By means of indirect double immunofluorescent staining, the coordination of PI antigen and perichromonucleolin (PCN), the constituent of nuclear periphery and nucleolus respectively, in the assembly and disassembly of...By means of indirect double immunofluorescent staining, the coordination of PI antigen and perichromonucleolin (PCN), the constituent of nuclear periphery and nucleolus respectively, in the assembly and disassembly of chromosome pellicle during mitosis was studied. It was found that in 3T3 cells, during mitosis PI antigen began to coat the condensing chromosome .surface earlier.than PCN did. However, both of them completed their coating on chromosome at approximately the same stage of mitosis, prometaphase metaphase. The dissociation of PI antigen from chromosome pellicle to participate the formation of nuclear periphery took, place also ahead of that of PCN. At early telophase PI antigen had been extensively involved in the formation of nuclear periphery, while PCN remained in association with the surface of decondensing chromosomes. At late telophase, when PI antigen was localized in an fairly well formed nuclear periphery, PCN was in a stage of forming prenucleolar bodies.展开更多
Challenges still remain in carrying out assembly modeling efficiently in virtual assembly (VA) fields. One of the root causes is the apparent weakness in effective description of assembly knowledge and information. ...Challenges still remain in carrying out assembly modeling efficiently in virtual assembly (VA) fields. One of the root causes is the apparent weakness in effective description of assembly knowledge and information. The assembly modeling, disassembly modeling, assembly interference inspection, assembly sequence planning and optimization, and assembly simulation display for key techniques is studied theoretically in this paper. An example of product assembly modeling is provided to illustrate the effectiveness of the proposed approach. On the basis of re- search, using assembly simulation techniques and multimedia techniques to finish structure design in linkage design of a large size wind-drive generator. The application of the modeling method has shortened the lead time dramatically.展开更多
Tau, a primary component of microtubule-associated protein, promotes microtubule assembly and/or disassembly and maintains the stability of the microtubule structure. Although the importance of tau in neurodegenerativ...Tau, a primary component of microtubule-associated protein, promotes microtubule assembly and/or disassembly and maintains the stability of the microtubule structure. Although the importance of tau in neurodegenerative diseases has been well demonstrated, wheth- er tau is involved in peripheral nerve regeneration remains unknown. In the current study, we obtained sciatic nerve tissue from adult rats 0, 1, 4, 7, and 14 days after sciatic nerve crush and examined tau mRNA and protein expression levels and the location of tau in the sciatic nerve following peripheral nerve injury. The results from our quantitative reverse transcription polymerase chain reaction analysis showed that compared with the uninjured control sciatic nerve, mRNA expression levels for both tau and tau tubulin kinase 1, a serine/ threonine kinase that regulates tau phosphorylation, were decreased following peripheral nerve injury. Our western blot assay results suggested that the protein expression levels of tau and phosphorylated tau initially decreased 1 day post nerve injury but then gradually increased. The results of our immunohistochemical labeling showed that the location of tau protein was not altered by nerve injury. Thus, these results showed that the expression of tau was changed following sciatic nerve crush, suggesting that tau may be involved in periph- eral nerve repair and regeneration.展开更多
