The reentry trajectory planning for hypersonic vehicles is critical and challenging in the presence of numerous nonlinear equations of motion and path constraints, as well as guaranteed satisfaction of accuracy in mee...The reentry trajectory planning for hypersonic vehicles is critical and challenging in the presence of numerous nonlinear equations of motion and path constraints, as well as guaranteed satisfaction of accuracy in meeting all the specified boundary conditions. In the last ten years, many researchers have investigated various strategies to generate a feasible or optimal constrained reentry trajectory for hypersonic vehicles. This paper briefly reviews the new research efforts to promote the capability of reentry trajectory planning. The progress of the onboard reentry trajectory planning, reentry trajectory optimization, and landing footprint is summarized. The main challenges of reentry trajectory planning for hypersonic vehicles are analyzed, focusing on the rapid reentry trajectory optimization, complex geographic constraints, and coop- erative strategies.展开更多
A novel high-order sliding mode control strategy is proposed for the attitude control problem of reentry vehicles in the presence of parametric uncertainties and external disturbances, which results in the robust and ...A novel high-order sliding mode control strategy is proposed for the attitude control problem of reentry vehicles in the presence of parametric uncertainties and external disturbances, which results in the robust and accurate tracking of the aerodynamic angle commands with the finite time convergence. The proposed control strategy is developed on the basis of integral sliding mode philosophy, which combines conventional sliding mode control and a linear quadratic regulator over a finite time interval with a free-final-state and allows the finite-time establishment of a high-order sliding mode. Firstly, a second-order sliding mode attitude controller is designed in the proposed high-order siding mode control framework. Then, to address the control chattering problem, a virtual control is introduced in the control design and hence a third-order sliding mode attitude controller is developed, leading to the chattering reduction as well as the control accuracy improvement. Finally, simulation examples are given to illustrate the effectiveness of the theoretical results.展开更多
Accurate aerodynamic heating prediction is of great significance to current manned space flight and deep space exploration missions.The temperature in the shock layer surrounding the reentry vehicle can reach up to 10...Accurate aerodynamic heating prediction is of great significance to current manned space flight and deep space exploration missions.The temperature in the shock layer surrounding the reentry vehicle can reach up to 10,000 K and result in remarkable thermochemical nonequilibrium,as well as considerable radiative heat transfer.In general,high-temperature flow simulations coupled with thermal radiation require appropriate numerical schemes and physical models.In this paper,the equations governing hypersonic nonequilibrium flow,based on a three-temperature model combined with a thermal radiation solving approach,are used to investigate the radiation effects in the reentry shock layer.An axisymmetric spherical case shows that coupling the flow-field simulation with radiation has a scarce influence on the convective heating prediction,but has some impact on the radiative heating calculation.In particular,for the Apollo capsule reentry,both the absorption coefficient and incident radiation are remarkable inside the shock layer.The radiative heating maximum reaches nearly 38%of that of the convective heating making a considerable contribution to the total aerodynamic heating.These results indicate that in the hypersonic regime,in order to account for the total heating,it is necessary to simulate the high-temperature thermochemical nonequilibrium flows coupled with thermal radiation.展开更多
To rapidly generate a reentry trajectory for hypersonic vehicle satisfying waypoint and no-fly zone constraints, a novel optimization method, which combines the improved particle swarm optimization (PSO) algorithm w...To rapidly generate a reentry trajectory for hypersonic vehicle satisfying waypoint and no-fly zone constraints, a novel optimization method, which combines the improved particle swarm optimization (PSO) algorithm with the improved Gauss pseudospectral method (GPM), is proposed. The improved PSO algorithm is used to generate a good initial value in a short time, and the mission of the improved GPM is to find the final solution with a high precision. In the improved PSO algorithm, by controlling the entropy of the swarm in each dimension, the typical PSO algorithm's weakness of being easy to fall into a local optimum can be overcome. In the improved GPM, two kinds of breaks are introduced to divide the trajectory into multiple segments, and the distribution of the Legendre-Gauss (LG) nodes can be altered, so that all the constraints can be satisfied strictly. Thereby the advan- tages of both the intelligent optimization algorithm and the direct method are combined. Simulation results demonstrate that the proposed method is insensitive to initial values, and it has more rapid convergence and higher precision than traditional ones.展开更多
