We solve the single mode coupled rate equations by computer,simulate the behavior of a gain switch of an AlGaInP red light semiconductor laser diode,and find the characteristic of FWHM of pulses changing with the ampl...We solve the single mode coupled rate equations by computer,simulate the behavior of a gain switch of an AlGaInP red light semiconductor laser diode,and find the characteristic of FWHM of pulses changing with the amplitude of modulation signal, the bias current, and the modulated frequency. On this basis, we conduct experiments. The experiment results accord with the simulations well.展开更多
Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hy- poxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and diff...Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hy- poxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migra- tion and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cmz, an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 x 106 bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2 for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes cells, thereby enhancing the contribution ic-ischemic brain damage. the migration of bone marrow mesenchymal stem of cell transplantation in the treatment of hypox-展开更多
A series of conjugated copolymers derived from 9-ethylhexyl-2,7-carbazole(Cz)and 4,7-di(4-hexylthien-2-yl)- 2,1,3-benzothiadiazole(DHTBT)was synthesized by Suzuki polycondensation.The photo-and electro-luminescent pro...A series of conjugated copolymers derived from 9-ethylhexyl-2,7-carbazole(Cz)and 4,7-di(4-hexylthien-2-yl)- 2,1,3-benzothiadiazole(DHTBT)was synthesized by Suzuki polycondensation.The photo-and electro-luminescent properties of these polymers were investigated.Efficient energy transfer from the Cz segment to the DHTBT unit occurs even if the DHTBT content as low as 1 mol%.PL emission was red-shifted significantly from 645 nm to 700 nm with the increase in DHTBT content by 1-50 mol%.PL efficiencies decreased...展开更多
Red Light Running (RLR) has been associated with road traffic collisions in many jurisdictions across the world. The study aimed at evaluating the factors related to red light running (RLR) in Trinidad and Tobago that...Red Light Running (RLR) has been associated with road traffic collisions in many jurisdictions across the world. The study aimed at evaluating the factors related to red light running (RLR) in Trinidad and Tobago that could be incorporated into policies that would aim to reduce this tendency and its related costs. Using data collected from the Traffic Unit of Trinidad and Tobago and three major intersections in the country, analysis was done on the impact of time of the day, age of the driver, ethnicity, gender, type of the vehicle, location and day of the week which are related to RLR. The results showed that the highest number of RLR occurs during rush hours in the morning and also in the evenings. Also, Indo-Trinidadian and male drivers display a higher tendency towards RLR. It was also established that some junctions have higher RLR rates than others and that Fridays have more RLR cases than all the other days of the week. These findings are very similar to those made in other countries such as the USA. The study has resulted in specific findings that can be used to improve traffic safety policies in the country.展开更多
The low level red light irradiation dose that produced positive response on different cell indexes was selected through experiments.In fibroblast detection model,the low level red light irradiation dose that had posit...The low level red light irradiation dose that produced positive response on different cell indexes was selected through experiments.In fibroblast detection model,the low level red light irradiation dose that had positive response to the four indicators of mitochondrial membrane potential,ATP release,cell migration and collagen synthesis was screened.The experimental results showed that low level red light with a irradiation dose of 2 J/cm^(2) had a positive response to the above four indexes in fibroblast.The test model on fibroblast was later transferred to dermal papilla cells for further experimental verification.The results showed that low level red light with a irradiation dose of 2 J/cm^(2) also had a positive response to the four indicators of dermal papilla cells,namely,mitochondrial membrane potential,ATP release,cell proliferation rate and collagen synthesis.It is proved that the low level red light with a irradiation dose of 2 J/cm^(2) could improve the mitochondrial function,cell migration and collagen synthesis of fibroblast and dermal papilla cell,thus providing energy for cell activities,improving cell repair ability and cell anti-aging ability.展开更多
Burn injuries are common in Pakistan. However, most people are reluctant to have infrared treatment for their wounds. This study investigated the efficacy of infrared treatment on burn wounds. The procedure involved a...Burn injuries are common in Pakistan. However, most people are reluctant to have infrared treatment for their wounds. This study investigated the efficacy of infrared treatment on burn wounds. The procedure involved a burn victim who had sustained acid burns to the neck and face. Nectrotomy was done to remove dead tissue from the burn wound, and after treatment, Low-Level Light was used to reduce pain and enhance healing in the patient. Initial results showed mild hypertrophic scars, no stiffness. Post-operation therapy included physical training regimens and massage. The patient showed satisfactory results and felt less tightness in neck movements by the following treatment. The article concludes by showing that infrared light promoted repair and regrowth at a cellular level.展开更多
Vertical-cavity surface-emitting lasers (VCSELs) have entered into commercial market over the last few years. The paper describes the progress of visible (red) VCSELs in particular. The Basic experimental structures a...Vertical-cavity surface-emitting lasers (VCSELs) have entered into commercial market over the last few years. The paper describes the progress of visible (red) VCSELs in particular. The Basic experimental structures are reviewed, with emphasis on distributed Bragg reflectors, gain media, as well as detuning.lt also points out some technical issues that must still be resolved. Finally, the polarization of VCSELs devices is discussed.展开更多
