumulation during the early cycles of fatigue tests. Finally, a static test was conducted on the postfatigue specimens, the results showed that a large decrease in stiffness was observed for the specimens subjected to high temperature and fatigue, and the fatigue loading had a higher influence on the specimens than the high temperature.展开更多
Due to the existence of the attached mortar,the performance of the recycled concrete aggregate(RCA)is inferior to the natural aggregate,which significantly limits its wide application in industry.In this study,five ki...Due to the existence of the attached mortar,the performance of the recycled concrete aggregate(RCA)is inferior to the natural aggregate,which significantly limits its wide application in industry.In this study,five kinds of modified solutions were used to modify the surface of RCA,and the modification effects were compared.The results showed that sodium silicate,nano-silica(NS),Bacillus pasteurii and soybean powder had relatively good modification effects on RCA,which could reduce the crushing value and water absorption,and increase apparent density.The composite solution(15%sodium silicate and 2%NS)and soybean powder solution had better modification effect.The 28 d compressive strength and splitting tensile strength of recycled aggregate concrete(RAC)prepared by RCA modified by soybean powder solution were 4.6%and 5.2%higher than those prepared by RCA modified by composite solution,respectively.This indicates that among the five kinds of modified solutions,soybean powder solution has the best modification effect on RCA,and the optimal soaking time of soybean powder solution is 8 h.At this time,the crushing value,water absorption and apparent density of RCA are 12.8%,5.3%,and 2653 kg/m^(3),respectively.The research results of this study provide a reference for the modification of RCA and its efficient utilization.展开更多
Applying recycled concrete for engineered projects not only protects the ecological environment but also improves the utilization rate of waste concrete to satisfy sustainable development requirements.However,the mech...Applying recycled concrete for engineered projects not only protects the ecological environment but also improves the utilization rate of waste concrete to satisfy sustainable development requirements.However,the mechanical properties of recycled concrete are not as good as those of ordinary concrete.To enhance the former’s performance and increase its popularity and application in engineeringfields,notable advances have been made by using steel,synthetic,plant,and mineralfiber materials.These materials are added to recycled concrete to improve its mechanical properties.Studies have shown that(1)steelfibers have a distinct reinforcing effect and improve the strength,toughness,and elastic modulus of recycled concrete;(2)the addition of syntheticfibers can improve the tension,crack resistance,and durability of concrete,but the size effect needs to be further explored and elaborated;(3)plantfiber concrete is lightweight and environmentally friendly and provides high toughness and good thermal insulation,but thefibers corrode in alkaline environments;in addition,plantfibers have high water absorption capacity,which leads to wet expansion and dry shrinkage phenomena,which need to be further studied;and(4)the cost of basaltfiber,a mineralfiber,is relatively low,and a suitable basalt content can improve the mechanical properties of recycled concrete to a certain extent.展开更多
The main purpose of this research is to study the durability of recycled concrete as a partial replacement of coarse aggregate in corrosive environment. 10%, 20%, 30% and 40% by weight were used for recycled concrete....The main purpose of this research is to study the durability of recycled concrete as a partial replacement of coarse aggregate in corrosive environment. 10%, 20%, 30% and 40% by weight were used for recycled concrete. Concrete samples exposed to 10% concentration dilute sulfuric acid solution for 180 days. Mechanical tests such as compressive and tensile strength tests, physical tests such as ultrasonic pulse velocity, bulk density, porosity, specific gravity and water absorption tests were done to the samples after curing in normal water for 28 days and after submerged in dilute sulfuric acid for 180 days. Degradation increased with increasing of replacement. Test results showed that 10% and 20% partial replacement of recycled concrete aggregate still closely to reference samples. Noticeable deterioration was shown in mechanical and physical properties for 30% and 40% partial replacement of recycled concrete aggregate.展开更多