This paper studies the reentry attitude tracking control problem for hypersonic vehicles(HSV)equipped with reaction control systems(RCS)and aerodynamic surfaces.The attitude dynamical model of the hypersonic vehicles ...This paper studies the reentry attitude tracking control problem for hypersonic vehicles(HSV)equipped with reaction control systems(RCS)and aerodynamic surfaces.The attitude dynamical model of the hypersonic vehicles is established,and the simplified longitudinal and lateral dynamic models are obtained,respectively.Then,the compound control allocation strategy is provided and the model predictive controller is designed for the pitch channel.Furthermore,considering the complicated jet interaction effect of HSV during RCS is working,an improved model predictive control approach is presented by introducing the online parameter estimation of the jet interaction coefficient for dealing with the uncertainty and disturbance.Moreover,considering the strong coupling effect between the yaw channel and roll channel,a coupled model predictive controller is designed by introducing the feedback of sideslip angle into the roll control channel to eliminate the coupling effect.Finally,the comparison simulations using the classical control method,MPC and IMPC approach are given to demonstrate the effectiveness and efficiency of the presented IMPC scheme.展开更多
To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated....To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated. Guidance commands are generated based on optimal guidance law. SDRE control method employs factorization of the nonlinear dynamics into a state vector and state dependent matrix valued function. State-dependent coefficients are derived based on reentry motion equations in pitch and yaw channels. Unlike constant weighting matrix Q, elements of Q are set as the functions of state error so as to get satisfactory feedback and eliminate state error rapidly, then formulation of SDRE is realized. Riccati equation is solved real-timely with Schur algorithm. State feedback control law u(x) is derived with linear quadratic regulator (LQR) method. Simulation results show that SDRE controller steadily tracks attitude command, and impact point error of reentry vehicle is acceptable. Compared with PID controller, tracking performance of attitude command using SDRE controller is better with smaller control surface deflection. The attitude tracking error with SDRE controller is within 5°, and the control deflection is within 30°.展开更多
In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory opti...In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory optimization (MORTO) approach via generalized varying domain (GVD) is proposed. Using the direct collocation approach, the trajectory optimization problem involving multiple objectives is discretized into a nonlinear multi-objective programming with priorities. In terms of fuzzy sets, the objectives are fuzzified into three types of fuzzy goals, and their constant tolerances are substituted by the varying domains. According to the principle that the objective with higher priority has higher satisfactory degree, the priority requirement is modeled as the order constraints of the varying domains. The corresponding two-side, single-side, and hybrid-side varying domain models are formulated for three fuzzy relations respectively. By regulating the parameter, the optimal reentry trajectory satisfying priorities can be achieved. Moreover, the performance about the parameter is analyzed, and the algorithm to find its specific value for maximum priority difference is proposed. The simulations demonstrate the effectiveness of the proposed method for hypersonic vehicles, and the comparisons with the traditional methods and sensitivity analysis are presented.展开更多
In this paper, by taking into account the coupling of the ionization of ablation gas and atmosphere, an electrons density distribution model is built. Using this model, the transmission properties of different polariz...In this paper, by taking into account the coupling of the ionization of ablation gas and atmosphere, an electrons density distribution model is built. Using this model, the transmission properties of different polarization radar wave through sheath are evaluated on the basis of the transmission matrix theory. Then, we discuss the effects of the electrons density, the added magnetic field, and the radar wave frequency on the transmission properties. As a result of this investigation, greater transmission power could be gained in order to efficiently shorten communication blackout, by reducing the electrons density or choosing proper added magnetic field and the frequency of the radar wave according to the different polarization form of the radar wave.展开更多
As a main tool for the lunar exploration and Mars landing project, the reentry capsule is responsible for the transportation of personnel and supplies, and it is very important to ensure its safety. The complex flow f...As a main tool for the lunar exploration and Mars landing project, the reentry capsule is responsible for the transportation of personnel and supplies, and it is very important to ensure its safety. The complex flow field caused by the shape of the large blunt cone makes it unstable in transonic and supersonic flight, so its dynamic characteristics need to be analyzed. This paper analyzes the dynamic characteristics of the reentry capsule by computational fluid dynamics(CFD) numerical simulation. The pitching combined dynamic derivative was obtained by simulation of forced pitching oscillation of the flight vehicle using the rigid dynamic grid; the time difference derivative was obtained by simulation of plunging of the flight vehicle using the rigid dynamic grid, too. The direct dynamic derivative was gained by negating the plunging derivative from sum. This paper simulates the pitching and plunging motion of NACA0012 air foil and hypersonic ballistic shape(HBS). The results of the simulation are consistent with the references. The Mars exploration rover entry capsule was simulated and analyzed to ensure a basis for the aerodynamic design and control of the reentry capsule.展开更多
