Refractory high-entropy alloys(RHEAs)have promising applications as the new generation of hightemperature alloys in hypersonic vehicles,aero-engines,gas turbines,and nuclear power plants.This study focuses on the micr...Refractory high-entropy alloys(RHEAs)have promising applications as the new generation of hightemperature alloys in hypersonic vehicles,aero-engines,gas turbines,and nuclear power plants.This study focuses on the microstructures and mechanical properties of the NbMoTaW(HfN)_(x)(x=0,0.3,0.7,and 1.0)RHEAs.The alloys consist of multiple phases of body-centered cubic(BCC),hafnium nitride(HfN),or multicomponent nitride(MN)phases.As the x contents increase,the grain size becomes smaller,and the strength gradually increases.The compressive yield strengths of the NbMoTaWHfN RHEA at ambient temperature,1000,1400,and 1800℃ were found to be 1682,1192,792,and 288 MPa,respectively.The high-temperature strength of this alloy is an inspiring result that exceeds the high temperature and strength of most known alloys,including high-entropy alloys,refractory metals,and superalloys.The HfN phase has a significant effect on strengthening due to its high structural stability and sluggish grain coarsening,even at ultra-high temperatures.Its superior properties endow the NbMoTaWHfN RHEA with potential for a wide range of engineering applications at ultra-high temperatures.This work offers a strategy for the design of high-temperature alloys and proposes an ultra-high-temperature alloy with potential for future engineering applications.展开更多
This work reviews recent progress in the alloy design,microstructure,and mechanical properties of refractory high-entropy alloys(RHEAs).What’s more,the underlying strengthening mechanisms and deformation behavior are...This work reviews recent progress in the alloy design,microstructure,and mechanical properties of refractory high-entropy alloys(RHEAs).What’s more,the underlying strengthening mechanisms and deformation behavior are discussed.Composed mainly of near-equimolar refractory elements,RHEAs have superior mechanical properties,especially at high temperatures.However,many of them have limited room-temperature ductility.Much work has been done to solve this trade-off,and some of the RHEAs have the potential to be used for high-temperature applications in the future.In addition to their mechanical properties,RHEAs have other attractive properties,such as biocompatibility and wear resistance,which are discussed.Finally,current problems and future suggestions for RHEAs are discussed.展开更多
In the face of the requirement that nuclear fusion reactor materials exhibit more excellent thermal,mechanical and physical properties,a novel refractory highentropy alloy,WTaHfTiZr was proposed.The constituent elemen...In the face of the requirement that nuclear fusion reactor materials exhibit more excellent thermal,mechanical and physical properties,a novel refractory highentropy alloy,WTaHfTiZr was proposed.The constituent elements were selected in consideration of low activation,high melting point and high thermostability.The alloys were prepared by arc melting.The as-cast alloy shows a dendrite microstructure with two disordered BCC phases,which caused by the preferential nucleation of W and Ta with much higher melting points during solidification.It exhibits a high compressive yield strength of 1,900 MPa and fracture strain of 8.1% at room temperature,and its yield strengths are up to 612 MPa at 700 ℃ and 203 MPa at 1,000 ℃,respectively.The high strengths are attributed mainly to solid solution strengthening and second phase strengthening.This alloy shows great promise as one of the next-generation nuclear fusion reactor materials.展开更多
New refractory high-entropy alloys,CrHfNbTaTi and CrHfMoTaTi,derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting.The phase components,microstructu...New refractory high-entropy alloys,CrHfNbTaTi and CrHfMoTaTi,derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting.The phase components,microstructures,and compressive properties of the alloys in the as-cast state were investigated.Results showed that both alloys were composed of BCC and cubic Laves phases.In terms of mechanical properties,the yield strength increased remarkably from 926 MPa for HfNbTaTiZr to 1258 MPa for CrHfNbTaTi,whereas a promising plastic strain of around 15.0%was retained in CrHfNbTaTi.The morphology and composition of the network-shaped interdendritic regions were closely related to the improved mechanical properties due to elemental substitution.Dendrites were surrounded by an incompact interdendritic shell after Mo incorporation,which deteriorated yield strength and accelerated brittleness.展开更多
This study aimed to investigate the microstructure and mechanical properties of TixZrVNb(x=1,1.5,2)refractory high-entropy alloys at room and elevated temperatures.The TiZrVNb alloy consisted of the body-centered cubi...This study aimed to investigate the microstructure and mechanical properties of TixZrVNb(x=1,1.5,2)refractory high-entropy alloys at room and elevated temperatures.The TiZrVNb alloy consisted of the body-centered cubic(bcc)matrix with a small amount of V2Zr phase.The Ti1.5ZrVNb and Ti2ZrVNb alloys exhibited a single-phase bcc structure.At room temperature,the tensile ductility of the as-cast alloys increased from 3.5%to 12.3%with the increase in the Ti content.The TixZrVNb alloys exhibited high yield strength at 600°C,and the ultimate yield strength was more than 900 MPa.Softening occurred at 800°C,but the ultimate yield strength could still exceed 200 MPa.Moreover,the TixZrVNb alloys displayed low densities but high specific yield strengths(SYSs).The lowest density of TixZrVNb alloys was only 6.12 g/cm^3,but the SYS could reach about 180 MPa·cm^3·g^−1,which is better than those of most reported high-entropy alloys(HEAs).展开更多
Progress in materials development is often paced by the time required to produce and evaluate a large number of alloys with different chemical compositions.This applies especially to refractory high-entropy alloys(RHE...Progress in materials development is often paced by the time required to produce and evaluate a large number of alloys with different chemical compositions.This applies especially to refractory high-entropy alloys(RHEAs),which are difficult to synthesize and process by conventional methods.To evaluate a possible way to accelerate the process,high-throughput laser metal deposition was used in this work to prepare a quinary RHEA,TiZrNbHfTa,as well as its quaternary and ternary subsystems by in-situ alloying of elemental powders.Compositionally graded variants of the quinary RHEA were also analyzed.Our results show that the influence of various parameters such as powder shape and purity,alloy composition,and especially the solidification range,on the processability,microstructure,porosity,and mechanical properties can be investigated rapidly.The strength of these alloys was mainly affected by the oxygen and nitrogen contents of the starting powders,while substitutional solid solution strengthening played a minor role.展开更多