Far-red(FR) light regulates phytochrome-mediated morphological and physiological plant responses.This study aims to investigate how greenhouse tomato morphology and production response to different durations of FR lig...Far-red(FR) light regulates phytochrome-mediated morphological and physiological plant responses.This study aims to investigate how greenhouse tomato morphology and production response to different durations of FR light during daytime and at the end of day(EOD).High-wire tomato plants were grown under intra-canopy lighting consisting of red(peak wavelength at 640 nm) and blue(peak wavelength at 450 nm) light-emitting diodes(LEDs) with photosynthetic photon flux density(PPFD) of 144 μmol m–2 s–1 at 10 cm away from the lamps,and combined with overhead supplemental FR light(peak wavelength at 735 nm) with PPFD of 43 μmol m–2 s–1 at 20 cm below the lamps.Plants were exposed to three durations of FR supplemental lighting including: 06:00–18:00(FR12),18:00–19:30(EOD-FR1.5),18:00–18:30(EOD-FR0.5),and control that without supplemental FR light.The results showed that supplemental FR light significantly stimulated stem elongation thereby resulting in longer plants compared with the control.Moreover,FR light altered leaf morphology toward higher leaf length/width ratio and larger leaf area.The altered plant architecture in FR supplemented plants led to a more homogeneous light distribution inside the canopy.Total plant biomass was increased by 9–16% under supplemental FR light in comparison with control,which led to 7–12% increase in ripe fruit yield.Soluble sugar content of the ripe tomato fruit was slightly decreased by longer exposure of the plants to FR light.Dry matter partitioning to different plant organs were not substantially affected by the FR light treatments.No significant differences were observed among the three FR light treatments in plant morphology as well as yield and biomass production.We conclude that under intra-canopy lighting,overhead supplemental FR light stimulates tomato growth and production.And supplementary of EOD-FR0.5 is more favorable,as it consumes less electricity but induces similar effects on plant morphology and yield.展开更多
Lycopene, one of the strongest natural antioxidants known and the main carotene in ripe tomato, is very important for human health. Light is well known to be one of the most important environmental stimuli influencing...Lycopene, one of the strongest natural antioxidants known and the main carotene in ripe tomato, is very important for human health. Light is well known to be one of the most important environmental stimuli influencing lycopene biosynthesis; specifically, red light induces higher lycopene content in tomato. However, whether blue light promotes lycopene synthesis remains elusive and exactly how light stimulation promotes lycopene synthesis remains unclear. We applied supplemental blue and red lighting on tomato plants at anthesis to monitor the effect of supplemental blue and red lighting on lycopene synthesis. Our results showed that supplemental blue/red lighting induced higher lycopene content in tomato fruits; furthermore, we found that the expression of key genes in the lycopene synthesis pathway was induced by supplemented blue/red light. The expression of light signaling components, such as red-light receptor phytochromes(PHYs), blue-light receptor cryptochromes(CRYs) and light interaction factors, phytochrome-interacting factors(PIFs) and ELONGATED HYPOCOTYL 5(HY5) were up-or down-regulated by blue/red lighting. Thus, blue and red light increased lycopene content in tomatoes by inducing light receptors that modulate HY5 and PIFs activation to mediate phytoene synthase 1(PSY1) gene expression. These results provide a sound theoretical basis for further elucidation of the light regulating mechanism of lycopene synthesis in tomatoes, and for instituting a new generation of technological innovations for the enhancement of lycopene accumulation in crop production.展开更多
Light quality response is a vital environmental cue regulating plant development. Conifers, like angiosperms, respond to the changes in light quality including the level of red (R) and far-red (FR) light, which follow...Light quality response is a vital environmental cue regulating plant development. Conifers, like angiosperms, respond to the changes in light quality including the level of red (R) and far-red (FR) light, which follows a latitudinal cline. R and FR wavelengths form a significant component of the entire plant life cycle, including the initial developmental stages such as seed germination, cotyledon expansion and hypocotyl elongation. With an aim to identify differentially expressed candidate genes, which would provide a clue regarding genes involved in the local adaptive response in Scots pine (Pinus sylvestris) with reference to red/far-red light;we performed a global expression analysis of Scots pine hypocotyls grown under two light treatments, continuous R (cR) and continuous FR (cFR) light;using Pinus taeda cDNA microarrays on bulked hypocotyl tissues from different individuals, which represented different genotypes. This experiment was performed with the seeds collected from northern part of Sweden (Ylinen, 68?N). Interestingly, gene expression pattern with reference to cryptochrome1, a blue light photoreceptor, was relatively high under cFR as compared to cR light treatment. Additionally, the microarray data analysis also revealed expression of 405 genes which was enhanced under cR light treatment;while the expression of 239 genes was enhanced under the cFR light treatment. Differentially expressed genes were re-annotated using Blast2GO tool. These results indicated that cR light acts as promoting factor whereas cFR antagonises the effect in most of the processes like C/N metabolism, photosynthesis and cell wall metabolism which is in accordance with former findings in Arabidopsis. We propose cryptochrome1 as a strong candidate gene to study the adaptive cline response under R and FR light in Scots pine as it shows a differential expression under the two light conditions.展开更多
Background: Photodynamic therapy (PDT) is a treatment for non-melanoma skin cancer. In recent years, its use has expanded to new indications. Viral warts (VW) are some of the most promising. Methods: A retrospective, ...Background: Photodynamic therapy (PDT) is a treatment for non-melanoma skin cancer. In recent years, its use has expanded to new indications. Viral warts (VW) are some of the most promising. Methods: A retrospective, descriptive, observational study was carried out. Patients who did not respond to cryotherapy were selected and were occluded with methyl aminolevulinate (MAL) for three hours and they were illuminated with red light. Tolerance to treatment was evaluated using a visual analog scale for pain (from 0 to 10). Results: A total of 15 patients with 134 VW were treated. A complete response was obtained in 13 of 15 patients (87%) and in 127 of 134 lesions (95%). The mean number of sessions was 3.1 (range 1 to 6) and the average pain score was 3.1 (range 0 to 8). Conclusions: PDT is a treatment that offers good results in the treatment of VW that are resistant to routine treatment. The treatment was well tolerated in our patient group.展开更多