Reentrant impulse in the myocardium is considered to be a major factor promoting electrophysiological abnormalities or even leading to ventricular tachycardias (VTs) and ventricular fibrillations (VFs). Tip trajectory...Reentrant impulse in the myocardium is considered to be a major factor promoting electrophysiological abnormalities or even leading to ventricular tachycardias (VTs) and ventricular fibrillations (VFs). Tip trajectory of the reentrant wave can reflect stability of the electrical propagation and area of the reentrant movement, thereby being considered as one of the most concerned parameters in studying electrical activities during VT/VF. The purpose of the present study is to propose a practical method to find out tip trajectories using a computational approach. In this study Luo-Rudy 1991 mathematical model of the ventricular cell was used. The operator splitting method was utilized to integrate the partial differential equations in the two-dimensional tissue. And spiral waves were initiated by the cut wave front technique. Through experiments we found it was difficult to find out the tips by finding intersection of the two isovoltage lines as proposed in most papers. Therefore, we suggested that tip points were detected by seeking the shortest distance of the two adjacent isovoltage contour lines. The results showed that tip trajectories of these spiral waves found in our way were very near to the tips observed, implying validation of our method in measuring tip trajectories in cardiac reentry.展开更多
The scattering points in a plasma sheath characterized with coupled velocities can cause pulse compression mismatching,which results in displacement and energy diffusion in the onedimension range profile.To solve this...The scattering points in a plasma sheath characterized with coupled velocities can cause pulse compression mismatching,which results in displacement and energy diffusion in the onedimension range profile.To solve this problem,we deduce the echo model of the plasma-sheathenveloped reentry object.By estimating the coupled velocities,we propose a compensation method to correct the defocus of an inverse synthetic aperture radar(ISAR)image in range dimension to improve the quality of the ISAR images.The simulation results suggest that the echoes from different regions of the surface of the reentry object have various coupling velocities,and the higher the coupled velocity,the more serious the displacement and energy diffusion in the range dimension.Our proposed method can correct the range dimension aberration.Two measurement metrics were used to evaluate the improvement of the compensation method.展开更多
This paper presents an improved design for the hypersonic reentry vehicle(HRV) by the trajectory linearization control(TLC) technology for the design of HRV. The physics-based model fails to take into account the exte...This paper presents an improved design for the hypersonic reentry vehicle(HRV) by the trajectory linearization control(TLC) technology for the design of HRV. The physics-based model fails to take into account the external disturbance in the flight envelope in which the stability and control derivatives prove to be nonlinear and time-varying, which is likely in turn to increase the difficulty in keeping the stability of the attitude control system. Therefore, it is of great significance to modulate the unsteady and nonlinear characteristic features of the system parameters so as to overcome the disadvantages of the conventional TLC technology that can only be valid and efficient in the cases when there may exist any minor uncertainties. It is just for this kind of necessity that we have developed a fuzzy-neural disturbance observer(FNDO) based on the B-spline to estimate such uncertainties and disturbances concerned by establishing a new dynamic system. The simulation results gained by using the aforementioned technology and the observer show that it is just due to the innovation of the adaptive trajectory linearization control(ATLC) system. Significant improvement has been realized in the performance and the robustness of the system in addition to its fault tolerance.展开更多
The plasma wake of reentry vehicles has the advantages of extensive space range and long traceability,which provides new possibilities for the detection and monitoring of reentry vehicles.Based on the Zakharov model,t...The plasma wake of reentry vehicles has the advantages of extensive space range and long traceability,which provides new possibilities for the detection and monitoring of reentry vehicles.Based on the Zakharov model,this work investigates the excitation and power spectrum characteristics of electromagnetic radiation for the plasma wake of a typical reentry vehicle.With the aid of parametric decay instability,the excitation condition of electromagnetic radiation for a typical plasma wake is evaluated first.The power spectrum characteristics of electromagnetic radiation,including the effects of both the flight parameters and incident wave parameters are analyzed in detail.The results show that when the phenomenon of excited electromagnetic radiation occurs,plasma wakes closer to the bottom of the vehicle and with faster speeds require higher incident frequencies and thresholds of the electric field.As the frequency of the incident wave increases,peaks appear in the power spectra of plasma wakes,and their magnitudes increase gradually.The frequency shifts of the secondary peaks are equal,whereas,the peaks of the downshifted spectral lines are generally larger than those of the upshifted spectral lines.The work in this paper provides a new idea and method for the tracking of reentry vehicles,which has potential application value in the field of reentry vehicle detection.展开更多