Refractory high-entropy alloys are considered as potential structural materials for elevated temperature applications.To obtain refractory high-entropy alloys with high strength,different amounts of Si were added into...Refractory high-entropy alloys are considered as potential structural materials for elevated temperature applications.To obtain refractory high-entropy alloys with high strength,different amounts of Si were added into the NbMoTiVW refractory high-entropy alloys.The effects of Si on the phase constitution,microstructure characteristics and mechanical properties of NbMoTiVWSi_(x) alloys were investigated.Results show that when the addition of Si is 0,0.025 and 0.05(molar ratio),the alloys are consisted of primary BCC and secondary BCC in the intergranular area.When the addition of Si is increased to 0.075 and 0.1,eutectic structure including silicide phase and secondary BCC phase is formed.The primary BCC phase shows dendritic morphology,and is refined by adding Si.The volume fraction of intergranular area is increased from 12.22%to 18.13%when the addition of Si increases from 0 to 0.1.The ultimate compressive strength of the NbMoTiVW alloy is improved from 2,242 MPa to 2,532 MPa.Its yield strength is also improved by the addition of Si,and the yield strength of NbMoTiVWSi_(0.1) reaches maximum of 2,298 MPa.However,the fracture strain of the alloy is decreased from 15.31%to 12.02%.The fracture mechanism of the alloys is changed from mixed fracture of ductile and quasi-cleavage to cleavage fracture with increasing of Si.The strengthening of alloys is attributed to the refinement of primary BCC phase,volume fraction increment of secondary BCC phase,and formation of eutectic structure by addition of Si.展开更多
Interstitial strengthening with nitrogen(N)is one of the effective ways to improve the mechanical properties of HEAs,but the effects of N on the microstructures and mechanical properties of the irradiated HEAs have no...Interstitial strengthening with nitrogen(N)is one of the effective ways to improve the mechanical properties of HEAs,but the effects of N on the microstructures and mechanical properties of the irradiated HEAs have not been studied extensively.Here,the microstructures and mechanical properties of N-free and N-doped Ti_(2)ZrNbV_(0.5)Mo_(0.2)HEAs before and after He irradiation were investigated.The results showed that the solid solution strengthening caused by interstitial N improved the yield strength at room temperature and 1023 K without significantly reducing plasticity.N doping significantly promoted the growth,aggregation and wider spatial distribution of He bubbles by enhancing the mobility of He atoms/He-vacancy complexes,with the average size of He bubbles increasing from 10.4 nm in N-free HEA to 31.0 nm in N-doped HEA.In addition,N-doped HEA showed a much higher irradiation hardness increment and hardening fraction than N-free HEA.Contrary to conventional materials doped with N,the introduction of N into Ti_(2)ZrNbV_(0.5)Mo_(0.2)HEA had adverse effects on its resistance to He bubble growth and irradiation hardening.The results of this study indicated that N doping may not improve the irradiation resistance of HEAs.展开更多
The equiatomic TiNbZrTaHf alloy was successfully rolled at room temperature with the reduction of ~ 85%. The microstructure and tensile properties were investigated after cold working and annealing. It was determined ...The equiatomic TiNbZrTaHf alloy was successfully rolled at room temperature with the reduction of ~ 85%. The microstructure and tensile properties were investigated after cold working and annealing. It was determined that the recrystallization temperature of the TiNbZrTaHf alloy between 850 and 900 ℃. Complete recrystallization and normal grain growth occurred, the high stability of single phase was maintained after annealing at 1000, 1200, and 1400 ℃. But the precipitated phase appeared after long term annealing, as seen after 500 h at 1000 ℃. After cold working, the tensile strength and the elongation of TiNbZrTaHf were 1137 MPa and 25.1%, respectively. The annealed alloy has a high tensile strength (σ_(b )= 863 MPa) and ductility (ε_(e )= 28.5%). Moreover, the oxidation of TiNbZrTaHf alloy at elevated temperatures has a significant impact on its mechanical properties. The poor oxidation resistance of TiNbZrTaHf can accelerate tensile failure by inducing fractures at grain boundaries.展开更多
Refractory high-entropy alloys have recently emerged as promising candidates for high-temperature structural applications.However,their performance is compromised by the trade-off required between strength and ductili...Refractory high-entropy alloys have recently emerged as promising candidates for high-temperature structural applications.However,their performance is compromised by the trade-off required between strength and ductility.Here,a novel W30Ta5(FeNi)65 refractory high-entropy alloy with an outstanding combination of strength and plasticity at both room and elevated temperatures is designed,based on the multi-phase transitions design strategy.The alloy comprises a body-centered cubic dendrite phase,a topologically close-packed μ rhombohedral phase,and a high-density coherent nano-precipitate γ"phase with the D0_(22)structure(Ni3Ta type)embedded in a continuous face-centered cubic matrix.Owing to pre-cipitation strengthening of D0_(22),the yield stress of the alloy is determined as high as 1450 MPa,which is a significant improvement(~100%)in comparison with the D0_(22)-free alloy,without a loss of ductil-ity.This alloy exhibits an excellent high-temperature strength,with the yield strengths of 1300 MPa at 600 ℃ and 320 MPa at 1000 ℃.Detailed microstructural characterization using transmission electron mi-croscopy,high-angle annular dark-field imaging,and three-dimensional atom probe tomography analyses indicated that this superior strength-plasticity combination stems from the synergy of a multiple-phase structure.These results provide a new insight into the design of RHEAs and other advanced alloys.展开更多