Karrikins and strigolactones govern plant development and environmental responses through closely related signaling pathways.The transcriptional repressor proteins SUPPRESSOR OF MAX21(SMAX1),SMAX1-like2(SMXL2),and D53...Karrikins and strigolactones govern plant development and environmental responses through closely related signaling pathways.The transcriptional repressor proteins SUPPRESSOR OF MAX21(SMAX1),SMAX1-like2(SMXL2),and D53-like SMXLs mediate karrikin and strigolactone signaling by directly binding downstream genes or byinhibiting the activities of transcription factors.In this study,we characterized the non-transcriptional regulatory activities of SMXL proteins in Arabidopsis.We discovered that SMAX1 and SMXL2 with mutations in their ethylene-responsefactor-associated amphiphilic repression(EAR)motif had undetectable or weak transcriptional repression activities but still partially rescued the hypocotyl elongation defects and fully reversed the cotyledon epinasty defects of the smax1 smxl2 mutant.SMAX1 and SMXL2 directly interact with PHYTOCHROME INTERACTION FACTOR4(PIF4)and PIF5 to enhance their protein stability by interacting with phytochrome B(phyB)and suppressing the association of phyB with PIF4 and PIF5.The karrikin-responsive genes were then identified by treatment with GR24ent-ssa,GR24 analog showing karrikin activity.Interestingly,INDOLE-3-ACETIC ACID INDUCIBLE 29(IAA29)expression was repressed by GR24^(ent-5D)streatment in a PIF4-and PIF5-dependent and EARindependent manner,whereas KARRIKIN UPREGULATED F-BOX 1(KUF1)expression was induced in a PIF4-and PIF5-independent and EAR-dependent manner.Furthermore,the non-transcriptional regulatory activity of SMAX1,which is independent of the EAR motif,had a global effect on gene expression.Taken together,these results indicate that non-transcriptional regulatory activities of SMAX1 and SMXL2 mediate karrikin-regulated seedling response to red light.展开更多
Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada...Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.展开更多
Phytochromes in seed plants are known to move into nuclei in a red light-dependent manner with or without interacting factors. Here, we show phytochrome relocation to the nuclear region in phytochrome-dependent Adiant...Phytochromes in seed plants are known to move into nuclei in a red light-dependent manner with or without interacting factors. Here, we show phytochrome relocation to the nuclear region in phytochrome-dependent Adiantum capillus-veneris spore germination by partial spore-irradiation experiments. The nuclear or non-nuclear region of imbibed spores was irradiated with a microbeam of red and/or far-red light and the localization of phytochrome involved in spore germination was estimated from the germination rate. The phytochrome for spore germination existed throughout whole spore under darkness after imbibition, but gradually migrated to the nuclear region following red light irradiation. In- tracellular distribution of PHY-GUS fusion proteins expressed in germinated spores by particle bombardment showed the migration of Acphy2, but not Acphyl, into nucleus in a red light-dependent manner, suggesting that Acphy2 is the photoreceptor for fern spore germination.展开更多
The stomatal pores of higher plants enable gaseous exchange into and out of leaves for photosynthesis and evaporation. Stomatal opening is induced by both blue and red lights. It is shown that blue light-induced stoma...The stomatal pores of higher plants enable gaseous exchange into and out of leaves for photosynthesis and evaporation. Stomatal opening is induced by both blue and red lights. It is shown that blue light-induced stomatal opening is mediated by the blue light receptor phototropins (PHOT1 and PHOT2) and cryptochromes (CRY1 and CRY2). However, whether phytochrome B (phyB) is involved in red light regulation of stomatal opening remains largely unclear. Here, we report a positive role for Arabidopsis (Arabidopsis thaliana) phyB in the regulation of red light-induced stomatal opening. The phyB mutant stomata displayed a reduced red light response, whereas stomata of the phyB-overexpressing plants displayed a hypersensitive response to red light. In addition, stomata of the cry1 cry2 phyB, photl phot2 phyB, and cry1 phyA phyB triple mutant plants showed more reduced light response than those of the single or double mutant plants under white light, implying that phyB acts in concert with phyA, CRY, and PHOT in light regulation of stomatal opening. Stomata of phyB cop1 mutant opened less wide than those of the cop1 mutant, and stomata of the pif3 pif4 mutant opened wider than those of the wild-type, indicating that COP1, together with the PIFs (phytochrome interacting factors), may act downstream of PHYB in regulating stomatal opening. Furthermore, quantitative RT-PCR analysis showed that the expression of MYB60 was reduced in the cry1 cry2 and phyA phyB mutants under blue and red lights, respectively, but induced in the CRY1- and phyB-overexpressing plants. These results demonstrate that phyB and CRY might regulate stomatal opening, at least in part, by regulating MYB60 expression.展开更多
We evaluated the effects of red and blue light on the repair of UV-B radiation-induced damage in tetraspores of Chondrus ocellatus Holm. Tetraspores of C. ocellatus were treated with different UV-B radiation levels(0,...We evaluated the effects of red and blue light on the repair of UV-B radiation-induced damage in tetraspores of Chondrus ocellatus Holm. Tetraspores of C. ocellatus were treated with different UV-B radiation levels(0,36,72,108,144 and 180 J/m2),and thereafter subjected to PAR,darkness,or red or blue light during a 2-h repair stage,each day for 48 days. The diameters and cellular contents of cyclobutane pyrimidine dimmers(CPDs),chlorophyll a(Chl a),phycoerythrin,and UV-B-absorbing mycosporinelike amino acids(MAAs) contents of the tetraspores were determined. Our results show that low doses of UV-B radiation(36 and 72 J/m 2) promoted the growth of C. ocellatus; however,increased UV-B radiation gradually reduced the C. ocellatus growth(greater than 72 J/m2). The MAAs(palythine and asterina-330) in C. ocellatus were detected and analyzed by LC/MS. Our results suggest that moderate red light could induce the growth of this alga in aquaculture. In addition,photorepair was inhibited by red light,so there may be some other DNA repair mechanism activated by red light. Blue light promoted the activity of DNA photolyase,greatly improving remediation efficiency. Red and blue lights were found to reduce the capacity of C. ocellatus to form MAAs. Therefore,PAR,red light,and blue light play different roles during the repair processes for damage induced by UV-B radiation.展开更多