This study presents the development of high strength concrete (HSC) that has been made more sustainable by using both local materials from central Texas and recycled concrete aggregate (RCA), which has also been obtai...This study presents the development of high strength concrete (HSC) that has been made more sustainable by using both local materials from central Texas and recycled concrete aggregate (RCA), which has also been obtained locally. The developed mixtures were proportioned with local constituents to increase the sustainable impact of the material by reducing emissions due to shipping as well as to make HSC more affordable to a wider variety of applications. The specific constituents were: limestone, dolomite, manufactured sand (limestone), locally available Type I/II cement, silica fume, and recycled concrete aggregate, which was obtained from a local recycler which obtains their product from local demolition. Multiple variables were investigated, such as the aggregate type and size, concrete age (7, 14, and 28-days), the curing regimen, and the water-to-cement ratio (w/c) to optimize a HSC mixture that used local materials. This systematic development revealed that heat curing the specimens in a water bath at 50℃ (122oF) after demolding and then dry curing at 200℃ (392oF) two days before testing with a w/c of 0.28 at 28-days produced the highest compressive strengths. Once an optimum HSC mixture was identified a partial replacement of the coarse aggregate with RCA was completed at 10%, 20%, and 30%. The results showed a loss in compressive strength with an increase in RCA replacement percentages, with the highest strength being approximately 93.0 MPa (13,484 psi) at 28-days for the 10% RCA replacement. The lowest strength obtained from an RCA-HSC mixture was approximately 72.9 (MPa) (10,576 psi) at 7-days. The compressive strengths obtained from the HSC mixtures containing RCA developed in this study are comparable to HSC strengths presented in the literature. Developing this innovative material with local materials and RCA ultimately produces a novel sustainable construction material, reduces the costs, and produces mechanical performance similar to prepackaged, commercially, available construction building materials.展开更多
This article presents freeze-thaw(F/T)resistance of concrete containing recycled concrete aggregate(RCA).RCA percentages of 15%,30%,45%,and 60%were replaced by natural aggregate.Air entraining admixture(AEA)with three...This article presents freeze-thaw(F/T)resistance of concrete containing recycled concrete aggregate(RCA).RCA percentages of 15%,30%,45%,and 60%were replaced by natural aggregate.Air entraining admixture(AEA)with three different ratios(0.06%,0.13%,and 0.20%)were used and three different maximum aggregate particle sizes(dmax=16 mm,22.4 mm and 31.5 mm)were selected.F/T resistances of the concretes were determined through the measurement of scaling on the surfaces of the samples placed in 3%NaCl solution in pursuance of TS CEN/TS 12390-9.It was observed that the compressive strength of the concretes decreased by 20%on average compared to the control samples with the increase in the amount of RCA.However,it was determined from the experiments that the use of RCA increases the F/T resistances of the concretes as it provides extra voids in the concrete and decreases capillary permeability.Within the limits of this study,d_(max)=22.4 mm,RCA=45%and AEA=0.13%are recommended as the optimum values for F/T resistance of the concrete.It is also recommended to use RCA in pavement applications including roadways,highways,parking facilities,and other non-structural concrete elements subjected to severe winter conditions.展开更多
The main goal of this paper is to describe the mechanical behavior of the CDW recycled concrete in compression, using an isotropic damage model adapted to the variation of the replacement rate of natural aggregates by...The main goal of this paper is to describe the mechanical behavior of the CDW recycled concrete in compression, using an isotropic damage model adapted to the variation of the replacement rate of natural aggregates by recycled ones. The isotropic model by Mazars was used as a constitutive equation for the CDW concrete and its adjustment parameters, A and B, were written as quadratic polynomials according to the aggregates replacement rate. The model was evaluated for conventional and recycled concretes. For the latter ones, the aggregates replacement ratios evaluated were 50% and 100%. The results show good approximation between the analytical and numerical values obtained with the adapted isotropic damage model and experimental concrete results for both compressive and flexural strength.展开更多