Sonodynamic therapy (SDT) is one of the promising strategies for tumor therapy, but its application is usually hindered by fast clearance in blood-circulation, abnormal tumor microenvironment, and inefficient generati...Sonodynamic therapy (SDT) is one of the promising strategies for tumor therapy, but its application is usually hindered by fast clearance in blood-circulation, abnormal tumor microenvironment, and inefficient generation of reactive oxygen species. To solve these problems, we proposed an on-demand assembly-disassembly strategy, where the assembly is favorable for longer-blood-circulation and then the disassembly in tumor is favorable for boosting SDT. Hematoporphyrin monomethyl ether (HMME) as the model of organic sonosensitizers were conjugated with hyaluronic acid (HA). Then HA-HMME was mixed with catalase (CAT) and assembled into polymeric nanoparticles (CAT@HA-HMME NPs) with size of ~80 nm. CAT@HA-HMME NPs exhibit good biocompatibility and a longer blood half-time (t1/2 = 4.17 h) which is obviously longer than that (~0.82 h) of HMME molecules. After HA receptor-mediated endocytosis of cancer cells, CAT@HA-HMME NPs can be cleaved by endogenous hyaluronidase, resulting in the on-demand disassembly in tumor to release HA-HMME molecules and CAT. The CAT catalyzes the endogenous H_(2)O_(2) into O_(2) to relieve the hypoxic microenvironment, and the released HA-HMME exhibits a higher ROS generation ability, greatly boosting SDT for the inhibition of tumor growth. Therefore, the on-demand assembly-disassembly strategy may provide some insight in the design and development of nanoagents for tumor therapy.展开更多
Due to the ability to combine the separately unique characteristics of assembled and disassembled nanoparticles(NPs), the stimuli-responsive self-assembly of NPs has attracted considerable interest in functional mater...Due to the ability to combine the separately unique characteristics of assembled and disassembled nanoparticles(NPs), the stimuli-responsive self-assembly of NPs has attracted considerable interest in functional material applications especially biomaterials. Here we demonstrate a facile and versatile approach to regulate the self-assembly process and transition pH of Au NPs by fine-tuning the co-modified pH-responsive compounds and poly(ethylene glycol)(PEG). Importantly the transition pH(ΔpH=0.4) of the system can be predetermined in the range of 8.2–5.8(assembled to disassembled) and 8.2–4.2(disassembled to assembled), which ideally covers the pH of normal tissue, tumor tissue milieu and organelles. The results of fluorescence imaging, Raman spectroscopy and photothermal conversion of the stimuli-responsive Au NPs shows the potential application for tumor specificity theranostics. In a nutshell this study provides a useful toolkit to design tumor-activatable self-assembled NPs with high specificity and universality.展开更多
文摘By means of indirect double immunofluorescent staining, the coordination of PI antigen and perichromonucleolin (PCN), the constituent of nuclear periphery and nucleolus respectively, in the assembly and disassembly of chromosome pellicle during mitosis was studied. It was found that in 3T3 cells, during mitosis PI antigen began to coat the condensing chromosome .surface earlier.than PCN did. However, both of them completed their coating on chromosome at approximately the same stage of mitosis, prometaphase metaphase. The dissociation of PI antigen from chromosome pellicle to participate the formation of nuclear periphery took, place also ahead of that of PCN. At early telophase PI antigen had been extensively involved in the formation of nuclear periphery, while PCN remained in association with the surface of decondensing chromosomes. At late telophase, when PI antigen was localized in an fairly well formed nuclear periphery, PCN was in a stage of forming prenucleolar bodies.
基金supported by the Foundation of Jiangsu Province for Talented Personnel and the Self-determined Research Program of Jiangnan University
文摘Challenges still remain in carrying out assembly modeling efficiently in virtual assembly (VA) fields. One of the root causes is the apparent weakness in effective description of assembly knowledge and information. The assembly modeling, disassembly modeling, assembly interference inspection, assembly sequence planning and optimization, and assembly simulation display for key techniques is studied theoretically in this paper. An example of product assembly modeling is provided to illustrate the effectiveness of the proposed approach. On the basis of re- search, using assembly simulation techniques and multimedia techniques to finish structure design in linkage design of a large size wind-drive generator. The application of the modeling method has shortened the lead time dramatically.
