The cell performance and temperature gradient of a tubular solid oxide fuel cell with indirect internal reformer (IIR-SOFC) fuelled by natural gas, containing a typical catalytic packed-bed reformer, a catalytic coa...The cell performance and temperature gradient of a tubular solid oxide fuel cell with indirect internal reformer (IIR-SOFC) fuelled by natural gas, containing a typical catalytic packed-bed reformer, a catalytic coated wall reformer, a catalytic annular reformer, and a novel catalytic annular-coated wall reformer were investigated with an aim to determine the most efficient internal reformer system. Among the four reformer designs, IIR-SOFC containing an annular-coated wall reformer exhibited the highest performance in terms of cell power density (0.67 W.cm 2) and electrical efficiency (68%) with an acceptable temperature gradient and a moderate pressure drop across the reformer (3.53 × 10 5 kPa). IIR-SOFC with an annular-coated wall reformer was then studied over a range of operating conditions: inlet fuel temperature, operating pressure, steam to carbon (S : C) ratio, gas flow pattern (co-flow and counter-flow pattern), and natural gas compositions. The simulation results showed that the temperature gradient across the reformer could not be decreased using a lower fuel inlet temperature (1223 K-1173 K) and both the power density and electrical efficiency of the cell also decreased by lowering fuel inlet temperature. Operating in higher pressure mode (1-10 bar) improved the temperature gradient and cell performance. Increasing the S : C ratio from 2 : 1 to 4:1 could decrease the temperature drop across the reformer but also decrease the cell performance. The average temperature gradient was higher and smoother in IIR-SOFC under a co-flow pattern than that under a counter-flow pattern, leading to lower overpotential and higher cell performance. Natural gas compositions significantly affected the cell performance and temperature gradient. Natural gas containing lower methane content provided smoother temperature gradient in the system but showed lower power density and electrical efficiency.展开更多
A new continuous catalytic reforming model was configured by using a molecule-based reactor module. Themodel was based on the Sinopec Research Institute of Petroleum Processing Co., Ltd. continuous catalytic reformer ...A new continuous catalytic reforming model was configured by using a molecule-based reactor module. Themodel was based on the Sinopec Research Institute of Petroleum Processing Co., Ltd. continuous catalytic reformer fullmodel, and was reduced to a size of 157 naphtha molecules (C1−C12) that underwent 764 reactions. The new model inheritedthe advantages of the original model, and had better solving performance and flexibility owing to support by the AspenHYSYS environment. Typical commercial plant data were selected for model validation, which showed advantages in theaccuracy of detailed predictions and the range of its application. In addition, the solving time was reduced from minutes toseconds. Therefore, the simplified model proved to be feasible for industrial application.展开更多
Rome was famous because of its strong military force and it dominate the Mediterranean Sea.However,it was facing severe shortage of soldiers for a long time during 150 BCE.This problem had enormously effect on the Rom...Rome was famous because of its strong military force and it dominate the Mediterranean Sea.However,it was facing severe shortage of soldiers for a long time during 150 BCE.This problem had enormously effect on the Roman society and political life such as the appearance of slavery in Rome and the use of violence in Rome.The reasons why Rome had shortage f soldiers were related to its own military system and political system.The three great reformers,Tiberius Gracchus,Caius Gracchus and Caius Marius tried their best to solve the problem.Gracchus brothers failed but Marius succeed.Experiences we can learn from these reforms will also be mentioned.展开更多
In this paper, the effect of catalyst shape and characteristics has been investigated where five types of a catalyst were examined under the same operation conditions, where catalysts are similar in the chemical prope...In this paper, the effect of catalyst shape and characteristics has been investigated where five types of a catalyst were examined under the same operation conditions, where catalysts are similar in the chemical properties (Ni/MgOAl2O3) but it's different in their physical properties in the catalyst section of secondary reformer. The secondary reformer involves continuation of the methane reforming reaction that began in the primary reformer to produce Nitrogen and Hydrogen in the ammonia plant. In order to evaluate performance of various types of catalysts in the secondary reformer reactor, mathematical model have been created. The mathematical model covers all aspects of major chemical kinetics, heat and mass transfer phenomena in the secondary reformer in the ammonia plant at steady state conditions. It aims to optimize the best catalyst from five types of catalyst of the secondary reformer reactor in the State Company of Fertilizers South Region in the Basra/Iraq. The mathematical model allows calculating the axial variations of compositions, temperature and pressure of the gases inside two reactors in series by using the atomic molar balance and adiabatic flame temperature in the combustion section while, in the catalyst section, they are predicted by using a one-dimensional heterogeneous catalytic reaction model. The analysis evaluation performance of the catalyst (RKS-2-7H') have good results than other the catalyst types (RKS - 2, ICI 54 - 2, RKS-2-7H”, RKS-2-7H”’) in catalyst zone of the secondary reformer.展开更多