In recent years,high-entropy alloys(HEAs)have become prominent metallic materials due to their unique design strategies and excellent mechanical properties.The HEAs-inherent high-entropy,lattice-distortion,sluggish-di...In recent years,high-entropy alloys(HEAs)have become prominent metallic materials due to their unique design strategies and excellent mechanical properties.The HEAs-inherent high-entropy,lattice-distortion,sluggish-diffusion,and cocktail effects make HEAs maintain high strength,oxidation resistance,corrosion resistance,wear resistance,and other excellent comprehensive properties,showing stronger competitiveness relative to traditional alloys.Refractory high-entropy alloys(RHEAs)are considered as a new kind of high-temperature materials with great application prospects due to their excellent mechanical properties and have the potential to replace nickel-based superalloy as the next generation of high-temperature materials.We reviewed the research status and preparation methods of RHEAs in recent years,including the metallurgical smelting,powder metallurgy,magnetron sputtering,and additive manufacturing technologies.The microstructure and phase-transformation process of RHEAs were analyzed.The mechan-ical properties and main strengthening and toughening mechanisms of RHEAs,such as solid-solution strengthening,precipitation strengthening,and the transformation-induced plasticity(TRIP),were discussed,and the deformation mechanism of RHEAs was revealed.The properties of RHEAs,including high strength,oxidation resistance,corrosion and wear resistance were reviewed.RHEAs will meet the huge market demand in the engineering materials field,but there are still many challenges,such as the tradeoff between high strength and high ductility,structural design,and performance optimization of RHEAs with brittle BCC structures.We believe that this combination of knowledge may shape the future of RHEAs and break through the mutually exclusive conundrum of high strength and high toughness for RHEAs.展开更多
In recent years,high-entropy alloys(HEAs)have become a research hotspot in materials community,and great progress has been made in exploring various high-performance HEAs.As a special class,the light-weight refractory...In recent years,high-entropy alloys(HEAs)have become a research hotspot in materials community,and great progress has been made in exploring various high-performance HEAs.As a special class,the light-weight refractory high-entropy alloys(RHEAs)own both excellent high-temperature comprehensive properties and low density and have accordingly attracted more and more attention.In this paper,we presented a comprehensive review of the recent progress and status in light-weight RHEAs.Based on an exhausting search of the literature reports,one strategy in terms of phase numbers after preparation was first proposed to classify the light-weight RHEAs into three categories.Then,the status on the fundamental thermodynamic and thermophysical data/databases,computational approaches for alloy designing,and preparation/fabrication techniques of light-weight RHEAs was introduced one after another.After that,the progress on mechanical properties and oxidation/corrosion/wear behaviors of light-weight RHEAs at room and high temperatures was summarized.Finally,the conclusions of this review were drawn.By pointing out the shortcomings of the current research,the follow-up development directions in the field of light-weight RHEAs were also given.展开更多
In this study,the dynamic compressive response behavior of a body-centered cubic(BCC)single-phase TiZrNbV refractory high-entropy alloy(RHEA)was investigated under impact at speeds of 313-1584 m s^(-1)using two-stage,...In this study,the dynamic compressive response behavior of a body-centered cubic(BCC)single-phase TiZrNbV refractory high-entropy alloy(RHEA)was investigated under impact at speeds of 313-1584 m s^(-1)using two-stage,gas-gun-driven,high-speed plate-impact experiments;recovery sample analysis;and theoretical calculations.The strain rate and pressure were approximately 10^(7) s^(−1) and 5.07-29.37 GPa,respectively.The results showed that the TiZrNbV RHEA had a Hugoniot elastic limit of 4.12-5.86 GPa and a spall strength of 1.84-2.03 GPa.The initial yield strength of the alloy showed a strong strain-rate dependence and could be described by the modified Zerilli-Armstrong model,while the phonon-damping effect was the main reason for its high strain-rate sensitivity.Microstructural analysis showed that the dynamic deformation of the TiZrNbV RHEA was controlled by the dislocation slip,dislocation proliferation,intersection of the deformation bands,and grain refinement.The analysis also showed that the intergranular,transgranular,and mixed-type cracks dominated the spall failure of the material.The dynamic Hall-Petch effect and pinning from the lattice distortion led to high dynamic yield strength.The critical strain rate for the phonon drag effect was positively related to the relative atomic mass and local strain field of the metals.Within the experimental loading range,the RHEA showed good structural stability,and simultaneously,the theoretical calculation method for the equation of state based on a cold-energy mixture could accurately predict its shock-response behavior.The valence-electron concentration(VEC)had a direct effect on the shock-compression properties of the HEAs;higher VEC implied more difficulty in compressing the HEAs.The findings of this study provide insights into understanding the mechanical response characteristics of RHEAs under extreme conditions such as high-speed impact and ultrahigh strain-rate loading.展开更多
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness...High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.展开更多
Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5...Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5)Mn_(7.5)Ni_(7.5)(at%)was chosen.The refractory metallic elements hafnium(Hf)and molybdenum(Mo)were added in small amounts(1.5at%)because of their well-known positive effects on high-temperature properties.Inclusion characteristics were comprehensively explored by using a two-dimensional cross-sectional method and extracted by using a three-dimensional electrolytic extraction method.The results revealed that the addition of Hf can reduce Al_(2)O_(3)inclusions and lead to the formation of more stable Hf-rich inclusions as the main phase.Mo addition cannot influence the inclusion type but could influence the inclusion characteristics by affecting the physical parameters of the HEA melt.The calculated coagulation coefficient and collision rate of Al_(2)O_(3)inclusions were higher than those of HfO_(2)inclusions,but the inclusion amount played a larger role in the agglomeration behavior of HfO_(2)and Al_(2)O_(3)inclusions.The impurity level and active elements in HEAs were the crucial factors affecting inclusion formation.展开更多
FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segrega...FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segregation problem in HEAs and pre-pare uniform HEA coatings.Scanning electron microscopy,transmission electron microscopy,and X-ray diffractometry were employed to characterize these coatings’microstructure and phase composition.The hardness,elastic modulus,and fracture toughness of coatings were tested,and the corrosion resistance was analyzed in simulated seawater.Results show that the hardness of the coating is HV0.1606.15,the modulus of elasticity is 128.42 GPa,and the fracture toughness is 43.98 MPa·m^(1/2).The corrosion potential of the coating in 3.5wt%NaCl solution is-0.49 V,and the corrosion current density is 1.2×10^(−6)A/cm^(2).The electrochemical system comprises three parts:the electrolyte,the adsorption and metallic oxide films produced during immersion,and the FeCoNiCrMo HEA coating.Over in-creasingly long periods,the corrosion reaction rate increases first and then decreases,the corrosion product film comprising metal oxides reaches a dynamic balance between formation and dissolution,and the internal reaction of the coating declines.展开更多
