期刊文献+
共找到179,217篇文章
< 1 2 250 >
每页显示 20 50 100
A bifunctional perovskite oxide catalyst:The triggered oxygen reduction/evolution electrocatalysis by moderated Mn-Ni co-doping 被引量:3
1
作者 Jia Sun Lei Du +7 位作者 Baoyu Sun Guokang Han Yulin Ma Jiajun Wang Hua Huo Pengjian Zuo Chunyu Du Geping Yin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期217-224,共8页
ABO_(3)-type perovskite oxides(e.g.,LaCoO_(3))with flexible and adjustable A-and B-sites are ideal model catalysts to unravel the relationship between the electronic structure and electrocatalytic activity(e.g.,oxygen... ABO_(3)-type perovskite oxides(e.g.,LaCoO_(3))with flexible and adjustable A-and B-sites are ideal model catalysts to unravel the relationship between the electronic structure and electrocatalytic activity(e.g.,oxygen reduction/evolution reactions,ORR/OER).It has been well understood in our recent work that the secondary metal dopant at B-site(e.g.,Mn in LaMn_(x)Co_(1-x)O_(3))can regulate the electronic structure and improve the ORR/OER activity.In this work,the Mn-Ni pairs are employed as the dual dopant in LaMn_(x)Ni_(y)Co_(z)O_(3)(x+y+z=1)catalysts toward bifunctional ORR and OER.The structure-property relationships between the triple metal B-site(Mn,Ni and Co)and the electrochemical performance are particularly investigated.Compared to the individual Mn doping(e.g.,LaMnCoO3(Mn:Co=1:3)catalyst),the dual Mn-Ni doping significantly improves the ORR mass activity@0.8 V by 1.54 times;meanwhile,the OER overpotential@10 mA cm^(-2) is reduced from 420 to 370 mV,and the OER current density at 1.55 V is increased by 2.43 times.Reasonably,the potential gap between EDRR@-1 mA cm^(-2) and EDER@10 mA cm^(-2) is achieved as only 0.76 V by using the optimal LaMn_(x)Ni_(y)Co_(z)O_(3)(x:y:z=1:2:3)catalyst.It is revealed that the dual Mn-Ni dopant efficiently optimizes electron structures of the LaMnNiCoO_(3)(1:2:3)catalyst,which not only decreases the e_(g) orbital electron number,but also modulates the O 2 p-band closer to the Femi level,accounting for the enhanced bifunctional activity. 展开更多
关键词 Perovskite oxide Bifunctional catalyst Mn-Ni dopant Oxygen reduction reaction Oxygen evolution reaction
下载PDF
Oxidation Evolution and Activity Origin of N-Doped Carbon in the Oxygen Reduction Reaction
2
作者 Jiaqi Wu Chuanqi Cheng +2 位作者 Shanshan Lu Bin Zhang Yanmei Shi 《Transactions of Tianjin University》 EI CAS 2024年第4期369-379,共11页
N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher ... N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher than the theoretical oxida-tion potential of carbon,possibly leading to the oxidation of carbon materials.Consequently,the infl uence of the structural oxidation evolution on ORR performance and the real active sites are not clear.In this study,we discover a two-step oxida-tion process of N-doped carbon during the ORR.The fi rst oxidation process is caused by the applied potential and bubbling oxygen during the ORR,leading to the oxidative dissolution of N and the formation of abundant oxygen-containing functional groups.This oxidation process also converts the reaction path from the four-electron(4e)ORR to the two-electron(2e)ORR.Subsequently,the enhanced 2e ORR generates oxidative H_(2)O_(2),which initiates the second stage of oxidation to some newly formed oxygen-containing functional groups,such as quinones to dicarboxyls,further diversifying the oxygen-containing functional groups and making carboxyl groups as the dominant species.We also reveal the synergistic eff ect of multiple oxygen-containing functional groups by providing additional opportunities to access active sites with optimized adsorption of OOH*,thus leading to high effi ciency and durability in electrocatalytic H_(2)O_(2) production. 展开更多
关键词 Oxygen reduction reaction N-doped carbon Reaction path Structural evolution Oxidation in reduction
下载PDF
Central environmental protection inspection and carbon emission reduction: A tripartite evolutionary game model from the perspective of carbon neutrality
3
作者 Zhen-Hua Zhang Dan Ling +2 位作者 Qin-Xin Yang Yan-Chao Feng Jing Xiu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2139-2153,共15页
Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore ... Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore the impact of the central environmental protection inspection(CEPI)on driving carbon emission reduction,and to study what factors influence the strategic choices of each party and how they interact with each other.The research results suggest that local governments and manufacturing enterprises would choose strategies that are beneficial to carbon reduction when CEPI increases.When the initial willingness of all parties increases 20%,50%—80%,the time spent for the whole system to achieve stability decreases from 100%,60%—30%.The evolutionary result of“thorough inspection,regulation implementation,low-carbon management”is the best strategy for the tripartite evolutionary game.Moreover,the smaller the cost and the larger the benefit,the greater the likelihood of the three-party game stability strategy appears.This study has important guiding significance for other developing countries to promote carbon emission reduction by environmental policy. 展开更多
关键词 Central environmental protection INSPECTION Local government Manufacturing enterprise Tripartite evolutionary game Carbon emission reduction
下载PDF
MOF-related electrocatalysts for sulfur reduction/evolution reactions:Composition modulation,structure design,and mechanism research 被引量:1
4
作者 Zhengqing Ye Ying Jiang +2 位作者 Li Li Feng Wu Renjie Chen 《eScience》 2023年第5期49-68,共20页
The electrocatalytic sulfur reduction reaction(SRR)and sulfur evolution reaction(SER),two fundamental multistep conversion processes in lithium–sulfur batteries(LSBs),are root-cause solutions to overcome sluggish red... The electrocatalytic sulfur reduction reaction(SRR)and sulfur evolution reaction(SER),two fundamental multistep conversion processes in lithium–sulfur batteries(LSBs),are root-cause solutions to overcome sluggish redox kinetics and the polysulfide shuttling effect.Metal–organic framework(MOF)electrocatalysts have emerged as good platforms for catalyzing SRR and SER,but their catalytic performance is challenged by poor electrical conductivity and limited chemical stability.Functionalized MOFs and their hybrids may be beneficial for stabilizing and improving the desired catalytic properties to achieve high-performance LSBs.This review provides a detailed overview of engineering principles for improving the activity,selectivity,and stability of MOFrelated electrocatalysts via composition modulation and nanostructure design as well as hybrid assembly.It presents and discusses the various advances achieved by using in situ characterization techniques,simulations,and theoretical calculations to reveal the dynamic evolution of MOF-related electrocatalysts,enabling an in-depth understanding of the catalysis mechanism at the molecular/atomic level.Lastly,prospects and possible research directions for MOF-related sulfur electrocatalysts are proposed. 展开更多
关键词 MOF-related electrocatalysts Sulfur reduction/evolution Composition modulation Structure design Mechanism research Lithium-sulfur batteries
原文传递
Effect of temperature on suspension magnetization roasting of hematite using biomass waste as reductant:A perspective of gas evolution
5
作者 CAO Yue SUN Yong-sheng +2 位作者 HAN Yue-xin GAO Peng LI Yan-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1870-1887,共18页
The magnetization reduction of hematite using biomass waste can effectively utilize waste and reduce CO_(2) emission to achieve the goals of carbon peaking and carbon neutrality.The effects of temperatures on suspensi... The magnetization reduction of hematite using biomass waste can effectively utilize waste and reduce CO_(2) emission to achieve the goals of carbon peaking and carbon neutrality.The effects of temperatures on suspension magnetization roasting of hematite using biomass waste for evolved gases have been investigated using TG-FTIR,Py-GC/MS and gas composition analyzer.The mixture reduction process is divided into four stages.In the temperature range of 200-450℃ for mixture,the release of CO_(2),acids,and ketones is dominated in gases products.The yield and concentration of small molecules reducing gases increase when the temperature increases from 450 to 900℃.At 700℃,the volume concentrations of CO,H_(2) and CH_(4) peak at 8.91%,8.90% and 4.91%,respectively.During the suspension magnetization roasting process,an optimal iron concentrate with an iron grade of 70.86%,a recovery of 98.66% and a magnetic conversion of 45.70% is obtained at 700℃.Therefore,the magnetization reduction could react greatly in the temperature range of 600 to 700℃ owing to the suitable reducing gases.This study shows a detail gaseous evolution of roasting temperature and provides a new insight for studying the reduction process of hematite using biomass waste. 展开更多
关键词 suspension magnetization roasting biomass pyrolysis gases evolution reduction behavior
下载PDF
Metal organic polymers with dual catalytic sites for oxygen reduction and oxygen evolution reactions 被引量:3