For syngas production, the combustion of fossil fuels produces large amounts of CO2 as a greenhouse gas annually which intensifies global warming. In this study, chemical looping combustion (CLC) has been utilized f...For syngas production, the combustion of fossil fuels produces large amounts of CO2 as a greenhouse gas annually which intensifies global warming. In this study, chemical looping combustion (CLC) has been utilized for the elimination of CO2 emission to atmosphere during simultaneous syngas production with different H2/CO ratio in steam reforming of methane (SR) and dry reforming of methane (DR) in a CLC-SR-DR configuration. In CLC-SR-DR with 184 reformer tubes (similar to an industrial scale steam reformer in Zagros Petrochemical Company, Assaluyeh, Iran), DR reaction occurs over Rh-based catalysts in 31 tubes. Also, SR reaction is happened over Ni-based catalysts in 153 tubes. CLC via employment of Mn-based oxygen carriers supplies heat for DR and SR reactions and produces CO2 and H2O as raw materials simultaneously. A steady state heterogeneous catalytic reaction model is applied to analyze the performance and applicability of the proposed CLC-SR-DR configuration. Simulation results show that combustion efficiency reached 1 at the outlet of fuel reactor (FR). Therefore, pure CO2 and H2O can be recycled to DR and SR sides, respectively. Also, CH4 conversion reached 0.2803 and 0.7275 at the outlet of SR and DR sides, respectively. Simulation results indicate that, 3223 kmol.h-l syngas with a H2/CO ratio equal to 9.826 was produced in SR side of CLC-SR-DR. After that, 1844 kmol.h-1 syngas with a H2/CO ratio equal to 0.986 was achieved in DR side of CLC-SR-DR. Results illustrate that by increasing the number of DR tubes to 50 tubes and considering 184 fixed total tubes in CLC-SR-DR, CH4 conversions in SR and DR sides decreased 2.69% and 3.31%, respectively. However, this subject caused total syngas production in SR and DR sides (in all of 184 tubes) enhance to 5427 kmol-h-1. Finally, thermal and molar behaviors of the proposed configuration demonstrate that CLC-SR-DR is applicable for simultaneous syngas production with high and low Hx/CO ratios in an environmental friendly process.展开更多
In this work,hydrogen is produced from partial oxidation reforming of dimethyl ether (DME) by a plasma-catalyst hybrid reformer under atmospheric pressure.The plasma-catalyst hybrid reformer which includes both plas...In this work,hydrogen is produced from partial oxidation reforming of dimethyl ether (DME) by a plasma-catalyst hybrid reformer under atmospheric pressure.The plasma-catalyst hybrid reformer which includes both plasma and catalyst reactors is designed.A spark discharge is used as a non-equilibrium plasma source,and it is used to ionize the mixture of DME and air.The performances of the reformer are characterized experimentally in terms of gas concentrations,hydrogen yield,DME conversion ratio,and specific energy consumption.The effects of discharge frequency,reaction temperature,air-to-DME ratio and space velocity are investigated.The experimental results show that the plasma-catalyst hybrid reformer enhances hydrogen yield when reaction temperature drops below 620 ℃.At 450 ℃,hydrogen yield of hybrid reforming is almost three times that of catalyst reforming.When space velocity is 510 h-1,hydrogen yield is 67.7%,and specific energy consumption is 12.2 k J/L-H2.展开更多
This work proposes a novel tubular structure of high-temperature proton exchange membrane fuel cell(PEMFC)integrated with a built-in packed-bed methanol steam reformer to provide hydrogen for power output.A two-dimens...This work proposes a novel tubular structure of high-temperature proton exchange membrane fuel cell(PEMFC)integrated with a built-in packed-bed methanol steam reformer to provide hydrogen for power output.A two-dimensional axisymmetric non-isothermal model was developed in COMSOL Multiphysics 5.4 to simulate the performance of a tubular high temperature proton membrane fuel cell and a packed bed methanol reformer.The model considers the coupling multi-physical processes,including methanol reforming reaction,water gas shift reaction,methanol cracking reaction as well as the heat,mass and momentum transport processes.The sub-model of the tubular packed-bed methanol reformer is validated between 433 K and 493 K with the experimental data reported in the literature.The sub-model of the high temperature proton exchange fuel cell is validated between 393 K and 433 K with the published literature.Our results show that power output and temperature distribution of the integrated unit depend on methanol flow rates and working voltages.It was suggested that stable power generation performance of 0.14 W/cm_(2)and temperature drop in methanol steam reformer of≤10 K could be achieved by controlling the methanol space-time ratio of≥250 kg·s/mol with working voltage at 0.6 V,even in the absence of an external heat source.展开更多