The control problem for under-actuated reentry vehicle like HTV-2 is considered with small angle of attack.The control strategy for an aircraft with positive lateral control departure parameter relies on strong latera...The control problem for under-actuated reentry vehicle like HTV-2 is considered with small angle of attack.The control strategy for an aircraft with positive lateral control departure parameter relies on strong lateral stability,which declines with the decrease of the angle of attack.Thus,to control the lateral-directional motion in a stable state is hard and even impossible in some scenarios where the under-actuated reentry vehicle,like HTV-2,flies in a low angle of attack.To address this problem,the lateral-directional open-loop motion characteristics are analyzed.The results show that in an uncontrolled state,the lateral-directional motion can automatically converge to stabilization thanks to the aerodynamic damping effect.Therefore,a method of turning-off the lateral-directional control and inviting aerodynamic damping to control can achieve stability.The six-degree-of-freedom simulation show that the lateral-directional motion can be stabilized by the aerodynamic damping,and the lateral position error caused by the bank angle deviation is limited near the zero-rise angle of attack.The control strategy is effective.展开更多
An optimal maneuver strategy is proposed for lifting reentry vehicle to reach the maximum lateral range after reentering the atmosphere. Aiming at problems that too many co-state variables and difficulty in estimating...An optimal maneuver strategy is proposed for lifting reentry vehicle to reach the maximum lateral range after reentering the atmosphere. Aiming at problems that too many co-state variables and difficulty in estimating the initial values of co-state variables,the equilibrium glide condition (EGC) is utilized to reduce the reentry motion equations and then the optimal maneuver strategy satisfied above performance index is derived. This maneuvering strategy is applied to the lifting reentry weapon platform CAV which was designed by America recently to realize both longitudinal and lateral trajectory design by controlling the attack angle and the bank angle respectively. The simulation result indicates that the maneuver strategy proposed enables CAV to reach favorable longitudinal range and lateral range.展开更多
Objective The purpose of this study was to compare remote magnetic catheter navigation with manual navigation for the ablation of atrioventricular nodal reentry tachycardia (AVNRT). Methods From November 2007 to Nov...Objective The purpose of this study was to compare remote magnetic catheter navigation with manual navigation for the ablation of atrioventricular nodal reentry tachycardia (AVNRT). Methods From November 2007 to November 2009, 30 consecutive patients with AVNRT received radiofrequency ablation in the Institute of Geriatric Cardiology. Of them, 14 were treated with remote magnetic navigation (RMN) and 16 with manual catheter navigation (MCN). Total fluoroscopic time,procedure time, procedural success rate, and complication rate were compared between the two groups. Results Total fluoroscopy time and precise orientation time were reduced in RMN group compared to MCN group (7.5+0.3 min vs 13.9~5.3 rain, and 1.0-x-0.3 min vs 3.2:~0.6 min, respectively, both P〈0.05). Procedural success rates in both groups were 100% and no AVNRT recurred in all patients during 3 months' follow-up. The number of lesions delivered was less for RMN group (3.4~1.1 vs 6.3+2.2, P〈0.05). Total procedure time (25.6~7.5 rain vs 27.5a:6.2 rain,/〉〉0.05) was similar between the 2 groups. No procedural complications occurred in both groups. Conclusions RMN for mapping and ablation of AVNRT significantly reduce precise orientation time, total fluoroscopy time and number of lesions delivered compared to the conventional technique of manual steering of deflectable catheters. Remote magnetic control mapping and ablation of AVNRT is more safe and feasible (J Geriatr Cardio12010; 7:7-9).展开更多
Aims: To characterize the plasma levels of the atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in patients with atrioventricular nodal reentry tachycardia (AVNRT), we measured the plasma levels of...Aims: To characterize the plasma levels of the atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in patients with atrioventricular nodal reentry tachycardia (AVNRT), we measured the plasma levels of these peptides before and during tachycardia. Methods: We included 10 consecutive patients scheduled for ablation of typical AVNRT without structural heart disease. Catheters were inserted in the femoral artery, femoral vein, and coronary sinus (CS) prior to the ablation procedure. Blood samples were drawn before and after 3 min of tachycardia to measure plasma levels of ANP and BNP. Right atrial pressure (RAP) was measured at baseline. Results: Of the 10 patients, in three patients it was not possible to induce tachycardia leaving a total of 7 patients available for analysis. Mean age of the seven included patients was 40 ± 12 years (mean ± SD), five were female. ANP levels increased significantly during tachycardia in the artery (p = 0.0009) and vein (p = 0.003), but only borderline in CS (p = 0.09). BNP levels did not change during tachycardia in any location. Conclusion: ANP levels measured in the peripheral circulation increased acutely during tachycardia due to AVNRT. BNP levels did not increase.展开更多