6
作者 Sijia Liu Minghao Liu +4 位作者 Xuewen Li Shuai Yang Qiyang Miao Qing Xu Gaofeng Zeng 《Carbon Energy》 SCIE CSCD 2023年第5期127-137,共11页
Metal-organic frameworks and covalent organic frameworks have been widely employed in electrochemical catalysis owing to their designable skeletons,controllable porosities,and well-defined catalytic centers.However,th... Metal-organic frameworks and covalent organic frameworks have been widely employed in electrochemical catalysis owing to their designable skeletons,controllable porosities,and well-defined catalytic centers.However,the poor chemical stability and low electron conductivity limited their activity,and single-functional sites in these frameworks hindered them to show multifunctional roles in catalytic systems.Herein,we have constructed novel metal organic polymers(Co-HAT-CN and Ni-HAT-CN)with dual catalytic centers(metal-N_(4) and metal-N_(2))to catalyze oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).By using different metal centers,the catalytic activity and selectivity were well-tuned.Among them,Co-HAT-CN catalyzed the ORR in a 4e^(-)pathway,with a half-wave potential of 0.8 V versus RHE,while the Ni-HAT-CN catalyze ORR in a 2e^(-)pathway with H_(2)O_(2) selectivity over 90%.Moreover,the Co-HAT-CN delivered an overpotential of 350 mV at 10 mA cm^(-2) with a corresponding Tafel slope of 24 mV dec^(-1) for OER in a 1.0 M KOH aqueous solution.The experimental results revealed that the activities toward ORR were due to the M-N_(4) sites in the frameworks,and both M-N_(4) and M-N_(2) sites contributed to the OER.This work gives us a new platform to construct bifunctional catalysts. 展开更多
关键词 covalent organic frameworks metal organic polymers oxygen evolution reaction oxygen reduction reaction single atom catalysts
下载PDF
Co-Ru alloy nanoparticles decorated onto two-dimensional nitrogen doped carbon nanosheets towards hydrogen/oxygen evolution reaction and oxygen reduction reaction 被引量:2
7
作者 Huizhen Wang Pengfei Yang +9 位作者 Xiaoyuan Sun Weiping Xiao Xinping Wang Minge Tian Guangrui Xu Zhenjiang Li Yubing Zhang Fusheng Liu Lei Wang Zexing Wu 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期286-294,I0008,共10页
Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of re... Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of renewable energy-related applications.Herein,Co-Ru based compounds supported on nitrogen doped two-dimensional(2D)carbon nanosheets(NCN)are developed via one step pyrolysis procedure(Co-Ru/NCN)for HER/ORR and following low-temperature oxidation process(Co-Ru@RuO_(x)/NCN)for OER.The specific 2D morphology guarantees abundant active sites exposure.Furthermore,the synergistic effects arising from the interaction between Co and Ru are crucial in enhancing the catalytic performance.Thus,the resulting Co-Ru/NCN shows remarkable electrocatalytic performance for HER(70 mV at 10 mA cm^(-2))in 1 M KOH and ORR(half-wave potential E_(1/2)=0.81 V)in 0.1 M KOH.Especially,the Co-Ru@RuO_(x)/NCN obtained by oxidation exhibits splendid OER performance in both acid(230 mV at 10 mA cm^(-2))and alkaline media(270 mV at 10 mA cm^(-2))coupled with excellent stability.Consequently,the fabricated two-electrode water-splitting device exhibits excellent performance in both acidic and alkaline environments.This research provides a promising avenue for the advancement of multifunctional nanomaterials. 展开更多
关键词 ELECTROCATALYST 2D Carbon nanosheet Hydrogen/oxygen evolution reaction Oxygen reduction reaction WATER-SPLITTING
下载PDF
A cobalt(Ⅱ)porphyrin with a tethered imidazole for efficient oxygen reduction and evolution electrocatalysis 被引量:1
8
作者 Xialiang Li Ping Li +10 位作者 Jindou Yang Lisi Xie Ni Wang Haitao Lei Chaochao Zhang Wei Zhang Yong-Min Lee Weiqiang Zhang Shunichi Fukuzumi Wonwoo Nam Rui Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期617-621,I0015,共6页
Electrocatalytic oxygen reduction and evolution reactions are involved in new energy conversion and storage technologies,such as various fuel cells and metal-air batteries and also water splitting devices[1,2].However... Electrocatalytic oxygen reduction and evolution reactions are involved in new energy conversion and storage technologies,such as various fuel cells and metal-air batteries and also water splitting devices[1,2].However,both reactions are very slow in kinetics,and thus catalysts are required[3,4]. 展开更多
关键词 Molecular electrocatalysis Cobalt porphyrin Axial ligand effect Oxygen reduction reaction Oxygen evolution reaction
下载PDF