The painful reforms chosen by French voters to rejuvenate their sluggish economy have smoothed the way for Nicolas Sarkozy to take up France’s top political job.The 52-year-old leader of the ruling right-wing
Government officials in southwest China’s Chongqing Municipality are being given the benefit of the doubt for misdemeanors.A recently issued regulation states that officials who have made mistakes and incurred
On August 9, the government of Wuhan,in central China’s Hubei Province, ap-proved the management regulations for thecity’s Donghu Hi-tech Development Zone.One clause in the document has
AIM:To report a one-year clinical outcomes of low-dose laser cycloplasty(LCP)among malignant glaucoma patients.METHODS:In this prospective,multicenter,noncomparative clinical study,participants with malignant glaucoma...AIM:To report a one-year clinical outcomes of low-dose laser cycloplasty(LCP)among malignant glaucoma patients.METHODS:In this prospective,multicenter,noncomparative clinical study,participants with malignant glaucoma were recruited and underwent LCP at eight ophthalmic centers in China.Patients were followed up at 1wk,1,3,6,and 12mo.Intraocular pressure(IOP),number of glaucoma medications,anterior chamber depth(ACD),and complications were recorded.Anatomical success was defined as the reformation of the anterior chamber based on slit-lamp biomicroscopy.Recurrence was defined by the presence of a shallow orflat anterior chamber after initial recovery from treatment.RESULTS:A total of 34 eyes received LCP.Mean IOP and medications decreased from 36.1±11.5 mm Hg with 3.3±1.5 glaucoma medications pre-treatment to 20.9±9.8 mm Hg(P<0.001)with 2.9±1.6 medications(P=0.046)at 1d,and 17.4±6.7 mm Hg(P<0.001)with 1.3±1.7 medications(P<0.001)at 12mo.The ACD increased from 1.1±0.8 mm at baseline to 1.7±1.0 mm and to 2.0±0.5 mm at 1d and 12mo,respectively.A total of 32(94.1%)eyes achieved initial anatomical success.During follow-up,2(5.9%)eyes failed and 8(23.5%)eyes relapsed,yielding a 12-month anatomical success rate of 64.3%.Complications including anterior synechia(8.82%),choroidal/ciliary detachment(5.88%)and hypopyon(2.94%)were observed within 1wk.CONCLUSION:LCP is simple,safe,and effective in reforming the anterior chamber in malignant glaucoma.展开更多
As global municipal solid waste(MSW)quantities continue to escalate,serious socio-environmental challenges arise,necessitating innovative solutions.Waste-to-hydrogen(WTH)via two-stage gasification-reforming(TSGR)prese...As global municipal solid waste(MSW)quantities continue to escalate,serious socio-environmental challenges arise,necessitating innovative solutions.Waste-to-hydrogen(WTH)via two-stage gasification-reforming(TSGR)presents an emergent technology for MSW upcycling,offering to ease waste management burdens and bolster the burgeoning hydrogen economy.Despite early initiatives to advance TSGR technology,a cohesive and critical analysis of cutting-edge knowledge and strategies to enhance hydrogen production remains lacking.This review aggregates literature on MSW upcycling to hydrogen via TSGR,with a focus on optimizing process control and catalytic efficiency.It underscores technological avenues to augment hydrogen output,curtail catalyst costs,and refine system performance.Particularly,the review illuminates the potential for integrating chemical and calcium looping into TSGR processes,identifying opportunities,and pinpointing challenges.The review concludes with a summary of the current state of techno-economic analysis for this technology,presenting outstanding challenges and future research directions,with the ultimate goal of transitioning WTH from theoretical to practical application.展开更多
To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling s...To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling strategy was adopted to decouple the biomass gasification process,and the composite oxygen carrier was prepared by embedding Fe_(2)O_(3) in molecular sieve SBA-16 for the chemical looping reforming process of pyrolysis micromolecular model compound methane,which was expected to realize the directional reforming of pyrolysis volatiles to prepare hydrogen-rich syngas.Thermodynamic analysis of the reaction system was carried out based on the Gibbs free energy minimization method,and the reforming performance was evaluated by a fixed bed reactor,and the kinetic parameters were solved based on the gas–solid reaction model.Thermodynamic analysis verified the feasibility of the reaction and provided theoretical guidance for experimental design.The experimental results showed that the reaction performance of Fe_(2)O_(3)@SBA-16 was compared with that of pure Fe_(2)O_(3) and Fe_(2)O_(3)@SBA-15,and the syngas yield was increased by 55.3%and 20.7%respectively,and it had good cycle stability.Kinetic analysis showed that the kinetic model changed from three-dimensional diffusion to first-order reaction with the increase of temperature.The activation energy was 192.79 kJ/mol by fitting.This paper provides basic data for the directional preparation of hydrogen-rich syngas from biomass and the design of oxygen carriers for pyrolysis of all-component chemical looping reforming.展开更多
Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modu...Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance.展开更多
Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can...Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can be used as light-harvesting materials in solar energy utilization such as photocatalytic methanol steam reforming.In this work,we report an atomically precise Cu_(13)cluster protected by dual ligands of thiolate and phosphine that can be viewed as the assembly of one top Cu atom and three Cu_(4)tetrahedra.The Cu_(13)H_(10)(SR)_(3)(PR’_(3))_(7)(SR=2,4-dichlorobenzenethiol,PR’_(3)=P(4-FC_(6)H_(4))_(3))cluster can give rise to highly efficient light-driven activity for methanol steam reforming toward H_(2)production.展开更多
Using the Xi’an Mingde Institute of Technology students as the teaching object and the Personal Finance course as an example,we explore the reform of the ideological and political assessment system of process-trackin...Using the Xi’an Mingde Institute of Technology students as the teaching object and the Personal Finance course as an example,we explore the reform of the ideological and political assessment system of process-tracking courses in applied universities.The article analyzes the feasibility of applying the curriculum ideological and political assessment system in college courses and compares the traditional assessment system.It also proposes that applying curriculum ideological and political assessment to the college curriculum assessment system will help improve students’understanding of the“value guidance”in curriculum ideological and political education and enhance the teaching effect.展开更多
The clathrate hydrate memory effect is a fascinating phenomenon with potential applications in carbon capture,utilization and storage(CCUS),gas separation,and gas storage as it can accelerate the secondary formation o...The clathrate hydrate memory effect is a fascinating phenomenon with potential applications in carbon capture,utilization and storage(CCUS),gas separation,and gas storage as it can accelerate the secondary formation of clathrate hydrate.However,the underlying mechanism of this effect remains unclear.To gain a better understanding of the mechanism,we conducted molecular dynamic simulations to simulate the initial formation and reformation processes of methane hydrate.In this work,we showed the evolution process of hydrate residual structures into hydrate cages.The simulation results indicate that the residual structures are closely related to the existence of hydrate memory effect,and the higher the contribution of hydrate dissociated water to the hydrate nucleation process,the faster the hydrate nucleation.After hydrate dissociation,the locally ordered structures still exist after hydrate dissociation and can promote the formation of cluster structures,thus accelerating hydrate nucleation.Additionally,the nucleation process of hydrate and the formation process of clusters are inseparable.The size of clusters composed of cup-cage structures is critical for hydrate nucleation.The residence time at high temperature after hydrate decomposition will affect the strength of the hydrate memory effect.Our simulation results provide microscopic insights into the occurrence of the hydrate memory effect and shed light on the hydrate reformation process at the molecular scale.展开更多
The Outcome-Based Education(OBE)educational concept,proposed by renowned American educator Spady,aims to guide students in mastering learning laws and ultimately achieving expected learning outcomes.The application of...The Outcome-Based Education(OBE)educational concept,proposed by renowned American educator Spady,aims to guide students in mastering learning laws and ultimately achieving expected learning outcomes.The application of OBE educational concept in Hospitality English curriculum not only can effectively enhance the learning effect but also promote the reform of the Hospitality English curriculum,thus improving students’learning enthusiasm.Therefore,taking the Hospitality English curriculum as an example,this paper points out the existing problems in the teaching of this course and suggests the reform measures based on the OBE teaching concept,hoping to provide guidelines for related educational work.展开更多