To efficiently and accurately design satellite constellations equipped with Reentry Glide Vehicles(RGVs),new analytical solutions are developed for calculating their coverage perfor-mance.Specifically,a new coverage m...To efficiently and accurately design satellite constellations equipped with Reentry Glide Vehicles(RGVs),new analytical solutions are developed for calculating their coverage perfor-mance.Specifically,a new coverage model is established by approximating the Reentry Reachable Domain(RRD).However,the computation of real-time relative distances between satellites and targets,which is essential for coverage analysis based on this model,imposes a significant compu-tational burden.To address this challenge,a coverage analysis method based on two-dimensional map theory is proposed.This method represents the coverage conditions of a target as a fixed area on a two-dimensional map and transforms the satellite trajectory into a series of parallel lines.By determining the intersection points between these lines and the area boundaries,the coverage ana-lytical solutions for a target point are derived.On this basis,coverage theorems are presented for rapid calculation of the constellation coverage performance for an area.Simulation results demon-strate the effectiveness and high precision of the proposed analytical solutions.展开更多
基金supported by the National Natural Science Foundation of China(6127334961203223+1 种基金61175109)the Innovation Foundation of BUAA for Ph.D.Graduates(YWF-14-YJSY-013)
文摘The reentry trajectory planning for hypersonic vehicles is critical and challenging in the presence of numerous nonlinear equations of motion and path constraints, as well as guaranteed satisfaction of accuracy in meeting all the specified boundary conditions. In the last ten years, many researchers have investigated various strategies to generate a feasible or optimal constrained reentry trajectory for hypersonic vehicles. This paper briefly reviews the new research efforts to promote the capability of reentry trajectory planning. The progress of the onboard reentry trajectory planning, reentry trajectory optimization, and landing footprint is summarized. The main challenges of reentry trajectory planning for hypersonic vehicles are analyzed, focusing on the rapid reentry trajectory optimization, complex geographic constraints, and coop- erative strategies.
基金supported by Major State Basic Research Development Program(2012CB720000)National Natural Science Foundation of China(11372034)Innovative Research Team of Beijing Institute of Technology
文摘A novel high-order sliding mode control strategy is proposed for the attitude control problem of reentry vehicles in the presence of parametric uncertainties and external disturbances, which results in the robust and accurate tracking of the aerodynamic angle commands with the finite time convergence. The proposed control strategy is developed on the basis of integral sliding mode philosophy, which combines conventional sliding mode control and a linear quadratic regulator over a finite time interval with a free-final-state and allows the finite-time establishment of a high-order sliding mode. Firstly, a second-order sliding mode attitude controller is designed in the proposed high-order siding mode control framework. Then, to address the control chattering problem, a virtual control is introduced in the control design and hence a third-order sliding mode attitude controller is developed, leading to the chattering reduction as well as the control accuracy improvement. Finally, simulation examples are given to illustrate the effectiveness of the theoretical results.
基金supported by the Shandong Provincial Natural Science Foundation,China(No.ZR2019QA018)the Advanced Research Project(No.61402060301).
文摘Accurate aerodynamic heating prediction is of great significance to current manned space flight and deep space exploration missions.The temperature in the shock layer surrounding the reentry vehicle can reach up to 10,000 K and result in remarkable thermochemical nonequilibrium,as well as considerable radiative heat transfer.In general,high-temperature flow simulations coupled with thermal radiation require appropriate numerical schemes and physical models.In this paper,the equations governing hypersonic nonequilibrium flow,based on a three-temperature model combined with a thermal radiation solving approach,are used to investigate the radiation effects in the reentry shock layer.An axisymmetric spherical case shows that coupling the flow-field simulation with radiation has a scarce influence on the convective heating prediction,but has some impact on the radiative heating calculation.In particular,for the Apollo capsule reentry,both the absorption coefficient and incident radiation are remarkable inside the shock layer.The radiative heating maximum reaches nearly 38%of that of the convective heating making a considerable contribution to the total aerodynamic heating.These results indicate that in the hypersonic regime,in order to account for the total heating,it is necessary to simulate the high-temperature thermochemical nonequilibrium flows coupled with thermal radiation.
基金supported by the National Natural Science Foundation of China(61272011)
文摘To rapidly generate a reentry trajectory for hypersonic vehicle satisfying waypoint and no-fly zone constraints, a novel optimization method, which combines the improved particle swarm optimization (PSO) algorithm with the improved Gauss pseudospectral method (GPM), is proposed. The improved PSO algorithm is used to generate a good initial value in a short time, and the mission of the improved GPM is to find the final solution with a high precision. In the improved PSO algorithm, by controlling the entropy of the swarm in each dimension, the typical PSO algorithm's weakness of being easy to fall into a local optimum can be overcome. In the improved GPM, two kinds of breaks are introduced to divide the trajectory into multiple segments, and the distribution of the Legendre-Gauss (LG) nodes can be altered, so that all the constraints can be satisfied strictly. Thereby the advan- tages of both the intelligent optimization algorithm and the direct method are combined. Simulation results demonstrate that the proposed method is insensitive to initial values, and it has more rapid convergence and higher precision than traditional ones.