The possibility of the use of recycled aggregates from the construction industry in green concrete production is of increasing importance to reduce the negative environmental impact associated with construction and de...The possibility of the use of recycled aggregates from the construction industry in green concrete production is of increasing importance to reduce the negative environmental impact associated with construction and demolition wastes.The objective of this study is to investigate the effect of recycled concrete aggregate(RCA)quality on the properties of hardened concrete properties such as compressive strength,splitting tensile strength,density,water absorption capacity and porosity accessible to water.The RCA used in this study was obtained from the crushing of waste concrete with two different compressive strengths(LRCA obtained from the crushing of waste concrete having compressive strengths below 30 MPa and HRCA obtained from the crushing of waste concrete having compressive strengths above 30 MPa).The natural coarse limestone aggregate was 100%replaced with coarse LRCA and HRCA.As a result of the study,the use of 100%HRCA and%100 LRCA instead of limestone coarse aggregate in the concrete adversely affected its mechanical and physical properties.In addition,HRCA showed better performance in terms of compressive strength,tensile strength,water absorption and porosity compared to the use of LRCA.Furthermore,the percentage of adhered mortar on the surface of LRCA and HRCA was analyzed using a computerized micro tomography device,and it was found that the percentages of attached mortar and aggregates are 61%and 35.5%for LRCA,whilst the attached mortar and aggregate contents for HRCA are 45.9%and 53.7%,respectively.展开更多
基金This work is supported by the Zhuhai Science and Technology Project(ZH22036203200015PWC)the Open Foundation of State Key Laboratory of Subtropical Building Science(2022ZB20).
文摘In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar.
基金Supported by the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202204305,and No.KJQN202305501).
文摘The utilization of waste concrete as a raw material for recycled concrete in the domain of prefabricated components is garnering greater interest.This paper delineates and examines the concept,categorization,methodologies of preparation,applicable sectors,and evaluative metrics of recycled concrete technology,highlighting its prospective benefits.Nonetheless,for the successful integration of recycled concrete technology into prefabricated component applications,it is imperative to systematically enhance its physical,mechanical,and attributes,as well as its environmental efficacy.Moreover,to foster the continued advancement of recycled concrete technology,innovative initiatives,standardization,educational programs,demonstration projects,and collaborative efforts are crucial to promote broader adoption and realize improved outcomes within the realm of prefabricated components.In conclusion,recycled concrete technology is poised to play a pivotal role in prefabricated construction,offering robust support for propelling the construction industry towards a sustainable future.
文摘The application of self-compacting recycled concrete can solve the problem of environmental pollution caused by construction waste but its mechanical properties have not been unified and need further study.The strength of recycled concrete is unstable,and its performance still needs further study.The combination of fixed sand and stone volume method and free water cement ratio method is used to determine the mix ratio of self-compacting recycled concrete.24 sets of slump expansion tests and 24 sets of cube axial compression tests were carried out to study the effect of recycled aggregate replacement rate on the flow performance and axial compressive strength of self-compacting recycled concrete,and the performance conversion formula of self-compacting recycled concrete was given.The results show that with the increase of the regenerated coarse aggregate substitution rate,the fluidity and filling property of the self-compacting regenerated concrete mix decreased.The failure of self-compacting recycled concrete is mainly due to the failure of strength between old mortar and new mixture.As the substitution rate increases from 0 to 100%,the axial compressive strength decreases by 15.2%.
基金National Science and Technology Support Program of China under Grant No.2011BAJ08B02Natural Science Foundation of Beijing under Grant No.8132016Beijing City University Youth Backbone Talent Training Project under Grant No.PHR201108009
文摘In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concealed bracing detail. The four tested structures included one normal concrete model, one recycled coarse aggregate concrete model, and two recycled coarse and fi ne aggregate concrete models with or without concealed bracings inside the shear walls. The dynamic characteristics, dynamic response and failure mode of each model were compared and analyzed. Finite element models were also developed and nonlinear time-history response analysis was conducted. The test and analysis results show that the seismic performance of the recycled coarse aggregate concrete frame-shear wall structure is slightly worse than the normal concrete structure. The seismic resistance capacity of the recycled concrete frame-shear wall structure can be greatly improved by setting up concealed bracings inside the walls. With appropriate design, the recycled coarse aggregate concrete frame-shear wall structure and recycled concrete structure with concealed bracings inside the walls can be applied in buildings.