基金supported by the Thailand Research Fund(TRG 5680051)
文摘The cell performance and temperature gradient of a tubular solid oxide fuel cell with indirect internal reformer (IIR-SOFC) fuelled by natural gas, containing a typical catalytic packed-bed reformer, a catalytic coated wall reformer, a catalytic annular reformer, and a novel catalytic annular-coated wall reformer were investigated with an aim to determine the most efficient internal reformer system. Among the four reformer designs, IIR-SOFC containing an annular-coated wall reformer exhibited the highest performance in terms of cell power density (0.67 W.cm 2) and electrical efficiency (68%) with an acceptable temperature gradient and a moderate pressure drop across the reformer (3.53 × 10 5 kPa). IIR-SOFC with an annular-coated wall reformer was then studied over a range of operating conditions: inlet fuel temperature, operating pressure, steam to carbon (S : C) ratio, gas flow pattern (co-flow and counter-flow pattern), and natural gas compositions. The simulation results showed that the temperature gradient across the reformer could not be decreased using a lower fuel inlet temperature (1223 K-1173 K) and both the power density and electrical efficiency of the cell also decreased by lowering fuel inlet temperature. Operating in higher pressure mode (1-10 bar) improved the temperature gradient and cell performance. Increasing the S : C ratio from 2 : 1 to 4:1 could decrease the temperature drop across the reformer but also decrease the cell performance. The average temperature gradient was higher and smoother in IIR-SOFC under a co-flow pattern than that under a counter-flow pattern, leading to lower overpotential and higher cell performance. Natural gas compositions significantly affected the cell performance and temperature gradient. Natural gas containing lower methane content provided smoother temperature gradient in the system but showed lower power density and electrical efficiency.
基金The authors acknowledge collaboration with and support from AspenTech via the National Key R&D Program of China(2021YFA1501201).
文摘A new continuous catalytic reforming model was configured by using a molecule-based reactor module. Themodel was based on the Sinopec Research Institute of Petroleum Processing Co., Ltd. continuous catalytic reformer fullmodel, and was reduced to a size of 157 naphtha molecules (C1−C12) that underwent 764 reactions. The new model inheritedthe advantages of the original model, and had better solving performance and flexibility owing to support by the AspenHYSYS environment. Typical commercial plant data were selected for model validation, which showed advantages in theaccuracy of detailed predictions and the range of its application. In addition, the solving time was reduced from minutes toseconds. Therefore, the simplified model proved to be feasible for industrial application.
文摘Rome was famous because of its strong military force and it dominate the Mediterranean Sea.However,it was facing severe shortage of soldiers for a long time during 150 BCE.This problem had enormously effect on the Roman society and political life such as the appearance of slavery in Rome and the use of violence in Rome.The reasons why Rome had shortage f soldiers were related to its own military system and political system.The three great reformers,Tiberius Gracchus,Caius Gracchus and Caius Marius tried their best to solve the problem.Gracchus brothers failed but Marius succeed.Experiences we can learn from these reforms will also be mentioned.
文摘In this paper, the effect of catalyst shape and characteristics has been investigated where five types of a catalyst were examined under the same operation conditions, where catalysts are similar in the chemical properties (Ni/MgOAl2O3) but it's different in their physical properties in the catalyst section of secondary reformer. The secondary reformer involves continuation of the methane reforming reaction that began in the primary reformer to produce Nitrogen and Hydrogen in the ammonia plant. In order to evaluate performance of various types of catalysts in the secondary reformer reactor, mathematical model have been created. The mathematical model covers all aspects of major chemical kinetics, heat and mass transfer phenomena in the secondary reformer in the ammonia plant at steady state conditions. It aims to optimize the best catalyst from five types of catalyst of the secondary reformer reactor in the State Company of Fertilizers South Region in the Basra/Iraq. The mathematical model allows calculating the axial variations of compositions, temperature and pressure of the gases inside two reactors in series by using the atomic molar balance and adiabatic flame temperature in the combustion section while, in the catalyst section, they are predicted by using a one-dimensional heterogeneous catalytic reaction model. The analysis evaluation performance of the catalyst (RKS-2-7H') have good results than other the catalyst types (RKS - 2, ICI 54 - 2, RKS-2-7H”, RKS-2-7H”’) in catalyst zone of the secondary reformer.