Red light running at signalized intersections is a major safety concern in the United States. Statistics show that approximately 45 percent of crashes at intersections caused by red light running re- sult in severe in...Red light running at signalized intersections is a major safety concern in the United States. Statistics show that approximately 45 percent of crashes at intersections caused by red light running re- sult in severe injuries and fatalities, while only approximately 30 percent of all other types of intersec- tion crashes cause injuries or fatalities. Over the past decade, many US cities and counties have de- ployed red light running photo enforcement systems for signalized intersections within their jurisdictions to potentially reduce red light running related crashes. This study proposes an empirical Bayesian ( EB ) before-after analysis method that computes a weighed sum of crashes observed in the field and crashes predicted by safety performance functions (SPFs) to mitigate regression-to-mean biases for analyzing crash reduction effects of red light running enforcement. The analysis explicitly considers red light run- ning related crash types, including head-on, rear-end, angle, tuming, sideswipe in the same direction, and sideswipe in the opposite direction; and crash severity levels classified as fatal, injury, and proper- ty damage only (PDO). A computational study is conducted to examine the effectiveness of the Chica- go program with red light running photo enforcement systems deployed for nearly two hundred signal- ized intersections. It is revealed that the use of red light running photo enforcement on the whole is pos- itive, as demonstrated by reductions in all types of fatal crashes by 4-48 percent, and injury-related an- gle crashes by 1 percent. However, it slightly raises PDO-related angle crashes and moderately increa- ses injury and PDO related rear-end crashes. The safety effectiveness of red light running photo en- forcement is sensitive to intersection location.展开更多
Red-light-induced swelling of the protoplasts isolated from hypocotyl of etiolated mung bean (Phaseolus radiatus L.) was observed only when Ca2+ ions were present in the medium. The optimal CaCl2 concentration was 250...Red-light-induced swelling of the protoplasts isolated from hypocotyl of etiolated mung bean (Phaseolus radiatus L.) was observed only when Ca2+ ions were present in the medium. The optimal CaCl2 concentration was 250 μM. Swelling response declined when Ca2+ was supplied into the medium after red light irradiation. The Ca2+-chelator EGTA eliminated the red-light-induced swelling and 45Ca2+ accumulation in the protoplasts. In contrast, A23187, a Ca2+-ionophore, could mimic the effect of red light in darkness. These results indicate that Ca2+ may play a role in light signal transduction. In addition, swelling response was prevented by TFP and CPZ (both are CaM antagonists), implying the involvement of CaM in red-light-induced and Ca2+ -dependent protoplast swelling.展开更多
Red,white,blue,green,and yellow lights were applied to investigate their effects on folate accumulation in wheat seedlings.The different lights,especially red light,significantly increased the total folate content.Tot...Red,white,blue,green,and yellow lights were applied to investigate their effects on folate accumulation in wheat seedlings.The different lights,especially red light,significantly increased the total folate content.Total folate showed maximum accumulation under 30μmol/(m2·s)of red light,with an increase of 24%compared with the control(darkness).5-Methyltetrahydrofolate(5-CH3-THF)was the dominant folate component,and was significantly increased by red light irradiation.In addition,under red light,the folate content of leaves was higher and more sensitive to light than that of endosperm or roots.Red light up-regulated the expression of guanosine triphosphate(GTP)cyclohydrolase 1(GCH1)and aminodeoxychorismate synthase(ADCS),enhanced the activity of GCH1 and ADCS,and increased the content of precursors of folate synthesis,including pterin and p-aminobenzoic acid(p ABA).Hence,the increased folate accumulation promoted by light could be attributed to the increased content of folate synthesis precursors,the activity of key enzymes,and related gene expression。展开更多
The development of heterogeneous molecule-based catalysts for red light-mediated photocatalysis is still challenging due to the improper light absorption for most materials and the photoactivity deactivation for solid...The development of heterogeneous molecule-based catalysts for red light-mediated photocatalysis is still challenging due to the improper light absorption for most materials and the photoactivity deactivation for solid assembly.Herein,red light photocatalysis with a hydrogen-bonded organic framework(HOF)is established.This HOF,named HOF-66,is formed from the self-assembly of guanine-decorated naphthalenediimide(NDI)molecule through hydrogen-bonded guanine-quadruplex nodes,showing square grid supramolecular layers confirmed by powder X-ray diffraction analysis.In contrast to unsubstituted NDI HOF,introduction of ethylamino groups to NDI core in HOF-66 tunes strong electronic maximum absorption peak to 619 nm,allowing red light photocatalysis of singlet oxygen evolution proved by 1,3-diphenylisobenzofuran degradation and electron spin resonance determination.Particularly,under the same conditions,the sulfide oxidation rate in the presence of HOF-66 was 28 times higher compared to its unsubstituted analogue.This work integrates the molecular design and aggregation effect towards the application of HOFs,opening a new gate for red light photocatalysts.展开更多
文摘We solve the single mode coupled rate equations by computer,simulate the behavior of a gain switch of an AlGaInP red light semiconductor laser diode,and find the characteristic of FWHM of pulses changing with the amplitude of modulation signal, the bias current, and the modulated frequency. On this basis, we conduct experiments. The experiment results accord with the simulations well.