基金National Natural Science Foundation of China under grants NSFC 61603363,61703383,61603056.
文摘This paper studies the reentry attitude tracking control problem for hypersonic vehicles(HSV)equipped with reaction control systems(RCS)and aerodynamic surfaces.The attitude dynamical model of the hypersonic vehicles is established,and the simplified longitudinal and lateral dynamic models are obtained,respectively.Then,the compound control allocation strategy is provided and the model predictive controller is designed for the pitch channel.Furthermore,considering the complicated jet interaction effect of HSV during RCS is working,an improved model predictive control approach is presented by introducing the online parameter estimation of the jet interaction coefficient for dealing with the uncertainty and disturbance.Moreover,considering the strong coupling effect between the yaw channel and roll channel,a coupled model predictive controller is designed by introducing the feedback of sideslip angle into the roll control channel to eliminate the coupling effect.Finally,the comparison simulations using the classical control method,MPC and IMPC approach are given to demonstrate the effectiveness and efficiency of the presented IMPC scheme.
基金Project(51105287)supported by the National Natural Science Foundation of China
文摘To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated. Guidance commands are generated based on optimal guidance law. SDRE control method employs factorization of the nonlinear dynamics into a state vector and state dependent matrix valued function. State-dependent coefficients are derived based on reentry motion equations in pitch and yaw channels. Unlike constant weighting matrix Q, elements of Q are set as the functions of state error so as to get satisfactory feedback and eliminate state error rapidly, then formulation of SDRE is realized. Riccati equation is solved real-timely with Schur algorithm. State feedback control law u(x) is derived with linear quadratic regulator (LQR) method. Simulation results show that SDRE controller steadily tracks attitude command, and impact point error of reentry vehicle is acceptable. Compared with PID controller, tracking performance of attitude command using SDRE controller is better with smaller control surface deflection. The attitude tracking error with SDRE controller is within 5°, and the control deflection is within 30°.
基金supported by the Natural Science Foundation of Tianjin(12JCZDJC30300)the Research Foundation of Tianjin Key Laboratory of Process Measurement and Control(TKLPMC-201613)the State Scholarship Fund of China
文摘In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory optimization (MORTO) approach via generalized varying domain (GVD) is proposed. Using the direct collocation approach, the trajectory optimization problem involving multiple objectives is discretized into a nonlinear multi-objective programming with priorities. In terms of fuzzy sets, the objectives are fuzzified into three types of fuzzy goals, and their constant tolerances are substituted by the varying domains. According to the principle that the objective with higher priority has higher satisfactory degree, the priority requirement is modeled as the order constraints of the varying domains. The corresponding two-side, single-side, and hybrid-side varying domain models are formulated for three fuzzy relations respectively. By regulating the parameter, the optimal reentry trajectory satisfying priorities can be achieved. Moreover, the performance about the parameter is analyzed, and the algorithm to find its specific value for maximum priority difference is proposed. The simulations demonstrate the effectiveness of the proposed method for hypersonic vehicles, and the comparisons with the traditional methods and sensitivity analysis are presented.
文摘In this paper, by taking into account the coupling of the ionization of ablation gas and atmosphere, an electrons density distribution model is built. Using this model, the transmission properties of different polarization radar wave through sheath are evaluated on the basis of the transmission matrix theory. Then, we discuss the effects of the electrons density, the added magnetic field, and the radar wave frequency on the transmission properties. As a result of this investigation, greater transmission power could be gained in order to efficiently shorten communication blackout, by reducing the electrons density or choosing proper added magnetic field and the frequency of the radar wave according to the different polarization form of the radar wave.
文摘As a main tool for the lunar exploration and Mars landing project, the reentry capsule is responsible for the transportation of personnel and supplies, and it is very important to ensure its safety. The complex flow field caused by the shape of the large blunt cone makes it unstable in transonic and supersonic flight, so its dynamic characteristics need to be analyzed. This paper analyzes the dynamic characteristics of the reentry capsule by computational fluid dynamics(CFD) numerical simulation. The pitching combined dynamic derivative was obtained by simulation of forced pitching oscillation of the flight vehicle using the rigid dynamic grid; the time difference derivative was obtained by simulation of plunging of the flight vehicle using the rigid dynamic grid, too. The direct dynamic derivative was gained by negating the plunging derivative from sum. This paper simulates the pitching and plunging motion of NACA0012 air foil and hypersonic ballistic shape(HBS). The results of the simulation are consistent with the references. The Mars exploration rover entry capsule was simulated and analyzed to ensure a basis for the aerodynamic design and control of the reentry capsule.