The chemoselective hydrodeoxygenation of natural lignocellulosic materials plays a crucial role in converting biomass into value-added chemicals.Yet their complex molecular structures often require multiple active sit...The chemoselective hydrodeoxygenation of natural lignocellulosic materials plays a crucial role in converting biomass into value-added chemicals.Yet their complex molecular structures often require multiple active sites synergy for effective activation and achieving high chemoselectivity.Herein,it is reported that a high-entropy alloy(HEA)on high-entropy oxide(HEO)hetero-structured catalyst for highly active,chemoselective,and robust vanillin hydrodeoxygenation.The heterogenous HEA/HEO catalysts were prepared by thermal reduction of senary HEOs(NiZnCuFeAlZrO_(x)),where exsolvable metals(e.g.,Ni,Zn,Cu)in situ emerged and formed randomly dispersed HEA nanoparticles anchoring on the HEO matrix.This catalyst exhibits excellent catalytic performance:100%conversion of vanillin and 95%selectivity toward high-value 2-methyl-4 methoxy phenol at low temperature of 120℃,which were attributed to the synergistic effect among HEO matrix(with abundant oxygen vacancies),anchored HEA nanoparticles(having excellent hydrogenolysis capability),and their intimate hetero-interfaces(showing strong electron transferring effect).Therefore,our work reported the successful construction of HEA/HEO heterogeneous catalysts and their superior multifunctionality in biomass conversion,which could shed light on catalyst design for many important reactions that are complex and require multifunctional active sites.展开更多
Multi-principal element solid solutions are prone to develop local chemical inhomogeneities,i.e.,chemi-cal order/clustering and/or compositional undulation.However,these structural details from short-range(first coupl...Multi-principal element solid solutions are prone to develop local chemical inhomogeneities,i.e.,chemi-cal order/clustering and/or compositional undulation.However,these structural details from short-range(first couple of nearest-neighbor atomic shells)to nanometer length scale are very challenging to re-solve in both experimental characterization and computer simulations.For instance,Monte Carlo model-ing based on density-functional-theory calculations is severely limited by the sample size and the sim-ulation steps practical in the simulations.Adopting the cluster expansion approach,here we systemati-cally reveal the local chemical inhomogeneity,including chemical order and compositional fluctuation,in three representative equiatomic TiZrNb-based body-centered cubic refractory high-entropy alloys(HEAs):TiZrNb,TiZrHfNb and TiZrHfNbTa.Ti-Zr pairs are found to exhibit the highest degree of chemical pref-erence among all atomic pairs.Such chemical short-range order(CSRO)induces an accompanying com-positional undulation,both extending to characteristic dimensions of the order of one nanometer.The chemical inhomogeneity trend uncovered for this series of TiZrNb-based HEAs is expected to impact their mechanical properties;e.g.,incorporating the CSRO effects in a current model significantly improves its agreement with experimental measured yield strength.展开更多
Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface com...Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface compositions,and thicknesses of the films were characterized using SEM+EDS;the anti-corrosion,wear resistance and antibacterial properties of the films in simulated seawater were investigated.The experimental results show that all four Cu-(HEA)N films are uniformly dense and contained nanoparticles.The film with Cu doping come into contact with oxygen in the air to form cuprous oxide.The corrosion resistance of the(HEA)N film without Cu doping on titanium alloy is better than the films with Cu doping.The Cu-(HEA)N film with Cu target power of 16 W shows the best wear resistance and antibacterial performance,which is attributed to the fact that Cu can reduce the coefficient of friction and exacerbate corrosion,and the formation of cuprous oxide has antibacterial properties.The findings of this study provide insights for engineering applications of TC4 in the marine field.展开更多
We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expe...We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expedites the synthesis of amorphous alloy powder by strategically injecting entropic disorder through the inclusion of multi-principal elements in the alloy composition.Predictions from first principles and materials theory corroborate the results from microscopic characterizations that reveal a transition of the amorphous phase from a precursor intermetallic structure.This transformation,characterized by the emergence of antisite disorder,lattice expansion,and the presence of nanograin boundaries,signifies a departure from the precursor intermetallic structure.Additionally,this phase transformation is accelerated by the presence of multiple principal elements that induce severe lattice distortion and a higher configurational entropy.The atomic size mismatch of the dissimilar elements present in the alloy produces a stable amorphous phase that resists reverting to an ordered lattice even on annealing.展开更多
基金supported by the National Key Research and Development Program of China(2023YFE0201600 and 2018YFC1902400)the National Natural Science Foundation of China(51975582)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Refractory high-entropy alloys(RHEAs)have promising applications as the new generation of hightemperature alloys in hypersonic vehicles,aero-engines,gas turbines,and nuclear power plants.This study focuses on the microstructures and mechanical properties of the NbMoTaW(HfN)_(x)(x=0,0.3,0.7,and 1.0)RHEAs.The alloys consist of multiple phases of body-centered cubic(BCC),hafnium nitride(HfN),or multicomponent nitride(MN)phases.As the x contents increase,the grain size becomes smaller,and the strength gradually increases.The compressive yield strengths of the NbMoTaWHfN RHEA at ambient temperature,1000,1400,and 1800℃ were found to be 1682,1192,792,and 288 MPa,respectively.The high-temperature strength of this alloy is an inspiring result that exceeds the high temperature and strength of most known alloys,including high-entropy alloys,refractory metals,and superalloys.The HfN phase has a significant effect on strengthening due to its high structural stability and sluggish grain coarsening,even at ultra-high temperatures.Its superior properties endow the NbMoTaWHfN RHEA with potential for a wide range of engineering applications at ultra-high temperatures.This work offers a strategy for the design of high-temperature alloys and proposes an ultra-high-temperature alloy with potential for future engineering applications.
基金the National Natural Science Foundation of China(Nos.51871147,51821001)the Shanghai Aerospace Advanced Technology Joint Research Fund,China(No.USCAST2020-35).