基金the National Natural Science Foundation of China,No.30970758,31271060the National Science and Technology Support Program of China,No.2011BAI14B04,2012BAI16B02the Natural Science Foundation of Chongqing in China,No.cst-c2012jjA10103
文摘Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hy- poxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migra- tion and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cmz, an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 x 106 bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2 for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes cells, thereby enhancing the contribution ic-ischemic brain damage. the migration of bone marrow mesenchymal stem of cell transplantation in the treatment of hypox-
基金This work was supported by the Ministry of Science and Technology of China(No.2002CB613402)the National Natural Science Foundation of China(No.50433030).
文摘A series of conjugated copolymers derived from 9-ethylhexyl-2,7-carbazole(Cz)and 4,7-di(4-hexylthien-2-yl)- 2,1,3-benzothiadiazole(DHTBT)was synthesized by Suzuki polycondensation.The photo-and electro-luminescent properties of these polymers were investigated.Efficient energy transfer from the Cz segment to the DHTBT unit occurs even if the DHTBT content as low as 1 mol%.PL emission was red-shifted significantly from 645 nm to 700 nm with the increase in DHTBT content by 1-50 mol%.PL efficiencies decreased...
文摘Red Light Running (RLR) has been associated with road traffic collisions in many jurisdictions across the world. The study aimed at evaluating the factors related to red light running (RLR) in Trinidad and Tobago that could be incorporated into policies that would aim to reduce this tendency and its related costs. Using data collected from the Traffic Unit of Trinidad and Tobago and three major intersections in the country, analysis was done on the impact of time of the day, age of the driver, ethnicity, gender, type of the vehicle, location and day of the week which are related to RLR. The results showed that the highest number of RLR occurs during rush hours in the morning and also in the evenings. Also, Indo-Trinidadian and male drivers display a higher tendency towards RLR. It was also established that some junctions have higher RLR rates than others and that Fridays have more RLR cases than all the other days of the week. These findings are very similar to those made in other countries such as the USA. The study has resulted in specific findings that can be used to improve traffic safety policies in the country.
文摘The low level red light irradiation dose that produced positive response on different cell indexes was selected through experiments.In fibroblast detection model,the low level red light irradiation dose that had positive response to the four indicators of mitochondrial membrane potential,ATP release,cell migration and collagen synthesis was screened.The experimental results showed that low level red light with a irradiation dose of 2 J/cm^(2) had a positive response to the above four indexes in fibroblast.The test model on fibroblast was later transferred to dermal papilla cells for further experimental verification.The results showed that low level red light with a irradiation dose of 2 J/cm^(2) also had a positive response to the four indicators of dermal papilla cells,namely,mitochondrial membrane potential,ATP release,cell proliferation rate and collagen synthesis.It is proved that the low level red light with a irradiation dose of 2 J/cm^(2) could improve the mitochondrial function,cell migration and collagen synthesis of fibroblast and dermal papilla cell,thus providing energy for cell activities,improving cell repair ability and cell anti-aging ability.
文摘Burn injuries are common in Pakistan. However, most people are reluctant to have infrared treatment for their wounds. This study investigated the efficacy of infrared treatment on burn wounds. The procedure involved a burn victim who had sustained acid burns to the neck and face. Nectrotomy was done to remove dead tissue from the burn wound, and after treatment, Low-Level Light was used to reduce pain and enhance healing in the patient. Initial results showed mild hypertrophic scars, no stiffness. Post-operation therapy included physical training regimens and massage. The patient showed satisfactory results and felt less tightness in neck movements by the following treatment. The article concludes by showing that infrared light promoted repair and regrowth at a cellular level.
文摘Vertical-cavity surface-emitting lasers (VCSELs) have entered into commercial market over the last few years. The paper describes the progress of visible (red) VCSELs in particular. The Basic experimental structures are reviewed, with emphasis on distributed Bragg reflectors, gain media, as well as detuning.lt also points out some technical issues that must still be resolved. Finally, the polarization of VCSELs devices is discussed.