基金National Natural Science Foundation of P.R.ChinaGrant number:30870659+1 种基金Heatth Foundation of Shanxi Province:08D23Scientific Research Fund of Hunan Provincial Education Department
文摘Reentrant impulse in the myocardium is considered to be a major factor promoting electrophysiological abnormalities or even leading to ventricular tachycardias (VTs) and ventricular fibrillations (VFs). Tip trajectory of the reentrant wave can reflect stability of the electrical propagation and area of the reentrant movement, thereby being considered as one of the most concerned parameters in studying electrical activities during VT/VF. The purpose of the present study is to propose a practical method to find out tip trajectories using a computational approach. In this study Luo-Rudy 1991 mathematical model of the ventricular cell was used. The operator splitting method was utilized to integrate the partial differential equations in the two-dimensional tissue. And spiral waves were initiated by the cut wave front technique. Through experiments we found it was difficult to find out the tips by finding intersection of the two isovoltage lines as proposed in most papers. Therefore, we suggested that tip points were detected by seeking the shortest distance of the two adjacent isovoltage contour lines. The results showed that tip trajectories of these spiral waves found in our way were very near to the tips observed, implying validation of our method in measuring tip trajectories in cardiac reentry.
基金supported by National Natural Science Foundation of China(No.61971330)。
文摘The scattering points in a plasma sheath characterized with coupled velocities can cause pulse compression mismatching,which results in displacement and energy diffusion in the onedimension range profile.To solve this problem,we deduce the echo model of the plasma-sheathenveloped reentry object.By estimating the coupled velocities,we propose a compensation method to correct the defocus of an inverse synthetic aperture radar(ISAR)image in range dimension to improve the quality of the ISAR images.The simulation results suggest that the echoes from different regions of the surface of the reentry object have various coupling velocities,and the higher the coupled velocity,the more serious the displacement and energy diffusion in the range dimension.Our proposed method can correct the range dimension aberration.Two measurement metrics were used to evaluate the improvement of the compensation method.
文摘This paper presents an improved design for the hypersonic reentry vehicle(HRV) by the trajectory linearization control(TLC) technology for the design of HRV. The physics-based model fails to take into account the external disturbance in the flight envelope in which the stability and control derivatives prove to be nonlinear and time-varying, which is likely in turn to increase the difficulty in keeping the stability of the attitude control system. Therefore, it is of great significance to modulate the unsteady and nonlinear characteristic features of the system parameters so as to overcome the disadvantages of the conventional TLC technology that can only be valid and efficient in the cases when there may exist any minor uncertainties. It is just for this kind of necessity that we have developed a fuzzy-neural disturbance observer(FNDO) based on the B-spline to estimate such uncertainties and disturbances concerned by establishing a new dynamic system. The simulation results gained by using the aforementioned technology and the observer show that it is just due to the innovation of the adaptive trajectory linearization control(ATLC) system. Significant improvement has been realized in the performance and the robustness of the system in addition to its fault tolerance.
基金supported by National Natural Science Foundation of China(Nos.62171355,61875156)the 111Project(No.B17035)+1 种基金the Natural Science Basic Research Program of Shaanxi Province(No.2021JM-135)the Stable Support Project of Basic Scientific Research Institutes(Nos.A131901W14,A132001W12)。
文摘The plasma wake of reentry vehicles has the advantages of extensive space range and long traceability,which provides new possibilities for the detection and monitoring of reentry vehicles.Based on the Zakharov model,this work investigates the excitation and power spectrum characteristics of electromagnetic radiation for the plasma wake of a typical reentry vehicle.With the aid of parametric decay instability,the excitation condition of electromagnetic radiation for a typical plasma wake is evaluated first.The power spectrum characteristics of electromagnetic radiation,including the effects of both the flight parameters and incident wave parameters are analyzed in detail.The results show that when the phenomenon of excited electromagnetic radiation occurs,plasma wakes closer to the bottom of the vehicle and with faster speeds require higher incident frequencies and thresholds of the electric field.As the frequency of the incident wave increases,peaks appear in the power spectra of plasma wakes,and their magnitudes increase gradually.The frequency shifts of the secondary peaks are equal,whereas,the peaks of the downshifted spectral lines are generally larger than those of the upshifted spectral lines.The work in this paper provides a new idea and method for the tracking of reentry vehicles,which has potential application value in the field of reentry vehicle detection.