文摘This work reviews recent progress in the alloy design,microstructure,and mechanical properties of refractory high-entropy alloys(RHEAs).What’s more,the underlying strengthening mechanisms and deformation behavior are discussed.Composed mainly of near-equimolar refractory elements,RHEAs have superior mechanical properties,especially at high temperatures.However,many of them have limited room-temperature ductility.Much work has been done to solve this trade-off,and some of the RHEAs have the potential to be used for high-temperature applications in the future.In addition to their mechanical properties,RHEAs have other attractive properties,such as biocompatibility and wear resistance,which are discussed.Finally,current problems and future suggestions for RHEAs are discussed.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.51971099 and 52071088)
文摘In the face of the requirement that nuclear fusion reactor materials exhibit more excellent thermal,mechanical and physical properties,a novel refractory highentropy alloy,WTaHfTiZr was proposed.The constituent elements were selected in consideration of low activation,high melting point and high thermostability.The alloys were prepared by arc melting.The as-cast alloy shows a dendrite microstructure with two disordered BCC phases,which caused by the preferential nucleation of W and Ta with much higher melting points during solidification.It exhibits a high compressive yield strength of 1,900 MPa and fracture strain of 8.1% at room temperature,and its yield strengths are up to 612 MPa at 700 ℃ and 203 MPa at 1,000 ℃,respectively.The high strengths are attributed mainly to solid solution strengthening and second phase strengthening.This alloy shows great promise as one of the next-generation nuclear fusion reactor materials.
基金supported by the National Natural Science Foundation of China(No.51604173)the Natural Science Foundation of Jiangsu Higher Education Institution of China(No.18KJB430012)。
文摘New refractory high-entropy alloys,CrHfNbTaTi and CrHfMoTaTi,derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting.The phase components,microstructures,and compressive properties of the alloys in the as-cast state were investigated.Results showed that both alloys were composed of BCC and cubic Laves phases.In terms of mechanical properties,the yield strength increased remarkably from 926 MPa for HfNbTaTiZr to 1258 MPa for CrHfNbTaTi,whereas a promising plastic strain of around 15.0%was retained in CrHfNbTaTi.The morphology and composition of the network-shaped interdendritic regions were closely related to the improved mechanical properties due to elemental substitution.Dendrites were surrounded by an incompact interdendritic shell after Mo incorporation,which deteriorated yield strength and accelerated brittleness.
基金the National Magnetic Confinement Fusion Energy R&D Program(No.2018YFE0312400)the National Natural Science Foundation of China(Nos.51822402 and 51671044)+3 种基金the National Key Research and Development Program of China(Nos.019YFA0209901 and 2018YFA0702901)the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University(Grant No.SKLSP201902)the Liaoning Revitalization Talents Program(No.XLYC1807047)the Fund of Science and Technology on Reactor Fuel and Materials Laboratory(No.STRFML-2020-04).
文摘This study aimed to investigate the microstructure and mechanical properties of TixZrVNb(x=1,1.5,2)refractory high-entropy alloys at room and elevated temperatures.The TiZrVNb alloy consisted of the body-centered cubic(bcc)matrix with a small amount of V2Zr phase.The Ti1.5ZrVNb and Ti2ZrVNb alloys exhibited a single-phase bcc structure.At room temperature,the tensile ductility of the as-cast alloys increased from 3.5%to 12.3%with the increase in the Ti content.The TixZrVNb alloys exhibited high yield strength at 600°C,and the ultimate yield strength was more than 900 MPa.Softening occurred at 800°C,but the ultimate yield strength could still exceed 200 MPa.Moreover,the TixZrVNb alloys displayed low densities but high specific yield strengths(SYSs).The lowest density of TixZrVNb alloys was only 6.12 g/cm^3,but the SYS could reach about 180 MPa·cm^3·g^−1,which is better than those of most reported high-entropy alloys(HEAs).
基金GL and ELG acknowledge funding from the German Research Foundation in the framework of the priority program SPP 2006—Compositionally Complex Alloys—High Entropy Alloys,projects LA 3607/3-1 and GU 1075/12-1.EPG is supported by the U.S.Department of Energy,Office of Science,Basic Energy Sciences,Materials Sciences and Engineering Division.
文摘Progress in materials development is often paced by the time required to produce and evaluate a large number of alloys with different chemical compositions.This applies especially to refractory high-entropy alloys(RHEAs),which are difficult to synthesize and process by conventional methods.To evaluate a possible way to accelerate the process,high-throughput laser metal deposition was used in this work to prepare a quinary RHEA,TiZrNbHfTa,as well as its quaternary and ternary subsystems by in-situ alloying of elemental powders.Compositionally graded variants of the quinary RHEA were also analyzed.Our results show that the influence of various parameters such as powder shape and purity,alloy composition,and especially the solidification range,on the processability,microstructure,porosity,and mechanical properties can be investigated rapidly.The strength of these alloys was mainly affected by the oxygen and nitrogen contents of the starting powders,while substitutional solid solution strengthening played a minor role.
基金supported by the National Natural Science Foundation of China(Grant Nos.52001114,51825401)Cultivation Program for Outstanding Young Teacher in Henan Province(Grant Nos.21420152,2021GGJS064)+2 种基金Scientific Research Fund of State Key Laboratory of Materials Processing and Die&Mould Technology(Grant No.P2020-023)Program for Guangdong Introducing Innovative and Entrepreneurial Teams(Grant No.2016ZT06G025)the Project of Science and Technology in Henan Province(Grant No.192102210011).
文摘Refractory high-entropy alloys are considered as potential structural materials for elevated temperature applications.To obtain refractory high-entropy alloys with high strength,different amounts of Si were added into the NbMoTiVW refractory high-entropy alloys.The effects of Si on the phase constitution,microstructure characteristics and mechanical properties of NbMoTiVWSi_(x) alloys were investigated.Results show that when the addition of Si is 0,0.025 and 0.05(molar ratio),the alloys are consisted of primary BCC and secondary BCC in the intergranular area.When the addition of Si is increased to 0.075 and 0.1,eutectic structure including silicide phase and secondary BCC phase is formed.The primary BCC phase shows dendritic morphology,and is refined by adding Si.The volume fraction of intergranular area is increased from 12.22%to 18.13%when the addition of Si increases from 0 to 0.1.The ultimate compressive strength of the NbMoTiVW alloy is improved from 2,242 MPa to 2,532 MPa.Its yield strength is also improved by the addition of Si,and the yield strength of NbMoTiVWSi_(0.1) reaches maximum of 2,298 MPa.However,the fracture strain of the alloy is decreased from 15.31%to 12.02%.The fracture mechanism of the alloys is changed from mixed fracture of ductile and quasi-cleavage to cleavage fracture with increasing of Si.The strengthening of alloys is attributed to the refinement of primary BCC phase,volume fraction increment of secondary BCC phase,and formation of eutectic structure by addition of Si.