基金supported by the National Key Research and Development Program of China (2017YFB0403902)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (CAST,2016QNRC001)
文摘Far-red(FR) light regulates phytochrome-mediated morphological and physiological plant responses.This study aims to investigate how greenhouse tomato morphology and production response to different durations of FR light during daytime and at the end of day(EOD).High-wire tomato plants were grown under intra-canopy lighting consisting of red(peak wavelength at 640 nm) and blue(peak wavelength at 450 nm) light-emitting diodes(LEDs) with photosynthetic photon flux density(PPFD) of 144 μmol m–2 s–1 at 10 cm away from the lamps,and combined with overhead supplemental FR light(peak wavelength at 735 nm) with PPFD of 43 μmol m–2 s–1 at 20 cm below the lamps.Plants were exposed to three durations of FR supplemental lighting including: 06:00–18:00(FR12),18:00–19:30(EOD-FR1.5),18:00–18:30(EOD-FR0.5),and control that without supplemental FR light.The results showed that supplemental FR light significantly stimulated stem elongation thereby resulting in longer plants compared with the control.Moreover,FR light altered leaf morphology toward higher leaf length/width ratio and larger leaf area.The altered plant architecture in FR supplemented plants led to a more homogeneous light distribution inside the canopy.Total plant biomass was increased by 9–16% under supplemental FR light in comparison with control,which led to 7–12% increase in ripe fruit yield.Soluble sugar content of the ripe tomato fruit was slightly decreased by longer exposure of the plants to FR light.Dry matter partitioning to different plant organs were not substantially affected by the FR light treatments.No significant differences were observed among the three FR light treatments in plant morphology as well as yield and biomass production.We conclude that under intra-canopy lighting,overhead supplemental FR light stimulates tomato growth and production.And supplementary of EOD-FR0.5 is more favorable,as it consumes less electricity but induces similar effects on plant morphology and yield.
基金supported by the National Key Research and Development Program of China (2017YFD0701500)the Teamwork Projects Funded by Guangdong Natural Science Foundation, China (S2013030012842)the Guangzhou Science & Technology Project, China (201704020058)
文摘Lycopene, one of the strongest natural antioxidants known and the main carotene in ripe tomato, is very important for human health. Light is well known to be one of the most important environmental stimuli influencing lycopene biosynthesis; specifically, red light induces higher lycopene content in tomato. However, whether blue light promotes lycopene synthesis remains elusive and exactly how light stimulation promotes lycopene synthesis remains unclear. We applied supplemental blue and red lighting on tomato plants at anthesis to monitor the effect of supplemental blue and red lighting on lycopene synthesis. Our results showed that supplemental blue/red lighting induced higher lycopene content in tomato fruits; furthermore, we found that the expression of key genes in the lycopene synthesis pathway was induced by supplemented blue/red light. The expression of light signaling components, such as red-light receptor phytochromes(PHYs), blue-light receptor cryptochromes(CRYs) and light interaction factors, phytochrome-interacting factors(PIFs) and ELONGATED HYPOCOTYL 5(HY5) were up-or down-regulated by blue/red lighting. Thus, blue and red light increased lycopene content in tomatoes by inducing light receptors that modulate HY5 and PIFs activation to mediate phytoene synthase 1(PSY1) gene expression. These results provide a sound theoretical basis for further elucidation of the light regulating mechanism of lycopene synthesis in tomatoes, and for instituting a new generation of technological innovations for the enhancement of lycopene accumulation in crop production.
文摘Light quality response is a vital environmental cue regulating plant development. Conifers, like angiosperms, respond to the changes in light quality including the level of red (R) and far-red (FR) light, which follows a latitudinal cline. R and FR wavelengths form a significant component of the entire plant life cycle, including the initial developmental stages such as seed germination, cotyledon expansion and hypocotyl elongation. With an aim to identify differentially expressed candidate genes, which would provide a clue regarding genes involved in the local adaptive response in Scots pine (Pinus sylvestris) with reference to red/far-red light;we performed a global expression analysis of Scots pine hypocotyls grown under two light treatments, continuous R (cR) and continuous FR (cFR) light;using Pinus taeda cDNA microarrays on bulked hypocotyl tissues from different individuals, which represented different genotypes. This experiment was performed with the seeds collected from northern part of Sweden (Ylinen, 68?N). Interestingly, gene expression pattern with reference to cryptochrome1, a blue light photoreceptor, was relatively high under cFR as compared to cR light treatment. Additionally, the microarray data analysis also revealed expression of 405 genes which was enhanced under cR light treatment;while the expression of 239 genes was enhanced under the cFR light treatment. Differentially expressed genes were re-annotated using Blast2GO tool. These results indicated that cR light acts as promoting factor whereas cFR antagonises the effect in most of the processes like C/N metabolism, photosynthesis and cell wall metabolism which is in accordance with former findings in Arabidopsis. We propose cryptochrome1 as a strong candidate gene to study the adaptive cline response under R and FR light in Scots pine as it shows a differential expression under the two light conditions.
文摘Background: Photodynamic therapy (PDT) is a treatment for non-melanoma skin cancer. In recent years, its use has expanded to new indications. Viral warts (VW) are some of the most promising. Methods: A retrospective, descriptive, observational study was carried out. Patients who did not respond to cryotherapy were selected and were occluded with methyl aminolevulinate (MAL) for three hours and they were illuminated with red light. Tolerance to treatment was evaluated using a visual analog scale for pain (from 0 to 10). Results: A total of 15 patients with 134 VW were treated. A complete response was obtained in 13 of 15 patients (87%) and in 127 of 134 lesions (95%). The mean number of sessions was 3.1 (range 1 to 6) and the average pain score was 3.1 (range 0 to 8). Conclusions: PDT is a treatment that offers good results in the treatment of VW that are resistant to routine treatment. The treatment was well tolerated in our patient group.