基金the National Natural Science Foundation of China under Grant Nos.51408346 and 51438007the Shanghai Science and Technique Committee under Grant No.14231201300
文摘A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the effect of repeated cyclic loading into account. Available test results were collected and utilized to calibrate the parameters of the proposed model. A seismic test for six RCFST columns was also performed to validate the proposed damage assessment model. The main test parameters were the recycled coarse aggregate (RCA) replacement percentage and the bond-slip property. The test results indicated that the seismic performance of the RCFST member depends on the RCA contents and their damage index increases as the RCA replacement percentage increases. It is also indicated that the damage degree of RCFST changes with the variation of the RCA replacement percentage. Finally, comparisons between the RCA contents, lateral deformation ratio and damage degree were implemented. It is suggested that an improvement procedure should be implemented in order to compensate for the performance difference between the RCFST and normal concrete filled steel tubes (CFST).
基金Financial support from the National Natural Science Foundation of China(Contract No.897201143)。
文摘Recycled concrete aggregate(RCA)derived from demolition waste has been widely explored for use in civil engineering applications.One of the promising strategies globally is to incorporate RCA into concrete products.However,the use of RCA in high-performance concrete,such as self-consolidating concrete(SCC),has only been studied in the past decade.This paper summarizes recent publications on the use of coarse and/or fine RCA in SCC.As expected,the high-water absorption and porous structure of RCA have posed challenges in producing a high-fluidity mixture.According to an analysis of published data,a lower strength reduction(within 23%regardless of coarse RCA content)is observed in SCC compared with vibrated concrete,possibly due to the higher paste content in the SCC matrix,which enhances the weak surface layer of RCA and interfacial transition zone.Similarly,SCC tends to become less durable with RCA substitution although the deterioration can be minimized by using treated RCA through removing or strengthening the adhered mortar.To date,the information reported on the role of RCA in the long-term performance of SCC is still limited;thus,a wide range of research is needed to demonstrate the feasibility of RCA–SCC in field applications.
基金the financial sponsorship from the National Natural Science Foundation of China(Grant Nos.U20A20320 and 51778166)the funding from the State Key Laboratory of Subtropical Building Science in South China University of Technology(Grant No.2022ZC01).
文摘Previous studies have demonstrated the effectiveness of a novel three-layer landfill cover system constructed with recycled concrete aggregates(RCAs)without geomembrane in both laboratory and field.However,no systematic investigation has been carried out to optimize the combination of the particle sizes for fine-grained RCAs(FRC)and coarse-grained RCAs(CRC)that can be used for the three-layer landfill cover system.The aim of this paper is to assist engineers in designing the three-layer landfill cover system under a rainfall of 100-year return period in humid climate conditions using an easily controlled soil parameter D10 of RCAs.The numerical study reveals that when D10 of FRC increases from 0.05 mm to 0.16 mm,its saturated permeability increases by 10 times.As a result,a larger amount of rainwater infiltrates into the cover system,causing a higher lateral diversion in both the top FRC and middle CRC layers.No further changes in the lateral diversion are observed when the D10 value of FRC is larger than 0.16 mm.Both the particle sizes of FRC and CRC layers are shown to have a minor influence on the percolation under the extreme rainfall event.This implies that the selection of particle sizes for the FRC and CRC layers can be based on the availability of materials.Although it is well known that the bottom layer of the cover system should be constructed with very fine-grained soils if possible,this study provides an upper limit to the particle size that can be used in the bottom layer(D10 not larger than 0.02 mm).With this limit,the three-layer system can still minimize the water percolation to meet the design criterion(30 mm/yr)even under a 100-year return period of rainfall in humid climates.
基金This work was funded by the Natural Science Foundation of China(No.51678480)Ministry of Education Cooperative Education Project(201802308007)+3 种基金Innovation Capability Support Program of Shaanxi(2020PT-038)Henan Province Key Scientific Research Projects of Colleges and Universities(19A560016)Henan Province Key Projects of Science and Technology(192102310277,182102310834)Scientific Research Projects of Shaanxi Education Department(16JK1244).