基金supported by the National Key Research and Development Program of China(No.2019YFA0209901)the Liao Ning Revitalization Talents Program(No.XLYC1807047).
文摘Interstitial strengthening with nitrogen(N)is one of the effective ways to improve the mechanical properties of HEAs,but the effects of N on the microstructures and mechanical properties of the irradiated HEAs have not been studied extensively.Here,the microstructures and mechanical properties of N-free and N-doped Ti_(2)ZrNbV_(0.5)Mo_(0.2)HEAs before and after He irradiation were investigated.The results showed that the solid solution strengthening caused by interstitial N improved the yield strength at room temperature and 1023 K without significantly reducing plasticity.N doping significantly promoted the growth,aggregation and wider spatial distribution of He bubbles by enhancing the mobility of He atoms/He-vacancy complexes,with the average size of He bubbles increasing from 10.4 nm in N-free HEA to 31.0 nm in N-doped HEA.In addition,N-doped HEA showed a much higher irradiation hardness increment and hardening fraction than N-free HEA.Contrary to conventional materials doped with N,the introduction of N into Ti_(2)ZrNbV_(0.5)Mo_(0.2)HEA had adverse effects on its resistance to He bubble growth and irradiation hardening.The results of this study indicated that N doping may not improve the irradiation resistance of HEAs.
基金supported by the Key R&D Plan of Sichuan Province(23ZDYF0546 and SC2022A1C01J)China Nuclear Power Research and Design Institute-Sichuan University Joint Innovation Fund(HG2022173&JG2022311)the Natural Science Foundation of Zhejiang Province(LQ20E010003).
文摘The equiatomic TiNbZrTaHf alloy was successfully rolled at room temperature with the reduction of ~ 85%. The microstructure and tensile properties were investigated after cold working and annealing. It was determined that the recrystallization temperature of the TiNbZrTaHf alloy between 850 and 900 ℃. Complete recrystallization and normal grain growth occurred, the high stability of single phase was maintained after annealing at 1000, 1200, and 1400 ℃. But the precipitated phase appeared after long term annealing, as seen after 500 h at 1000 ℃. After cold working, the tensile strength and the elongation of TiNbZrTaHf were 1137 MPa and 25.1%, respectively. The annealed alloy has a high tensile strength (σ_(b )= 863 MPa) and ductility (ε_(e )= 28.5%). Moreover, the oxidation of TiNbZrTaHf alloy at elevated temperatures has a significant impact on its mechanical properties. The poor oxidation resistance of TiNbZrTaHf can accelerate tensile failure by inducing fractures at grain boundaries.
基金National Natural Science Foundation of China(Nos.11790292,11972346,12102433,U2141204 and 11988102)National Key Research and Development Program of China(No.2017YFB0702003)+4 种基金Strategic Priority Research Program(Nos.XDB22040302 and XDB22040303)Key Research Program of Frontier Sciences(No.QYZDJSSW-JSC011)Science Challenge Project(No.TZ2016001)Key Research Program of the Chinese Academy of Sciences(No.ZDRW-CN-2021-2-3)Opening Project of State Key Laboratory of Explosion Science and Technology(No.KFJJ21-01Z).
文摘Refractory high-entropy alloys have recently emerged as promising candidates for high-temperature structural applications.However,their performance is compromised by the trade-off required between strength and ductility.Here,a novel W30Ta5(FeNi)65 refractory high-entropy alloy with an outstanding combination of strength and plasticity at both room and elevated temperatures is designed,based on the multi-phase transitions design strategy.The alloy comprises a body-centered cubic dendrite phase,a topologically close-packed μ rhombohedral phase,and a high-density coherent nano-precipitate γ"phase with the D0_(22)structure(Ni3Ta type)embedded in a continuous face-centered cubic matrix.Owing to pre-cipitation strengthening of D0_(22),the yield stress of the alloy is determined as high as 1450 MPa,which is a significant improvement(~100%)in comparison with the D0_(22)-free alloy,without a loss of ductil-ity.This alloy exhibits an excellent high-temperature strength,with the yield strengths of 1300 MPa at 600 ℃ and 320 MPa at 1000 ℃.Detailed microstructural characterization using transmission electron mi-croscopy,high-angle annular dark-field imaging,and three-dimensional atom probe tomography analyses indicated that this superior strength-plasticity combination stems from the synergy of a multiple-phase structure.These results provide a new insight into the design of RHEAs and other advanced alloys.
文摘In recent years,high-entropy alloys(HEAs)have become prominent metallic materials due to their unique design strategies and excellent mechanical properties.The HEAs-inherent high-entropy,lattice-distortion,sluggish-diffusion,and cocktail effects make HEAs maintain high strength,oxidation resistance,corrosion resistance,wear resistance,and other excellent comprehensive properties,showing stronger competitiveness relative to traditional alloys.Refractory high-entropy alloys(RHEAs)are considered as a new kind of high-temperature materials with great application prospects due to their excellent mechanical properties and have the potential to replace nickel-based superalloy as the next generation of high-temperature materials.We reviewed the research status and preparation methods of RHEAs in recent years,including the metallurgical smelting,powder metallurgy,magnetron sputtering,and additive manufacturing technologies.The microstructure and phase-transformation process of RHEAs were analyzed.The mechan-ical properties and main strengthening and toughening mechanisms of RHEAs,such as solid-solution strengthening,precipitation strengthening,and the transformation-induced plasticity(TRIP),were discussed,and the deformation mechanism of RHEAs was revealed.The properties of RHEAs,including high strength,oxidation resistance,corrosion and wear resistance were reviewed.RHEAs will meet the huge market demand in the engineering materials field,but there are still many challenges,such as the tradeoff between high strength and high ductility,structural design,and performance optimization of RHEAs with brittle BCC structures.We believe that this combination of knowledge may shape the future of RHEAs and break through the mutually exclusive conundrum of high strength and high toughness for RHEAs.