基金the National Natural Science Foundation of China(32170320,32122012,and 32270327)the Hebei Natural Science Foundation(C2022503003)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y2023025).
文摘Karrikins and strigolactones govern plant development and environmental responses through closely related signaling pathways.The transcriptional repressor proteins SUPPRESSOR OF MAX21(SMAX1),SMAX1-like2(SMXL2),and D53-like SMXLs mediate karrikin and strigolactone signaling by directly binding downstream genes or byinhibiting the activities of transcription factors.In this study,we characterized the non-transcriptional regulatory activities of SMXL proteins in Arabidopsis.We discovered that SMAX1 and SMXL2 with mutations in their ethylene-responsefactor-associated amphiphilic repression(EAR)motif had undetectable or weak transcriptional repression activities but still partially rescued the hypocotyl elongation defects and fully reversed the cotyledon epinasty defects of the smax1 smxl2 mutant.SMAX1 and SMXL2 directly interact with PHYTOCHROME INTERACTION FACTOR4(PIF4)and PIF5 to enhance their protein stability by interacting with phytochrome B(phyB)and suppressing the association of phyB with PIF4 and PIF5.The karrikin-responsive genes were then identified by treatment with GR24ent-ssa,GR24 analog showing karrikin activity.Interestingly,INDOLE-3-ACETIC ACID INDUCIBLE 29(IAA29)expression was repressed by GR24^(ent-5D)streatment in a PIF4-and PIF5-dependent and EARindependent manner,whereas KARRIKIN UPREGULATED F-BOX 1(KUF1)expression was induced in a PIF4-and PIF5-independent and EAR-dependent manner.Furthermore,the non-transcriptional regulatory activity of SMAX1,which is independent of the EAR motif,had a global effect on gene expression.Taken together,these results indicate that non-transcriptional regulatory activities of SMAX1 and SMXL2 mediate karrikin-regulated seedling response to red light.
文摘Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.
文摘Phytochromes in seed plants are known to move into nuclei in a red light-dependent manner with or without interacting factors. Here, we show phytochrome relocation to the nuclear region in phytochrome-dependent Adiantum capillus-veneris spore germination by partial spore-irradiation experiments. The nuclear or non-nuclear region of imbibed spores was irradiated with a microbeam of red and/or far-red light and the localization of phytochrome involved in spore germination was estimated from the germination rate. The phytochrome for spore germination existed throughout whole spore under darkness after imbibition, but gradually migrated to the nuclear region following red light irradiation. In- tracellular distribution of PHY-GUS fusion proteins expressed in germinated spores by particle bombardment showed the migration of Acphy2, but not Acphyl, into nucleus in a red light-dependent manner, suggesting that Acphy2 is the photoreceptor for fern spore germination.
文摘The stomatal pores of higher plants enable gaseous exchange into and out of leaves for photosynthesis and evaporation. Stomatal opening is induced by both blue and red lights. It is shown that blue light-induced stomatal opening is mediated by the blue light receptor phototropins (PHOT1 and PHOT2) and cryptochromes (CRY1 and CRY2). However, whether phytochrome B (phyB) is involved in red light regulation of stomatal opening remains largely unclear. Here, we report a positive role for Arabidopsis (Arabidopsis thaliana) phyB in the regulation of red light-induced stomatal opening. The phyB mutant stomata displayed a reduced red light response, whereas stomata of the phyB-overexpressing plants displayed a hypersensitive response to red light. In addition, stomata of the cry1 cry2 phyB, photl phot2 phyB, and cry1 phyA phyB triple mutant plants showed more reduced light response than those of the single or double mutant plants under white light, implying that phyB acts in concert with phyA, CRY, and PHOT in light regulation of stomatal opening. Stomata of phyB cop1 mutant opened less wide than those of the cop1 mutant, and stomata of the pif3 pif4 mutant opened wider than those of the wild-type, indicating that COP1, together with the PIFs (phytochrome interacting factors), may act downstream of PHYB in regulating stomatal opening. Furthermore, quantitative RT-PCR analysis showed that the expression of MYB60 was reduced in the cry1 cry2 and phyA phyB mutants under blue and red lights, respectively, but induced in the CRY1- and phyB-overexpressing plants. These results demonstrate that phyB and CRY might regulate stomatal opening, at least in part, by regulating MYB60 expression.
基金Supported by the Program for New Century Excellent Talents in University(No.NCET-05-0597)the National Natural Science Foundation of China(No.30270258)
文摘We evaluated the effects of red and blue light on the repair of UV-B radiation-induced damage in tetraspores of Chondrus ocellatus Holm. Tetraspores of C. ocellatus were treated with different UV-B radiation levels(0,36,72,108,144 and 180 J/m2),and thereafter subjected to PAR,darkness,or red or blue light during a 2-h repair stage,each day for 48 days. The diameters and cellular contents of cyclobutane pyrimidine dimmers(CPDs),chlorophyll a(Chl a),phycoerythrin,and UV-B-absorbing mycosporinelike amino acids(MAAs) contents of the tetraspores were determined. Our results show that low doses of UV-B radiation(36 and 72 J/m 2) promoted the growth of C. ocellatus; however,increased UV-B radiation gradually reduced the C. ocellatus growth(greater than 72 J/m2). The MAAs(palythine and asterina-330) in C. ocellatus were detected and analyzed by LC/MS. Our results suggest that moderate red light could induce the growth of this alga in aquaculture. In addition,photorepair was inhibited by red light,so there may be some other DNA repair mechanism activated by red light. Blue light promoted the activity of DNA photolyase,greatly improving remediation efficiency. Red and blue lights were found to reduce the capacity of C. ocellatus to form MAAs. Therefore,PAR,red light,and blue light play different roles during the repair processes for damage induced by UV-B radiation.