Electrochemical partial reduction of Ni(OH)_(2) to Ni(OH)_(2)/Ni via coupled oxidation of an interfacing NiAl intermetallic compound for robust hydrogen evolution 被引量:1
9
作者 Young Hwa Yun Kwangsoo Kim +8 位作者 Changsoo Lee Byeong-Seon An Ji Hee Kwon Sechan Lee MinJoong Kim Jongsu Seo Jong Hyeok Park Byung-Hyun Kim Hyun-Seok Cho 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期560-571,I0012,共13页
Ni-based porous electrocatalysts have been widely used in the hydrogen evolution reaction(HER)in alkaline water electrolysis,and the catalysts are produced by selective leaching of Al from Ni-Al alloys.It is well know... Ni-based porous electrocatalysts have been widely used in the hydrogen evolution reaction(HER)in alkaline water electrolysis,and the catalysts are produced by selective leaching of Al from Ni-Al alloys.It is well known that chemical leaching of Ni-Al intermetallic compound(IMC)generates a high surface area in Ni(OH)_(2).However,the Ni(OH)_(2) produced by leaching the Ni-Al intermetallic compound retards the hydrogen evolution reaction,which is attributed to its weak hydrogen adsorption energy.In this study,we controlled the chemical state of Ni using plasma vapor deposition(PVD)followed by heat treatment,selective Al leaching,and electrochemical reduction.X-ray diffraction(XRD),scanning microscopy(SEM),transmission electron microscopy(TEM),and energy-dispersive X-ray spectroscopy(EDS)were used to confirm the phase evolution of the electrocatalysts during fabrication.We reveal that the heat-treated Ni-Al alloy with a thick Ni2Al3surface layer underwent selective Al leaching and produced biphasic interfaces comprising Ni(OH)_(2) and NiAl IMCs at the edges of the grains in the outermost surface layer.Coupled oxidation of the interfacing NiAl IMCs facilitated the partial reduction of Ni(OH)_(2) to Ni(OH)_(2)/Ni in the grains during electrochemical reduction,as confirmed by X-ray photoelectron spectroscopy(XPS).An electrocatalyst containing partially reduced Ni(OH)_(2)/Ni exhibited an overpotential of 54 mV at 10 mA/cm^(2) in a half-cell measurement,and a cell voltage of 1.675 V at 0.4 A/cm2for single-cell operation.A combined experimental and theoretical study(density functional theory calculations)revealed that the superior HER activity was attributed to the presence of partially reduced metallic Ni with various defects and residual Al,which facilitated water adsorption,dissociation,and finally hydrogen evolution. 展开更多
关键词 Raney nickel HERChemical leaching Intrinsic activity Partial reduction
下载PDF
Preparation of Co/CoOx Derived from a Lowtemperature Etching of ZIF-67 for Oxygen Reduction and Oxygen Evolution Catalytic Reaction
10
作者 TAN Shifeng TU Wenmao +1 位作者 PAN Hongfei ZHANG Haining 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1255-1261,共7页
Catalysts consisting of Zeolite imidazolyl ester skeleton-67(ZIF-67)and graphene oxide(GO)were fabricated through a solvothermal method,followed by etching ZIF-67 with oxygen-rich functional groups on GO in a reductio... Catalysts consisting of Zeolite imidazolyl ester skeleton-67(ZIF-67)and graphene oxide(GO)were fabricated through a solvothermal method,followed by etching ZIF-67 with oxygen-rich functional groups on GO in a reduction atmosphere at 400℃.During this process,an open type of cobalt metal center was formed by the partial vaporization and oxidation of ZIF-67,further reducing to Co and partially combining with oxygen species to amorphous CoOx.Benefiting from the rich functional N,and metal/oxides active centers derived from the calcination process,the synthesized Co/CoOx@NSG-400 showed a low OER overpotential of 10 mA·cm^(-2) at 298 mV,and an ORR half-wave potential of 0.8 V,which demonstrated its excellent bifunctional catalytic activity.Such a controllable calcination strategy with high yields could be expected to pave the way for synthesizing low-cost and efficient bifunctional electrocatalysts. 展开更多
关键词 oxygen evolution reaction oxygen reduction reaction bifunctional electrocatalyst ZIF-67
下载PDF
Study on Strength Reduction Law and Meso-Crack Evolution of Lower Layered Cemented Tailings Backfill
11
作者 Huazhe Jiao Wenxiang Zhang +3 位作者 Yunfei Wang Xinming Chen Liuhua Yang Yangyang Rong 《Journal of Renewable Materials》 SCIE EI 2023年第3期1513-1529,共17页