文摘For syngas production, the combustion of fossil fuels produces large amounts of CO2 as a greenhouse gas annually which intensifies global warming. In this study, chemical looping combustion (CLC) has been utilized for the elimination of CO2 emission to atmosphere during simultaneous syngas production with different H2/CO ratio in steam reforming of methane (SR) and dry reforming of methane (DR) in a CLC-SR-DR configuration. In CLC-SR-DR with 184 reformer tubes (similar to an industrial scale steam reformer in Zagros Petrochemical Company, Assaluyeh, Iran), DR reaction occurs over Rh-based catalysts in 31 tubes. Also, SR reaction is happened over Ni-based catalysts in 153 tubes. CLC via employment of Mn-based oxygen carriers supplies heat for DR and SR reactions and produces CO2 and H2O as raw materials simultaneously. A steady state heterogeneous catalytic reaction model is applied to analyze the performance and applicability of the proposed CLC-SR-DR configuration. Simulation results show that combustion efficiency reached 1 at the outlet of fuel reactor (FR). Therefore, pure CO2 and H2O can be recycled to DR and SR sides, respectively. Also, CH4 conversion reached 0.2803 and 0.7275 at the outlet of SR and DR sides, respectively. Simulation results indicate that, 3223 kmol.h-l syngas with a H2/CO ratio equal to 9.826 was produced in SR side of CLC-SR-DR. After that, 1844 kmol.h-1 syngas with a H2/CO ratio equal to 0.986 was achieved in DR side of CLC-SR-DR. Results illustrate that by increasing the number of DR tubes to 50 tubes and considering 184 fixed total tubes in CLC-SR-DR, CH4 conversions in SR and DR sides decreased 2.69% and 3.31%, respectively. However, this subject caused total syngas production in SR and DR sides (in all of 184 tubes) enhance to 5427 kmol-h-1. Finally, thermal and molar behaviors of the proposed configuration demonstrate that CLC-SR-DR is applicable for simultaneous syngas production with high and low Hx/CO ratios in an environmental friendly process.
基金Project(21106002)supported by the National Natural Science Foundation of ChinaProject(2010DFA72760)supported by Collaboration on Cutting-Edge Technology Development of Electric Vehicle,China
文摘In this work,hydrogen is produced from partial oxidation reforming of dimethyl ether (DME) by a plasma-catalyst hybrid reformer under atmospheric pressure.The plasma-catalyst hybrid reformer which includes both plasma and catalyst reactors is designed.A spark discharge is used as a non-equilibrium plasma source,and it is used to ionize the mixture of DME and air.The performances of the reformer are characterized experimentally in terms of gas concentrations,hydrogen yield,DME conversion ratio,and specific energy consumption.The effects of discharge frequency,reaction temperature,air-to-DME ratio and space velocity are investigated.The experimental results show that the plasma-catalyst hybrid reformer enhances hydrogen yield when reaction temperature drops below 620 ℃.At 450 ℃,hydrogen yield of hybrid reforming is almost three times that of catalyst reforming.When space velocity is 510 h-1,hydrogen yield is 67.7%,and specific energy consumption is 12.2 k J/L-H2.
文摘This work proposes a novel tubular structure of high-temperature proton exchange membrane fuel cell(PEMFC)integrated with a built-in packed-bed methanol steam reformer to provide hydrogen for power output.A two-dimensional axisymmetric non-isothermal model was developed in COMSOL Multiphysics 5.4 to simulate the performance of a tubular high temperature proton membrane fuel cell and a packed bed methanol reformer.The model considers the coupling multi-physical processes,including methanol reforming reaction,water gas shift reaction,methanol cracking reaction as well as the heat,mass and momentum transport processes.The sub-model of the tubular packed-bed methanol reformer is validated between 433 K and 493 K with the experimental data reported in the literature.The sub-model of the high temperature proton exchange fuel cell is validated between 393 K and 433 K with the published literature.Our results show that power output and temperature distribution of the integrated unit depend on methanol flow rates and working voltages.It was suggested that stable power generation performance of 0.14 W/cm_(2)and temperature drop in methanol steam reformer of≤10 K could be achieved by controlling the methanol space-time ratio of≥250 kg·s/mol with working voltage at 0.6 V,even in the absence of an external heat source.