基金partially supported by US Department of Transportation/Illinois Center for Transportation (No.D7752 2008-04435-04)
文摘Red light running at signalized intersections is a major safety concern in the United States. Statistics show that approximately 45 percent of crashes at intersections caused by red light running re- sult in severe injuries and fatalities, while only approximately 30 percent of all other types of intersec- tion crashes cause injuries or fatalities. Over the past decade, many US cities and counties have de- ployed red light running photo enforcement systems for signalized intersections within their jurisdictions to potentially reduce red light running related crashes. This study proposes an empirical Bayesian ( EB ) before-after analysis method that computes a weighed sum of crashes observed in the field and crashes predicted by safety performance functions (SPFs) to mitigate regression-to-mean biases for analyzing crash reduction effects of red light running enforcement. The analysis explicitly considers red light run- ning related crash types, including head-on, rear-end, angle, tuming, sideswipe in the same direction, and sideswipe in the opposite direction; and crash severity levels classified as fatal, injury, and proper- ty damage only (PDO). A computational study is conducted to examine the effectiveness of the Chica- go program with red light running photo enforcement systems deployed for nearly two hundred signal- ized intersections. It is revealed that the use of red light running photo enforcement on the whole is pos- itive, as demonstrated by reductions in all types of fatal crashes by 4-48 percent, and injury-related an- gle crashes by 1 percent. However, it slightly raises PDO-related angle crashes and moderately increa- ses injury and PDO related rear-end crashes. The safety effectiveness of red light running photo en- forcement is sensitive to intersection location.
文摘Red-light-induced swelling of the protoplasts isolated from hypocotyl of etiolated mung bean (Phaseolus radiatus L.) was observed only when Ca2+ ions were present in the medium. The optimal CaCl2 concentration was 250 μM. Swelling response declined when Ca2+ was supplied into the medium after red light irradiation. The Ca2+-chelator EGTA eliminated the red-light-induced swelling and 45Ca2+ accumulation in the protoplasts. In contrast, A23187, a Ca2+-ionophore, could mimic the effect of red light in darkness. These results indicate that Ca2+ may play a role in light signal transduction. In addition, swelling response was prevented by TFP and CPZ (both are CaM antagonists), implying the involvement of CaM in red-light-induced and Ca2+ -dependent protoplast swelling.
基金the National Natural Science Foundation of China(No.31871725)the Fundamental Research Funds for the Central Universities(No.KYYZ202004)+1 种基金the Zhenjiang Key R&D Plan(No.NY2020021)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,China。
文摘Red,white,blue,green,and yellow lights were applied to investigate their effects on folate accumulation in wheat seedlings.The different lights,especially red light,significantly increased the total folate content.Total folate showed maximum accumulation under 30μmol/(m2·s)of red light,with an increase of 24%compared with the control(darkness).5-Methyltetrahydrofolate(5-CH3-THF)was the dominant folate component,and was significantly increased by red light irradiation.In addition,under red light,the folate content of leaves was higher and more sensitive to light than that of endosperm or roots.Red light up-regulated the expression of guanosine triphosphate(GTP)cyclohydrolase 1(GCH1)and aminodeoxychorismate synthase(ADCS),enhanced the activity of GCH1 and ADCS,and increased the content of precursors of folate synthesis,including pterin and p-aminobenzoic acid(p ABA).Hence,the increased folate accumulation promoted by light could be attributed to the increased content of folate synthesis precursors,the activity of key enzymes,and related gene expression。
基金This work was financially supported by the National Natural Science Foundation of China(Nos.22011540002 and 22131005)Xiaomi Young Scholar Program,the Fundamental Research Funds for the Central Universities,the Advanced Talents Incubation Program of Hebei University,and University of Science and Technology Beijing and Hebei University are gratefully acknowledged.
文摘The development of heterogeneous molecule-based catalysts for red light-mediated photocatalysis is still challenging due to the improper light absorption for most materials and the photoactivity deactivation for solid assembly.Herein,red light photocatalysis with a hydrogen-bonded organic framework(HOF)is established.This HOF,named HOF-66,is formed from the self-assembly of guanine-decorated naphthalenediimide(NDI)molecule through hydrogen-bonded guanine-quadruplex nodes,showing square grid supramolecular layers confirmed by powder X-ray diffraction analysis.In contrast to unsubstituted NDI HOF,introduction of ethylamino groups to NDI core in HOF-66 tunes strong electronic maximum absorption peak to 619 nm,allowing red light photocatalysis of singlet oxygen evolution proved by 1,3-diphenylisobenzofuran degradation and electron spin resonance determination.Particularly,under the same conditions,the sulfide oxidation rate in the presence of HOF-66 was 28 times higher compared to its unsubstituted analogue.This work integrates the molecular design and aggregation effect towards the application of HOFs,opening a new gate for red light photocatalysts.