文摘To improve the resource utilization of recycled aggregate concrete(RAC)and make use of the unique pozzolanic activation characteristics of iron ore tailing(IOT),the constitutive curves of tailing recycled concrete(TRC)before and after carbonization were analyzed theoretically,experimentally and microscopically.Firstly,according to the experimental data,the damage constitutive and related damage parameters of TRC were theoretically established by Weibull probability distribution function.Secondly,the comprehensive damage parameter b under different working conditions was studied.Finally,the damage mechanism was formed by EDS and SEM.The results showed that the damage constitutive model based on Weibull probability distribution function was in good agreement with the experimental results.Under each carbonization period,the b first decreased and then rose with the increase of tailings content.When its content was 30%,the b values of TRC were minimized,which were 22.14%,20.99%,25.39%lower than those of NAC,and 41.09%,34.89%,35.44%lower than those of RAC,indicating that IOT had a relatively good optimization effect on the constitutive curve of RAC.The microscopic analysis results also proved that the IOT addition with a proper amount would improve the matrix structure of RAC and increased its compactness,but when the content was higher,it would also cause harmful cracks in its matrix structure and reduced its density.Therefore,the optimal tailing content was about 30%.This paper provided a new method for damage constitutive calculation and analysis of TRC before and after carbonization.
基金Funded by Joint Funds of the National Natural Science Foundation of China (No.U1904188)Key R&D and Promotion Projects in Henan Province,China (No.212102310288)the Key Science and Technology Program of Henan Province,China (No.202102310253)。
文摘Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated carbonation on the macro-properties and micro-properties of RCA under different pressure(0.05,0.15,0.30 MPa).The macro-property tests included colour change,apparent density,water absorption,and crushing value of RCA.The micro-property tests included scanning electron microscopy (SEM),X-ray diffraction (XRD),thermogravimetry-differential scanning calorimetry (TG-DSC),and Vickers micro-hardness(VMH).The results showed that the change trends of apparent density,water absorption,and crushing value of RCA displayed exponential relationships as pressure increasing,with the optimum pressure of 0.30 MPa.SEM images indicated that the calcite caused by the hydration products in RCA and the Ca(OH)_(2) derived from saturated lime water improved the properties of RCA;as the apparent density increased,the water absorption and crushing value decreased.The results of XRD and TG-DSC indicated that,as the pressure increased,the masses of Ca(OH)_(2) in carbonated RCA gradually decreased,while those of CaCO_(3) gradually increased,which demonstrated that the carbonation degree gradually increased.Besides,ITZ-2 was the weakest phase in RCA,but its improvement degree of VMH by accelerated carbonation was higher than that of OM.However,RCA was not completely carbonated,but only carbonated in a certain depth after 24 h accelerated carbonation.
文摘Under extreme loading condition,a shelter will provide a safe place to protect people from injury caused by blast wave and fragments.In order to save resource and reuse waste materi-als,a new design concept for blast protection shelter was explored.The new construction was composed of I-section steel panel or C-channel steel panel filled with recycled concrete aggregate.The compaction process of the recycled concrete aggregate filled in the steel construction was ex-perimentally investigated.A single storey shelter based on the proposed design concept was nu-merically simulated by using LS-DYNA software.In the 3D numerical model,three walls were de-signed using I-section steel and one wall using C-channel steel,and all of the four walls were filled with recycled concrete aggregate.The penetration analysis was done by using ConWep.Some penetration tests were also carried out by using a gas gun.It is found that the proposed shelter based on the design concept is effective for blast protection.
基金This research was supported by the National Natural Science Foundation of China(51668052)Qinghai Provincial Science and Technology Department Basic Research Project(2017-ZJ787)Qinghai Provincial Science and Technology Department Technology Basic Condition Platform Project(2018-ZJ-T01).