文摘The painful reforms chosen by French voters to rejuvenate their sluggish economy have smoothed the way for Nicolas Sarkozy to take up France’s top political job.The 52-year-old leader of the ruling right-wing
文摘Government officials in southwest China’s Chongqing Municipality are being given the benefit of the doubt for misdemeanors.A recently issued regulation states that officials who have made mistakes and incurred
文摘On August 9, the government of Wuhan,in central China’s Hubei Province, ap-proved the management regulations for thecity’s Donghu Hi-tech Development Zone.One clause in the document has
基金Supported by the Program for Zhejiang Leading Talent of S&T Innovation(No.2021R52012)Development Projects of Zhejiang Province(No.2022C03112)Innovation Team Program of Wenzhou.
文摘AIM:To report a one-year clinical outcomes of low-dose laser cycloplasty(LCP)among malignant glaucoma patients.METHODS:In this prospective,multicenter,noncomparative clinical study,participants with malignant glaucoma were recruited and underwent LCP at eight ophthalmic centers in China.Patients were followed up at 1wk,1,3,6,and 12mo.Intraocular pressure(IOP),number of glaucoma medications,anterior chamber depth(ACD),and complications were recorded.Anatomical success was defined as the reformation of the anterior chamber based on slit-lamp biomicroscopy.Recurrence was defined by the presence of a shallow orflat anterior chamber after initial recovery from treatment.RESULTS:A total of 34 eyes received LCP.Mean IOP and medications decreased from 36.1±11.5 mm Hg with 3.3±1.5 glaucoma medications pre-treatment to 20.9±9.8 mm Hg(P<0.001)with 2.9±1.6 medications(P=0.046)at 1d,and 17.4±6.7 mm Hg(P<0.001)with 1.3±1.7 medications(P<0.001)at 12mo.The ACD increased from 1.1±0.8 mm at baseline to 1.7±1.0 mm and to 2.0±0.5 mm at 1d and 12mo,respectively.A total of 32(94.1%)eyes achieved initial anatomical success.During follow-up,2(5.9%)eyes failed and 8(23.5%)eyes relapsed,yielding a 12-month anatomical success rate of 64.3%.Complications including anterior synechia(8.82%),choroidal/ciliary detachment(5.88%)and hypopyon(2.94%)were observed within 1wk.CONCLUSION:LCP is simple,safe,and effective in reforming the anterior chamber in malignant glaucoma.
基金supported by the National Natural Science Foundation of China(52276202)the Tsinghua-Toyota Joint Research Fund.
文摘As global municipal solid waste(MSW)quantities continue to escalate,serious socio-environmental challenges arise,necessitating innovative solutions.Waste-to-hydrogen(WTH)via two-stage gasification-reforming(TSGR)presents an emergent technology for MSW upcycling,offering to ease waste management burdens and bolster the burgeoning hydrogen economy.Despite early initiatives to advance TSGR technology,a cohesive and critical analysis of cutting-edge knowledge and strategies to enhance hydrogen production remains lacking.This review aggregates literature on MSW upcycling to hydrogen via TSGR,with a focus on optimizing process control and catalytic efficiency.It underscores technological avenues to augment hydrogen output,curtail catalyst costs,and refine system performance.Particularly,the review illuminates the potential for integrating chemical and calcium looping into TSGR processes,identifying opportunities,and pinpointing challenges.The review concludes with a summary of the current state of techno-economic analysis for this technology,presenting outstanding challenges and future research directions,with the ultimate goal of transitioning WTH from theoretical to practical application.
基金National Natural Science Foundation of China(Grant Nos:22038011,51976168)K.C.Wong Education Foundation,the Natural Science Basic Research Program of Shaanxi(Program No.2021JLM-17)+1 种基金Programme of Introducing Talents of Discipline to Universities(B23025)Innovation Capability Support Program of Shaanxi(Program Nos:2023KJXX-004,2023-CX-TD-26,2022KXJ-126).
文摘To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling strategy was adopted to decouple the biomass gasification process,and the composite oxygen carrier was prepared by embedding Fe_(2)O_(3) in molecular sieve SBA-16 for the chemical looping reforming process of pyrolysis micromolecular model compound methane,which was expected to realize the directional reforming of pyrolysis volatiles to prepare hydrogen-rich syngas.Thermodynamic analysis of the reaction system was carried out based on the Gibbs free energy minimization method,and the reforming performance was evaluated by a fixed bed reactor,and the kinetic parameters were solved based on the gas–solid reaction model.Thermodynamic analysis verified the feasibility of the reaction and provided theoretical guidance for experimental design.The experimental results showed that the reaction performance of Fe_(2)O_(3)@SBA-16 was compared with that of pure Fe_(2)O_(3) and Fe_(2)O_(3)@SBA-15,and the syngas yield was increased by 55.3%and 20.7%respectively,and it had good cycle stability.Kinetic analysis showed that the kinetic model changed from three-dimensional diffusion to first-order reaction with the increase of temperature.The activation energy was 192.79 kJ/mol by fitting.This paper provides basic data for the directional preparation of hydrogen-rich syngas from biomass and the design of oxygen carriers for pyrolysis of all-component chemical looping reforming.