The green disposal of tailings solid waste is a problem to be solved in mine production.Cemented tailings filling stoping method can realize the dual goals of solid waste resource utilization and mined-out area reduct... The green disposal of tailings solid waste is a problem to be solved in mine production.Cemented tailings filling stoping method can realize the dual goals of solid waste resource utilization and mined-out area reduction.However,the volume of the mined-out area of the open-pit method is larger than the filling capacity,resulting in the complex stratification of the underground backfill,and the strength of the backfill cannot meet the requirements.In this paper,according to the delamination situation,the specimens of horizontal and inclination angle layered cemented tailings backfill(LCTB)is made for a uniaxial compression test,and the failure process of delamination backfill is reduced by PFC.The results show that the corresponding reduction factorφof horizontal LCTB is 0.560–0.932,and the correspondingφvalue of inclination angle LCTB is 0.338–0.772.The failure mode of backfill in different layers is mainly manifested as a tensile failure.The PFC numerical simulation results are consistent with laboratory test results,which verifies the correctness of backfill failure.The research results provide a reliable theoretical basis for the strength design of backfill in goaf,which is of great significance for solid waste utilization and environmental protection. 展开更多
关键词 Solid wastes recycling LCTB uniaxial compression strength reduction granular flow
下载PDF
Nanocarbon-based metal-free and non-precious metal bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions 被引量:4
12
作者 Yansong Zhu Bingsen Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期610-628,共19页
The oxygen reduction/evolution reactions(ORR/OER) are a key electrode process in the development of electrochemical energy conversion and storage devices,such as metal-air batteries and reversible fuel cells.The searc... The oxygen reduction/evolution reactions(ORR/OER) are a key electrode process in the development of electrochemical energy conversion and storage devices,such as metal-air batteries and reversible fuel cells.The search for low-cost high-performance nanocarbon-based metal-free and non-precious metal bifunctional electrocatalysts for ORR/OER alternatives to the widely-used noble metal-based catalysts is a research focus.This review aims to outline the opportunities and available options for these nanocarbon-based bifunctional electrocatalysts.Through discussion of some current scientific issues,we summarize the development and breakthroughs of these electrocatalysts.Then we provide our perspectives on these issues and suggestions for some areas in the further work.We hope that this review can improve the interest in nanocarbon-based metal-free and non-precious metal bifunctional electrocatalysts for ORR/OER. 展开更多
关键词 Nanocarbon-based Oxygen reduction/evolution Bifunctional electrocatalyst METAL-FREE Non-precious metal
下载PDF
Oxygen‑Coordinated Single Mn Sites for Efficient Electrocatalytic Nitrate Reduction to Ammonia 被引量:2
13
作者 Shengbo Zhang Yuankang Zha +8 位作者 Yixing Ye Ke Li Yue Lin Lirong Zheng Guozhong Wang Yunxia Zhang Huajie Yin Tongfei Shi Haimin Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期147-159,共13页
Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites... Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites. 展开更多
关键词 Atomically dispersed Oxygen coordination Nitrate reduction reaction In situ spectroscopic studies Hydrogen evolution reaction
下载PDF
Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction 被引量:2
14
作者 Fengshun Wang Lingbin Xie +7 位作者 Ning Sun Ting Zhi Mengyang Zhang Yang Liu Zhongzhong Luo Lanhua Yi Qiang Zhao Longlu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期287-311,共25页
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year... Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst. 展开更多
关键词 Deformable catalytic material Micro-nanostructures evolution Mechanical flexibility Hydrogen evolution reaction
下载PDF
Strong synergy between physical and chemical properties:Insight into optimization of atomically dispersed oxygen reduction catalysts 被引量:4
15
作者 Yifan Zhang Linsheng Liu +4 位作者 Yuxuan Li Xueqin Mu Shichun Mu Suli Liu Zhihui Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期36-49,共14页
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz... Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered. 展开更多
关键词 Atomically dispersed catalysts Coordination environment Electronic orbitals Inter-site distance effect Oxygen reduction reaction
下载PDF
Cu-Based Materials for Enhanced C_(2+) Product Selectivity in Photo-/Electro-Catalytic CO_(2) Reduction: Challenges and Prospects 被引量:1
16
作者 Baker Rhimi Min Zhou +2 位作者 Zaoxue Yan Xiaoyan Cai Zhifeng Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期25-66,共42页
Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for ca... Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO_(2), Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C_(2+) compounds through C–C coupling process. Herein, the basic principles of photocatalytic CO_(2) reduction reactions(PCO_(2)RR) and electrocatalytic CO_(2) reduction reaction(ECO_(2)RR) and the pathways for the generation C_(2+) products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO_(2)RR and ECO_(2)RR is emphasized. Through a review of recent studies on PCO_(2)RR and ECO_(2)RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C_(2+) products. Finally, the opportunities and challenges associated with Cu-based materials in the CO_(2) catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO_(2) reduction processes in the future. 展开更多
关键词 Photocatalytic CO_(2)reduction Cu-based materials Electrocatalytic CO_(2)reduction
下载PDF
Mg/MgO interfaces as efficient hydrogen evolution cathodes causing accelerated corrosion of additive manufactured Mg alloys:A DFT analysis 被引量:1
17
作者 Man-Fai Ng Kai Xiang Kuah +1 位作者 Teck Leong Tan Daniel John Blackwood 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期110-119,共10页
The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide incl... The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide inclusions.Scanning Kelvin Probe Force Microscopy demonstrated that MgO inclusions could act as cathodes for Mg corrosion,but their low conductivity likely precludes this.However,the density of state calculations through density functional theory using hybrid HSE06 functional revealed overlapping electronic states at the Mg/MgO interface,which facilitates electron transfers and participates in redox reactions.Subsequent determination of the hydrogen absorption energy at the Mg/MgO interface reveals it to be an excellent catalytic site,with HER being found to be a factor of 23x more efficient at the interface than on metallic Mg.The results not only support the plausibility of the Mg/MgO interface being an effective cathode to the adjacent anodic Mg matrix during corrosion but also contribute to the understanding of the enhanced cathodic activities observed during the anodic dissolution of magnesium. 展开更多
关键词 MAGNESIUM Magnesium oxide Interface Hydrogen evolution DFT
下载PDF
Precisely Control Relationship between Sulfur Vacancy and H Absorption for Boosting Hydrogen Evolution Reaction 被引量:1
18
作者 Jing Jin Xinyao Wang +4 位作者 Yang Hu Zhuang Zhang Hongbo Liu Jie Yin Pinxian Xi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期14-24,共11页
Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performan... Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performance for hydrogen evolution reaction(HER). With the VS concentration change from 2.4% to 8.5%, the H* adsorption strength on S sites changed and NiS_(2)-VS 5.9% shows the most optimized H* adsorption for HER with an ultralow onset potential(68 m V) and has long-term stability for 100 h in 1 M KOH media. In situ attenuated-total-reflection Fourier transform infrared spectroscopy(ATR-FTIRS) measurements are usually used to monitor the adsorption of intermediates. The S-H* peak of the Ni S_(2)-VS 5.9% appears at a very low voltage, which is favorable for the HER in alkaline media. Density functional theory calculations also demonstrate the Ni S_(2)-VS 5.9% has the optimal |ΔG^(H*)| of 0.17 e V. This work offers a simple and promising pathway to enhance catalytic activity via precise vacancies strategy. 展开更多
关键词 Hydrogen evolution reaction S vacancies NANOSHEET H Adsorption
下载PDF
Numerical Study on Reduction in Aerodynamic Drag and Noise of High-Speed Pantograph 被引量:1
19
作者 Deng Qin Xing Du +1 位作者 Tian Li Jiye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2155-2173,共19页
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t... Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise. 展开更多
关键词 High-speed pantograph aerodynamic drag aerodynamic noise reduction optimizing
下载PDF
Valence electronic engineering of superhydrophilic Dy-evoked Ni-MOF outperforming RuO_(2) for highly efficient electrocatalytic oxygen evolution 被引量:1
20
作者 Zhiyang Huang Miao Liao +6 位作者 Shifan Zhang Lixia Wang Mingcheng Gao Zuyang Luo Tayirjan Taylor Isimjan Bao Wang Xiulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期244-252,I0007,共10页
Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy ... Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts. 展开更多
关键词 Dy@Ni-MOF Dy incorporation Electronic interaction SUPERHYDROPHILICITY Oxygen evolution reaction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部