文摘The control problem for under-actuated reentry vehicle like HTV-2 is considered with small angle of attack.The control strategy for an aircraft with positive lateral control departure parameter relies on strong lateral stability,which declines with the decrease of the angle of attack.Thus,to control the lateral-directional motion in a stable state is hard and even impossible in some scenarios where the under-actuated reentry vehicle,like HTV-2,flies in a low angle of attack.To address this problem,the lateral-directional open-loop motion characteristics are analyzed.The results show that in an uncontrolled state,the lateral-directional motion can automatically converge to stabilization thanks to the aerodynamic damping effect.Therefore,a method of turning-off the lateral-directional control and inviting aerodynamic damping to control can achieve stability.The six-degree-of-freedom simulation show that the lateral-directional motion can be stabilized by the aerodynamic damping,and the lateral position error caused by the bank angle deviation is limited near the zero-rise angle of attack.The control strategy is effective.
文摘An optimal maneuver strategy is proposed for lifting reentry vehicle to reach the maximum lateral range after reentering the atmosphere. Aiming at problems that too many co-state variables and difficulty in estimating the initial values of co-state variables,the equilibrium glide condition (EGC) is utilized to reduce the reentry motion equations and then the optimal maneuver strategy satisfied above performance index is derived. This maneuvering strategy is applied to the lifting reentry weapon platform CAV which was designed by America recently to realize both longitudinal and lateral trajectory design by controlling the attack angle and the bank angle respectively. The simulation result indicates that the maneuver strategy proposed enables CAV to reach favorable longitudinal range and lateral range.
文摘Objective The purpose of this study was to compare remote magnetic catheter navigation with manual navigation for the ablation of atrioventricular nodal reentry tachycardia (AVNRT). Methods From November 2007 to November 2009, 30 consecutive patients with AVNRT received radiofrequency ablation in the Institute of Geriatric Cardiology. Of them, 14 were treated with remote magnetic navigation (RMN) and 16 with manual catheter navigation (MCN). Total fluoroscopic time,procedure time, procedural success rate, and complication rate were compared between the two groups. Results Total fluoroscopy time and precise orientation time were reduced in RMN group compared to MCN group (7.5+0.3 min vs 13.9~5.3 rain, and 1.0-x-0.3 min vs 3.2:~0.6 min, respectively, both P〈0.05). Procedural success rates in both groups were 100% and no AVNRT recurred in all patients during 3 months' follow-up. The number of lesions delivered was less for RMN group (3.4~1.1 vs 6.3+2.2, P〈0.05). Total procedure time (25.6~7.5 rain vs 27.5a:6.2 rain,/〉〉0.05) was similar between the 2 groups. No procedural complications occurred in both groups. Conclusions RMN for mapping and ablation of AVNRT significantly reduce precise orientation time, total fluoroscopy time and number of lesions delivered compared to the conventional technique of manual steering of deflectable catheters. Remote magnetic control mapping and ablation of AVNRT is more safe and feasible (J Geriatr Cardio12010; 7:7-9).
文摘Aims: To characterize the plasma levels of the atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in patients with atrioventricular nodal reentry tachycardia (AVNRT), we measured the plasma levels of these peptides before and during tachycardia. Methods: We included 10 consecutive patients scheduled for ablation of typical AVNRT without structural heart disease. Catheters were inserted in the femoral artery, femoral vein, and coronary sinus (CS) prior to the ablation procedure. Blood samples were drawn before and after 3 min of tachycardia to measure plasma levels of ANP and BNP. Right atrial pressure (RAP) was measured at baseline. Results: Of the 10 patients, in three patients it was not possible to induce tachycardia leaving a total of 7 patients available for analysis. Mean age of the seven included patients was 40 ± 12 years (mean ± SD), five were female. ANP levels increased significantly during tachycardia in the artery (p = 0.0009) and vein (p = 0.003), but only borderline in CS (p = 0.09). BNP levels did not change during tachycardia in any location. Conclusion: ANP levels measured in the peripheral circulation increased acutely during tachycardia due to AVNRT. BNP levels did not increase.
基金supported by the National Natural Science Foundation of China (No.62273119).
文摘To efficiently and accurately design satellite constellations equipped with Reentry Glide Vehicles(RGVs),new analytical solutions are developed for calculating their coverage perfor-mance.Specifically,a new coverage model is established by approximating the Reentry Reachable Domain(RRD).However,the computation of real-time relative distances between satellites and targets,which is essential for coverage analysis based on this model,imposes a significant compu-tational burden.To address this challenge,a coverage analysis method based on two-dimensional map theory is proposed.This method represents the coverage conditions of a target as a fixed area on a two-dimensional map and transforms the satellite trajectory into a series of parallel lines.By determining the intersection points between these lines and the area boundaries,the coverage ana-lytical solutions for a target point are derived.On this basis,coverage theorems are presented for rapid calculation of the constellation coverage performance for an area.Simulation results demon-strate the effectiveness and high precision of the proposed analytical solutions.