基金supported by the National Natural Science Foundation of China,No.81130080,31300942the National Key Basic Research Program of China(973 Program)+5 种基金No.2014CB542202the Natural Science Foundation of Jiangsu Province,China,No.BK20150409the Natural Science Foundation of Jiangsu Higher Education Institutions of China,No.15KJB180013the Scientific Research Foundation of Nantong University of China,No.14R29the Natural Science Foundation of Nantong City in China,No.MS12015043the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘Tau, a primary component of microtubule-associated protein, promotes microtubule assembly and/or disassembly and maintains the stability of the microtubule structure. Although the importance of tau in neurodegenerative diseases has been well demonstrated, wheth- er tau is involved in peripheral nerve regeneration remains unknown. In the current study, we obtained sciatic nerve tissue from adult rats 0, 1, 4, 7, and 14 days after sciatic nerve crush and examined tau mRNA and protein expression levels and the location of tau in the sciatic nerve following peripheral nerve injury. The results from our quantitative reverse transcription polymerase chain reaction analysis showed that compared with the uninjured control sciatic nerve, mRNA expression levels for both tau and tau tubulin kinase 1, a serine/ threonine kinase that regulates tau phosphorylation, were decreased following peripheral nerve injury. Our western blot assay results suggested that the protein expression levels of tau and phosphorylated tau initially decreased 1 day post nerve injury but then gradually increased. The results of our immunohistochemical labeling showed that the location of tau protein was not altered by nerve injury. Thus, these results showed that the expression of tau was changed following sciatic nerve crush, suggesting that tau may be involved in periph- eral nerve repair and regeneration.
基金the National Natural Science Foundation of China(51972056,52002061,52161145406)Shanghai Shuguang Program(18SG29)+2 种基金Program of Shanghai Academic/Technology Research Leader(20XD1420200)Major Science and Technology Innovation Project of Shandong Province(2019JZZY011108)Graduate Student Innovation Fund of Donghua University(CUSF-DH-D-2021010).
文摘Sonodynamic therapy (SDT) is one of the promising strategies for tumor therapy, but its application is usually hindered by fast clearance in blood-circulation, abnormal tumor microenvironment, and inefficient generation of reactive oxygen species. To solve these problems, we proposed an on-demand assembly-disassembly strategy, where the assembly is favorable for longer-blood-circulation and then the disassembly in tumor is favorable for boosting SDT. Hematoporphyrin monomethyl ether (HMME) as the model of organic sonosensitizers were conjugated with hyaluronic acid (HA). Then HA-HMME was mixed with catalase (CAT) and assembled into polymeric nanoparticles (CAT@HA-HMME NPs) with size of ~80 nm. CAT@HA-HMME NPs exhibit good biocompatibility and a longer blood half-time (t1/2 = 4.17 h) which is obviously longer than that (~0.82 h) of HMME molecules. After HA receptor-mediated endocytosis of cancer cells, CAT@HA-HMME NPs can be cleaved by endogenous hyaluronidase, resulting in the on-demand disassembly in tumor to release HA-HMME molecules and CAT. The CAT catalyzes the endogenous H_(2)O_(2) into O_(2) to relieve the hypoxic microenvironment, and the released HA-HMME exhibits a higher ROS generation ability, greatly boosting SDT for the inhibition of tumor growth. Therefore, the on-demand assembly-disassembly strategy may provide some insight in the design and development of nanoagents for tumor therapy.
基金supported by the National Natural Science Foundation of China(51433004,51773096)the Natural Science Foundation of Tianjin(17JCZDJC33500)and PCSIRT(IRT1257)
文摘Due to the ability to combine the separately unique characteristics of assembled and disassembled nanoparticles(NPs), the stimuli-responsive self-assembly of NPs has attracted considerable interest in functional material applications especially biomaterials. Here we demonstrate a facile and versatile approach to regulate the self-assembly process and transition pH of Au NPs by fine-tuning the co-modified pH-responsive compounds and poly(ethylene glycol)(PEG). Importantly the transition pH(ΔpH=0.4) of the system can be predetermined in the range of 8.2–5.8(assembled to disassembled) and 8.2–4.2(disassembled to assembled), which ideally covers the pH of normal tissue, tumor tissue milieu and organelles. The results of fluorescence imaging, Raman spectroscopy and photothermal conversion of the stimuli-responsive Au NPs shows the potential application for tumor specificity theranostics. In a nutshell this study provides a useful toolkit to design tumor-activatable self-assembled NPs with high specificity and universality.