文摘Recycled concrete powder(RCP)is used more and more in cement-based materials,but its influence on the hydration process is still unclear.Therefore,this paper studied the influence of recycled concrete powder(RCP)on the hydration process of cement and provides a theoretical basis for the hydration mechanism of cement composite materials.The hydration heat method was used to systematically analyze the thermal evolution process of cement paste with or without RCP.Hydration products were identified using X-ray diffraction(XRD)and thermal analysis(TG–DSC).The pore structure change of cement pastes was analyzed by mercury intrusion porosimetry(MIP)method.The mechanical properties of mortar were also evaluated.Four recycled concrete powder(RCP)dosages,such as 10%,20%,30%and 40%are considered.The results indicate that with the increase of RCP content,the hydration heat release rate and total heat release amount of paste decreased,but the second heat release peak of hydration reaction advanced;the proportion of harmful pores and more harmful pores increases,the total porosity and the most probable pore size also increase;the fluidity and mechanical strength of mortar decrease,but the crystal type of hydration products does not change.When the content of RCP is less than 20%,it has little effect on the mechanical strength of mortar.When fly ash and silica fume are mixed,the fluidity difference of mortar decreases,and when the content of fly ash is the highest,the fluidity of mortar is the highest,which is 15mm higher than that of the control group.When RCP content is 15%,fly ash and silica fume content is 15%(FA:SF=3:2),the hydration heat of the clean pulp is the highest among all the compounding ratios,and the hydration reaction is the most complete;the proportion of harmless pores increased by 9.672%,the proportion of harmful pores and more harmful pores decreased,and the compactness of material structure increased;the compressive strength and flexural strength of mortar reached 50.6 MPa and 9 MPa respectively,both exceeding those of control mortar.
基金Funded by Fujian Education Department (Nos.JA11329,JA12412)Quanzhou (Fujian) Technology Research and Development Program (No.2010G7)
文摘The regeneration aggregate, natural aggregate, POO42.5 R Portland cement, coal fly ash, and slag powders S95 graining blast furnace, homemade P(AA-co-MA)/PEG carboxylic acid water reducing agent, were used together with recycled concrete aggregate in different regeneration rates to prepare recycled concrete (RC). The influences of different renewable aggregate ratios on the basic RC replacement mechanical properties, uniaxial compression stress and strain curve, and the elastic modulus and rebound value were investigated.The results show that RC mechanical properties decreases with renewable aggregate replacement rate increasing. The prolongation can reduce the reduced span.
基金the National Natural Science Foundation of China(No.51408382)the Science and Technology Supported Program of Sichuan Province(Nos.2015GZ0245&2015JPT0001)the Refunded Program for Changjiang Scholars and Innovative Research Team in University of China(IRT14R37)
文摘The mechanical and thermal properties of steel reinforced concrete columns with CFRP reinforcement were examined after exposure to a high temperature of 500℃. The concrete made with normal and recycled coarse aggregate(RCA) was fabricated and three different RCA replacement ratios(0, 50%, and 100%) were investigated. The fatigue properties of steel reinforced concrete with RCA and CFRP reinforcement were tested for two million cycles at a frequency of 2.5 Hz. The test results show that the failure of strengthened specimens is mainly caused by rupture of CFRP jacket and buckling of inner section steel reinforcement. However, for the unstrengthened specimen, both of inner steel buckling and core concrete cracking are the main contributors to the damage. The load-bearing capacity, deformation and energy dissipation of the specimens during the fatigue test could be strengthened greatly by CFRP reinforcement. However, the CFRP reinforcement has little influence on the improvement of the stiffness of the specimens, which may be caused by a plastic damage accumulation during the early cycles of fatigue tests. Finally, a static test was conducted on the postfatigue specimens, the results showed that a large decrease in stiffness was observed for the specimens subjected to high temperature and fatigue, and the fatigue loading had a higher influence on the specimens than the high temperature.
基金the financial support of National Key R&D Program of China(No.2019YFC1906200)the National Natural Science Foundation of China(Nos.51879093,51009057 and 52108206)+1 种基金Jiangsu Science and Technology Department of China(No.BE2015706)Science and Technology Project of Nanjing Water Authority(No.201802).