基金Q.Li acknowledges National Natural Science Foundation of China(No.U2102212)L.Zhang acknowledges the Natural Science Foundation of Hunan Province for Distinguished Young Scholars(No.2021JJ10062)+5 种基金S.Chen acknowledges the Fundamental Research Funds for the Central Universities of Central South University(No.2019zzts486)S.Yang acknowledges the financial support from the Fundamental Research Funds for the Central Universities of Central South University(No.2019zzts050)Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20190106)Q.Luo acknowledges the Shanghai Rising-Star Program(No.21QA1403200)W.Xie.acknowledges the financial support of National Science Foundation of China(No.52003150)Eastern Young Scholar at Shanghai Institutions of Higher Learning(No.QD2019006).
文摘In recent years,high-entropy alloys(HEAs)have become a research hotspot in materials community,and great progress has been made in exploring various high-performance HEAs.As a special class,the light-weight refractory high-entropy alloys(RHEAs)own both excellent high-temperature comprehensive properties and low density and have accordingly attracted more and more attention.In this paper,we presented a comprehensive review of the recent progress and status in light-weight RHEAs.Based on an exhausting search of the literature reports,one strategy in terms of phase numbers after preparation was first proposed to classify the light-weight RHEAs into three categories.Then,the status on the fundamental thermodynamic and thermophysical data/databases,computational approaches for alloy designing,and preparation/fabrication techniques of light-weight RHEAs was introduced one after another.After that,the progress on mechanical properties and oxidation/corrosion/wear behaviors of light-weight RHEAs at room and high temperatures was summarized.Finally,the conclusions of this review were drawn.By pointing out the shortcomings of the current research,the follow-up development directions in the field of light-weight RHEAs were also given.
基金This study was financially supported by the Hunan Provin-cial Natural Science Foundation of China(Grant No.2022JJ10058)the National Natural Science Foundation of China(Grant Nos.12072369 and 52171166).The authors thank Dr.Xuehao Zheng from the ZKKF(Beijing)Science and Technology Company of China for supporting the SEM and TEM analyses.The authors would like to acknowledge Dr.Xiang Wu from KAIPLE Centre for Microscopy,Characterisation&Analysis(CMCA)of China for supporting the EBSD analyzes.
文摘In this study,the dynamic compressive response behavior of a body-centered cubic(BCC)single-phase TiZrNbV refractory high-entropy alloy(RHEA)was investigated under impact at speeds of 313-1584 m s^(-1)using two-stage,gas-gun-driven,high-speed plate-impact experiments;recovery sample analysis;and theoretical calculations.The strain rate and pressure were approximately 10^(7) s^(−1) and 5.07-29.37 GPa,respectively.The results showed that the TiZrNbV RHEA had a Hugoniot elastic limit of 4.12-5.86 GPa and a spall strength of 1.84-2.03 GPa.The initial yield strength of the alloy showed a strong strain-rate dependence and could be described by the modified Zerilli-Armstrong model,while the phonon-damping effect was the main reason for its high strain-rate sensitivity.Microstructural analysis showed that the dynamic deformation of the TiZrNbV RHEA was controlled by the dislocation slip,dislocation proliferation,intersection of the deformation bands,and grain refinement.The analysis also showed that the intergranular,transgranular,and mixed-type cracks dominated the spall failure of the material.The dynamic Hall-Petch effect and pinning from the lattice distortion led to high dynamic yield strength.The critical strain rate for the phonon drag effect was positively related to the relative atomic mass and local strain field of the metals.Within the experimental loading range,the RHEA showed good structural stability,and simultaneously,the theoretical calculation method for the equation of state based on a cold-energy mixture could accurately predict its shock-response behavior.The valence-electron concentration(VEC)had a direct effect on the shock-compression properties of the HEAs;higher VEC implied more difficulty in compressing the HEAs.The findings of this study provide insights into understanding the mechanical response characteristics of RHEAs under extreme conditions such as high-speed impact and ultrahigh strain-rate loading.
基金supported by the National Natural Science Foundation of China(No.52273280)the Creative Research Groups of China(No.51921001).
文摘High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.
基金the Swedish Foundation for International Cooperation in Research and Higher Education(STINT,Nos.IB2020-8781 and IB20229228)for the collaboration between KTH<U(Sweden),HYU(Korea),and NEU(China)VINNOVA(No.2022-01216),the SSF Strategic Mobility Grant(No.SM22-0039),the?Forsk(No.23-540),and the Swedish Steel Producers’Association(Jernkontoret),in particular,Axel Ax:-son Johnsons forskningsfond,Prytziska fondennr 2,Gerhard von Hofstens Stiftelse f?r Metallurgisk forskning,and Stiftelsen?veringenj?ren Gustaf Janssons Jernkontorsfond for the financial support.Key Lab of EPM(NEU)is acknowledged for supporting the partial FactSage calculation+2 种基金the Key Laboratory for Ferrous Metallurgy and Resources Utilization of the Min-istry of Education and Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking(No.FMRUlab-22-1)for supporting this researchThe Natural Science Foundation of Liaoning Province,China(No.2023MSBA-135)the Fundamental Research Funds for the Central Universities(No.N2409006)are also acknowledged。
文摘Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5)Mn_(7.5)Ni_(7.5)(at%)was chosen.The refractory metallic elements hafnium(Hf)and molybdenum(Mo)were added in small amounts(1.5at%)because of their well-known positive effects on high-temperature properties.Inclusion characteristics were comprehensively explored by using a two-dimensional cross-sectional method and extracted by using a three-dimensional electrolytic extraction method.The results revealed that the addition of Hf can reduce Al_(2)O_(3)inclusions and lead to the formation of more stable Hf-rich inclusions as the main phase.Mo addition cannot influence the inclusion type but could influence the inclusion characteristics by affecting the physical parameters of the HEA melt.The calculated coagulation coefficient and collision rate of Al_(2)O_(3)inclusions were higher than those of HfO_(2)inclusions,but the inclusion amount played a larger role in the agglomeration behavior of HfO_(2)and Al_(2)O_(3)inclusions.The impurity level and active elements in HEAs were the crucial factors affecting inclusion formation.