基金financially supported by the National Natural Science Foundation of China (Nos. 52174279, U2202251, and 52266008)Applied Basic Research Program of Yunnan Province for Distinguished Young Scholars (No. 202201AV070004)+1 种基金Central Guiding Local Science and Technology Development Fund (No. 202207AA110001)the Yunnan Fundamental Research Projects (No. 202301AU070027, 202401AT070388)
文摘Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance.
基金financial support from National Natural Science Foundation of China(22125202,21932004,22101128)Natural Science Foundation of Jiangsu Province(BK20220033)。
文摘Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can be used as light-harvesting materials in solar energy utilization such as photocatalytic methanol steam reforming.In this work,we report an atomically precise Cu_(13)cluster protected by dual ligands of thiolate and phosphine that can be viewed as the assembly of one top Cu atom and three Cu_(4)tetrahedra.The Cu_(13)H_(10)(SR)_(3)(PR’_(3))_(7)(SR=2,4-dichlorobenzenethiol,PR’_(3)=P(4-FC_(6)H_(4))_(3))cluster can give rise to highly efficient light-driven activity for methanol steam reforming toward H_(2)production.
基金Xi’an Mingde Institute of Technology’s 2023 school-level education and teaching reform research project“Exploration of the Reform of the Ideological and Political Assessment System of Process-Tracking Courses in Applied Universities”(Project number:JG2023YB06)。
文摘Using the Xi’an Mingde Institute of Technology students as the teaching object and the Personal Finance course as an example,we explore the reform of the ideological and political assessment system of process-tracking courses in applied universities.The article analyzes the feasibility of applying the curriculum ideological and political assessment system in college courses and compares the traditional assessment system.It also proposes that applying curriculum ideological and political assessment to the college curriculum assessment system will help improve students’understanding of the“value guidance”in curriculum ideological and political education and enhance the teaching effect.
基金Financial support from the National Natural Science Foundation of China(22208329,22178378,22127812,21908116 and U19B2005)Jiangxi Provincial Natural Science Foundation of China(20232BAB213044)。
文摘The clathrate hydrate memory effect is a fascinating phenomenon with potential applications in carbon capture,utilization and storage(CCUS),gas separation,and gas storage as it can accelerate the secondary formation of clathrate hydrate.However,the underlying mechanism of this effect remains unclear.To gain a better understanding of the mechanism,we conducted molecular dynamic simulations to simulate the initial formation and reformation processes of methane hydrate.In this work,we showed the evolution process of hydrate residual structures into hydrate cages.The simulation results indicate that the residual structures are closely related to the existence of hydrate memory effect,and the higher the contribution of hydrate dissociated water to the hydrate nucleation process,the faster the hydrate nucleation.After hydrate dissociation,the locally ordered structures still exist after hydrate dissociation and can promote the formation of cluster structures,thus accelerating hydrate nucleation.Additionally,the nucleation process of hydrate and the formation process of clusters are inseparable.The size of clusters composed of cup-cage structures is critical for hydrate nucleation.The residence time at high temperature after hydrate decomposition will affect the strength of the hydrate memory effect.Our simulation results provide microscopic insights into the occurrence of the hydrate memory effect and shed light on the hydrate reformation process at the molecular scale.
基金This article is a research result of the key project of teaching reform in higher vocational education in Heilongjiang Province,“Research on the Construction and Practice of English Major Courses in the Integrated Training Model for Middle and High-Level Vocational Education under the OBE Perspective”(Project number:SJGZZ20220035).
文摘The Outcome-Based Education(OBE)educational concept,proposed by renowned American educator Spady,aims to guide students in mastering learning laws and ultimately achieving expected learning outcomes.The application of OBE educational concept in Hospitality English curriculum not only can effectively enhance the learning effect but also promote the reform of the Hospitality English curriculum,thus improving students’learning enthusiasm.Therefore,taking the Hospitality English curriculum as an example,this paper points out the existing problems in the teaching of this course and suggests the reform measures based on the OBE teaching concept,hoping to provide guidelines for related educational work.