文摘Due to the existence of the attached mortar,the performance of the recycled concrete aggregate(RCA)is inferior to the natural aggregate,which significantly limits its wide application in industry.In this study,five kinds of modified solutions were used to modify the surface of RCA,and the modification effects were compared.The results showed that sodium silicate,nano-silica(NS),Bacillus pasteurii and soybean powder had relatively good modification effects on RCA,which could reduce the crushing value and water absorption,and increase apparent density.The composite solution(15%sodium silicate and 2%NS)and soybean powder solution had better modification effect.The 28 d compressive strength and splitting tensile strength of recycled aggregate concrete(RAC)prepared by RCA modified by soybean powder solution were 4.6%and 5.2%higher than those prepared by RCA modified by composite solution,respectively.This indicates that among the five kinds of modified solutions,soybean powder solution has the best modification effect on RCA,and the optimal soaking time of soybean powder solution is 8 h.At this time,the crushing value,water absorption and apparent density of RCA are 12.8%,5.3%,and 2653 kg/m^(3),respectively.The research results of this study provide a reference for the modification of RCA and its efficient utilization.
基金supported by the Open Fund of Engineering Research Center of Underground Mine Construction,Ministry of Education(Anhui University of Science and Technology)(Grant No.JYBGCZX2020210)Anhui International Joint Research Center of Data Diagnosis and Smart Maintenance on Bridge Structures(Grant No.2022AHGHYB09)Scientific Research Program of Anhui Province(Grant No.2022AH051092).
文摘Applying recycled concrete for engineered projects not only protects the ecological environment but also improves the utilization rate of waste concrete to satisfy sustainable development requirements.However,the mechanical properties of recycled concrete are not as good as those of ordinary concrete.To enhance the former’s performance and increase its popularity and application in engineeringfields,notable advances have been made by using steel,synthetic,plant,and mineralfiber materials.These materials are added to recycled concrete to improve its mechanical properties.Studies have shown that(1)steelfibers have a distinct reinforcing effect and improve the strength,toughness,and elastic modulus of recycled concrete;(2)the addition of syntheticfibers can improve the tension,crack resistance,and durability of concrete,but the size effect needs to be further explored and elaborated;(3)plantfiber concrete is lightweight and environmentally friendly and provides high toughness and good thermal insulation,but thefibers corrode in alkaline environments;in addition,plantfibers have high water absorption capacity,which leads to wet expansion and dry shrinkage phenomena,which need to be further studied;and(4)the cost of basaltfiber,a mineralfiber,is relatively low,and a suitable basalt content can improve the mechanical properties of recycled concrete to a certain extent.
文摘The main purpose of this research is to study the durability of recycled concrete as a partial replacement of coarse aggregate in corrosive environment. 10%, 20%, 30% and 40% by weight were used for recycled concrete. Concrete samples exposed to 10% concentration dilute sulfuric acid solution for 180 days. Mechanical tests such as compressive and tensile strength tests, physical tests such as ultrasonic pulse velocity, bulk density, porosity, specific gravity and water absorption tests were done to the samples after curing in normal water for 28 days and after submerged in dilute sulfuric acid for 180 days. Degradation increased with increasing of replacement. Test results showed that 10% and 20% partial replacement of recycled concrete aggregate still closely to reference samples. Noticeable deterioration was shown in mechanical and physical properties for 30% and 40% partial replacement of recycled concrete aggregate.