基金supported by the National Natural Natural Science Foundation of China(No.52271055)the Natural Science Foundation of Hebei Province,China(No.E2024202154).
文摘FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segregation problem in HEAs and pre-pare uniform HEA coatings.Scanning electron microscopy,transmission electron microscopy,and X-ray diffractometry were employed to characterize these coatings’microstructure and phase composition.The hardness,elastic modulus,and fracture toughness of coatings were tested,and the corrosion resistance was analyzed in simulated seawater.Results show that the hardness of the coating is HV0.1606.15,the modulus of elasticity is 128.42 GPa,and the fracture toughness is 43.98 MPa·m^(1/2).The corrosion potential of the coating in 3.5wt%NaCl solution is-0.49 V,and the corrosion current density is 1.2×10^(−6)A/cm^(2).The electrochemical system comprises three parts:the electrolyte,the adsorption and metallic oxide films produced during immersion,and the FeCoNiCrMo HEA coating.Over in-creasingly long periods,the corrosion reaction rate increases first and then decreases,the corrosion product film comprising metal oxides reaches a dynamic balance between formation and dissolution,and the internal reaction of the coating declines.
基金supported by the National Natural Science Foundation of China(Grant No.52006074,52101255)Natural Science Foundation of Guangdong Province,China(Grant No.2021A1515010886)+2 种基金Youth science and technology innovation talent of Guangdong TeZhi planChina(Grant No.2019TQ05N068)the Fundamental Research Funds for the Central Universities,HUST:2021GCRC046
文摘The chemoselective hydrodeoxygenation of natural lignocellulosic materials plays a crucial role in converting biomass into value-added chemicals.Yet their complex molecular structures often require multiple active sites synergy for effective activation and achieving high chemoselectivity.Herein,it is reported that a high-entropy alloy(HEA)on high-entropy oxide(HEO)hetero-structured catalyst for highly active,chemoselective,and robust vanillin hydrodeoxygenation.The heterogenous HEA/HEO catalysts were prepared by thermal reduction of senary HEOs(NiZnCuFeAlZrO_(x)),where exsolvable metals(e.g.,Ni,Zn,Cu)in situ emerged and formed randomly dispersed HEA nanoparticles anchoring on the HEO matrix.This catalyst exhibits excellent catalytic performance:100%conversion of vanillin and 95%selectivity toward high-value 2-methyl-4 methoxy phenol at low temperature of 120℃,which were attributed to the synergistic effect among HEO matrix(with abundant oxygen vacancies),anchored HEA nanoparticles(having excellent hydrogenolysis capability),and their intimate hetero-interfaces(showing strong electron transferring effect).Therefore,our work reported the successful construction of HEA/HEO heterogeneous catalysts and their superior multifunctionality in biomass conversion,which could shed light on catalyst design for many important reactions that are complex and require multifunctional active sites.
基金J.D.and E.M.acknowledge XJTU for hosting their research at the Center for Alloy Innovation and Design(CAID).This work was funded by the Natural Science Foundation of China(No.12004294)National Youth Talents Program and the HPC platform of Xi’an Jiaotong University。
文摘Multi-principal element solid solutions are prone to develop local chemical inhomogeneities,i.e.,chemi-cal order/clustering and/or compositional undulation.However,these structural details from short-range(first couple of nearest-neighbor atomic shells)to nanometer length scale are very challenging to re-solve in both experimental characterization and computer simulations.For instance,Monte Carlo model-ing based on density-functional-theory calculations is severely limited by the sample size and the sim-ulation steps practical in the simulations.Adopting the cluster expansion approach,here we systemati-cally reveal the local chemical inhomogeneity,including chemical order and compositional fluctuation,in three representative equiatomic TiZrNb-based body-centered cubic refractory high-entropy alloys(HEAs):TiZrNb,TiZrHfNb and TiZrHfNbTa.Ti-Zr pairs are found to exhibit the highest degree of chemical pref-erence among all atomic pairs.Such chemical short-range order(CSRO)induces an accompanying com-positional undulation,both extending to characteristic dimensions of the order of one nanometer.The chemical inhomogeneity trend uncovered for this series of TiZrNb-based HEAs is expected to impact their mechanical properties;e.g.,incorporating the CSRO effects in a current model significantly improves its agreement with experimental measured yield strength.
基金Funded by the National Natural Science Foundation of China(No.52071252)the Key Research and Development Plan of Shaanxi Province Industrial Project(Nos.2021GY-208,2022GY-407,and 2021ZDLSF03-11)the China Postdoctoral Science Foundation(No.2020M683670XB)。
文摘Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface compositions,and thicknesses of the films were characterized using SEM+EDS;the anti-corrosion,wear resistance and antibacterial properties of the films in simulated seawater were investigated.The experimental results show that all four Cu-(HEA)N films are uniformly dense and contained nanoparticles.The film with Cu doping come into contact with oxygen in the air to form cuprous oxide.The corrosion resistance of the(HEA)N film without Cu doping on titanium alloy is better than the films with Cu doping.The Cu-(HEA)N film with Cu target power of 16 W shows the best wear resistance and antibacterial performance,which is attributed to the fact that Cu can reduce the coefficient of friction and exacerbate corrosion,and the formation of cuprous oxide has antibacterial properties.The findings of this study provide insights for engineering applications of TC4 in the marine field.
基金supported in part by the National Science Foundation(NSF)award#CMMI-1944040。
文摘We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expedites the synthesis of amorphous alloy powder by strategically injecting entropic disorder through the inclusion of multi-principal elements in the alloy composition.Predictions from first principles and materials theory corroborate the results from microscopic characterizations that reveal a transition of the amorphous phase from a precursor intermetallic structure.This transformation,characterized by the emergence of antisite disorder,lattice expansion,and the presence of nanograin boundaries,signifies a departure from the precursor intermetallic structure.Additionally,this phase transformation is accelerated by the presence of multiple principal elements that induce severe lattice distortion and a higher configurational entropy.The atomic size mismatch of the dissimilar elements present in the alloy produces a stable amorphous phase that resists reverting to an ordered lattice even on annealing.