文摘This study presents the development of high strength concrete (HSC) that has been made more sustainable by using both local materials from central Texas and recycled concrete aggregate (RCA), which has also been obtained locally. The developed mixtures were proportioned with local constituents to increase the sustainable impact of the material by reducing emissions due to shipping as well as to make HSC more affordable to a wider variety of applications. The specific constituents were: limestone, dolomite, manufactured sand (limestone), locally available Type I/II cement, silica fume, and recycled concrete aggregate, which was obtained from a local recycler which obtains their product from local demolition. Multiple variables were investigated, such as the aggregate type and size, concrete age (7, 14, and 28-days), the curing regimen, and the water-to-cement ratio (w/c) to optimize a HSC mixture that used local materials. This systematic development revealed that heat curing the specimens in a water bath at 50℃ (122oF) after demolding and then dry curing at 200℃ (392oF) two days before testing with a w/c of 0.28 at 28-days produced the highest compressive strengths. Once an optimum HSC mixture was identified a partial replacement of the coarse aggregate with RCA was completed at 10%, 20%, and 30%. The results showed a loss in compressive strength with an increase in RCA replacement percentages, with the highest strength being approximately 93.0 MPa (13,484 psi) at 28-days for the 10% RCA replacement. The lowest strength obtained from an RCA-HSC mixture was approximately 72.9 (MPa) (10,576 psi) at 7-days. The compressive strengths obtained from the HSC mixtures containing RCA developed in this study are comparable to HSC strengths presented in the literature. Developing this innovative material with local materials and RCA ultimately produces a novel sustainable construction material, reduces the costs, and produces mechanical performance similar to prepackaged, commercially, available construction building materials.
文摘This article presents freeze-thaw(F/T)resistance of concrete containing recycled concrete aggregate(RCA).RCA percentages of 15%,30%,45%,and 60%were replaced by natural aggregate.Air entraining admixture(AEA)with three different ratios(0.06%,0.13%,and 0.20%)were used and three different maximum aggregate particle sizes(dmax=16 mm,22.4 mm and 31.5 mm)were selected.F/T resistances of the concretes were determined through the measurement of scaling on the surfaces of the samples placed in 3%NaCl solution in pursuance of TS CEN/TS 12390-9.It was observed that the compressive strength of the concretes decreased by 20%on average compared to the control samples with the increase in the amount of RCA.However,it was determined from the experiments that the use of RCA increases the F/T resistances of the concretes as it provides extra voids in the concrete and decreases capillary permeability.Within the limits of this study,d_(max)=22.4 mm,RCA=45%and AEA=0.13%are recommended as the optimum values for F/T resistance of the concrete.It is also recommended to use RCA in pavement applications including roadways,highways,parking facilities,and other non-structural concrete elements subjected to severe winter conditions.
文摘The main goal of this paper is to describe the mechanical behavior of the CDW recycled concrete in compression, using an isotropic damage model adapted to the variation of the replacement rate of natural aggregates by recycled ones. The isotropic model by Mazars was used as a constitutive equation for the CDW concrete and its adjustment parameters, A and B, were written as quadratic polynomials according to the aggregates replacement rate. The model was evaluated for conventional and recycled concretes. For the latter ones, the aggregates replacement ratios evaluated were 50% and 100%. The results show good approximation between the analytical and numerical values obtained with the adapted isotropic damage model and experimental concrete results for both compressive and flexural strength.
文摘The possibility of the use of recycled aggregates from the construction industry in green concrete production is of increasing importance to reduce the negative environmental impact associated with construction and demolition wastes.The objective of this study is to investigate the effect of recycled concrete aggregate(RCA)quality on the properties of hardened concrete properties such as compressive strength,splitting tensile strength,density,water absorption capacity and porosity accessible to water.The RCA used in this study was obtained from the crushing of waste concrete with two different compressive strengths(LRCA obtained from the crushing of waste concrete having compressive strengths below 30 MPa and HRCA obtained from the crushing of waste concrete having compressive strengths above 30 MPa).The natural coarse limestone aggregate was 100%replaced with coarse LRCA and HRCA.As a result of the study,the use of 100%HRCA and%100 LRCA instead of limestone coarse aggregate in the concrete adversely affected its mechanical and physical properties.In addition,HRCA showed better performance in terms of compressive strength,tensile strength,water absorption and porosity compared to the use of LRCA.Furthermore,the percentage of adhered mortar on the surface of LRCA and HRCA was analyzed using a computerized micro tomography device,and it was found that the percentages of attached mortar and aggregates are 61%and 35.5%for LRCA,whilst the attached mortar and aggregate contents for HRCA are 45.9%and 53.7%,respectively.