Climate effects of land use change in China as simulated by a regional climate model (RegCM2) are investigated. The model is nested in one-way mode within a global coupled atmosphere-ocean model (CSIRO R21L9 AOGCM). T...Climate effects of land use change in China as simulated by a regional climate model (RegCM2) are investigated. The model is nested in one-way mode within a global coupled atmosphere-ocean model (CSIRO R21L9 AOGCM). Two multi-year simulations, one with current land use and the other with potential vegetation cover, are conducted. Statistically significant changes of precipitation, surface air temperature, and daily maximum and daily minimum temperature are analyzed based on the difference between the two simulations. The simulated effects of land use change over China include a decrease of mean annual precipitation over Northwest China, a region with a prevalence of arid and semi-arid areas; an increase of mean annual surface air temperature over some areas; and a decrease of temperature along coastal areas. Summer mean daily maximum temperature increases in many locations, while winter mean daily minimum temperature decreases in East China and increases in Northwest China. The upper soil moisture decreases significantly across China. The results indicate that the same land use change may cause different climate effects in different regions depending on the surrounding environment and climate characteristics.展开更多
Changes of extreme events due to greenhouse effects (2 × CO<SUB>2</SUB>) over East Asia, with a focus on the China region as simulated by a regional climate model (RegCM2), are investigated. The model...Changes of extreme events due to greenhouse effects (2 × CO<SUB>2</SUB>) over East Asia, with a focus on the China region as simulated by a regional climate model (RegCM2), are investigated. The model is nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM). Analysis of the control run of the regional model indicates that it can reproduce well the extreme events in China. Statistically significant changes of the events are analyzed. Results show that both daily maximum and daily minimum temperature increase in 2 × CO<SUB>2</SUB> conditions, while the diurnal temperature range decreases. The number of hot spell days increases while the number of cold spell days decreases. The number of rainy days and heavy rain days increases over some sub-regions of China. The 2 × CO<SUB>2</SUB> conditions also cause some changes in the tropical storms affecting China.展开更多
A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcast...A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcasts, with a special emphasis on the adequate choice of physical parameterization schemes suitable for the East Asian monsoon climate. This regional climate model is nested with the NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM to make an experimental seasonal prediction for China and East Asia. The four-year (2001 to 2004) prediction results are encouraging. This paper is the first part of a two-part paper, and it mainly describes the sensitivity study of the physical process paraxneterization represented in the model. The systematic errors produced by the different physical parameterization schemes such as the land surface processes, convective precipitation, cloud-radiation transfer process, boundary layer process and large-scale terrain features have been identified based on multi-year and extreme flooding event simulations. A number of comparative experiments has shown that the mass flux scheme (MFS) and Betts-Miller scheme (BM) for convective precipitation, the LPMI (land surface process model I) and LPMII (land surface process model Ⅱ) for the land surface process, the CCM3 radiation transfer scheme for cloud-radiation transfer processes, the TKE (turbulent kinetic energy) scheme for the boundary layer processes and the topography treatment schemes for the Tibetan Plateau are suitable for simulations and prediction of the East Asia monsoon climate in rainy seasons. Based on the above sensitivity study, a modified version of the RegCM2 (RegCM_NCC) has been set up for climate simulations and seasonal predictions.展开更多
A nested regional climate model has been experimentally used in the seasonal prediction at the China National Climate Center (NCC) since 2001. The NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM (CGCM...A nested regional climate model has been experimentally used in the seasonal prediction at the China National Climate Center (NCC) since 2001. The NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM (CGCM) provides the boundary and initial conditions for driving the regional climate model (RegCM_NCC). The latter has a 60-km horizontal resolution and improved physical parameterization schemes including the mass flux cumulus parameterization scheme, the turbulent kinetic energy closure scheme (TKE) and an improved land process model (LPM). The large-scale terrain features such as the Tibetan Plateau are included in the larger domain to produce the topographic forcing on the rain-producing systems. A sensitivity study of the East Asian climate with regard to the above physical processes has been presented in the first part of the present paper. This is the second part, as a continuation of Part Ⅰ. In order to verify the performance of the nested regional climate model, a ten-year simulation driven by NCEP reanalysis datasets has been made to explore the performance of the East Asian climate simulation and to identify the model's systematic errors. At the same time, comparative simulation experiments for 5 years between the RegCM2 and RegCM_NCC have been done to further understand their differences in simulation performance. Also, a ten-year hindcast (1991-2000) for summer (June-August), the rainy season in China, has been undertaken. The preliminary results have shown that the RegCM_NCC is capable of predicting the major seasonal rain belts. The best predicted regions with high anomaly correlation coefficient (ACC) are located in the eastern part of West China, in Northeast China and in North China, where the CGCM has maximum prediction skill as well. This fact may reflect the importance of the largescale forcing. One significant improvement of the prediction derived from RegCM_NCC is the increase of ACC in the Yangtze River valley where the CGCM has a very low, even a negative, ACC. The reason behind this improvement is likely to be related to the more realistic representation of the large-scale terrain features of the Tibetan Plateau. Presumably, many rain-producing systems may be generated over or near the Tibetan Plateau and may then move eastward along the Yangtze River basin steered by upper-level westerly airflow, thus leading to enhancement of rainfalls in the mid and lower basins of the Yangtze River. The real-time experimental predictions for summer in 2001, 2002, 2003 and 2004 by using this nested RegCM-NCC were made. The results are basically reasonable compared with the observations.展开更多
The regional climate model (RegCM3) and a tropospheric atmosphere chemistry model (TACM) were coupled, thus a regional climate chemistry modeling system (RegCCMS) was constructed, which was applied to investigat...The regional climate model (RegCM3) and a tropospheric atmosphere chemistry model (TACM) were coupled, thus a regional climate chemistry modeling system (RegCCMS) was constructed, which was applied to investigate the spatial distribution of anthropogenic nitrate aerosols, indirect radiative forcing, as well as its climatic effect over China. TACM includes the thermodynamic equilibrium model ISORROPIA and a condensed gas-phase chemistry model. Investigations show that the concentration of nitrate aerosols is relatively high over North and East China with a maximum of 29μg m-3 in January and 8 μg m-3 in July. Due to the influence of air temperature on thermodynamic equilibrium, wet scavenging of precipitation and the monsoon climate, there are obvious seasonal differences in nitrate concentrations. The average indirect radiative forcing at the tropopause due to nitrate aerosols is -1.63 W m 2 in January and -2.65 W m 2 in July, respectively. In some areas, indirect radiative forcing reaches -10 W m-2. Sensitivity tests show that nitrate aerosols make the surface air temperature drop and the precipitation reduce on the national level. The mean changes in surface air temperature and precipitation are 0.13 K and -0.01 mm d-1 in January and -0.09 K and -0.11 mm d-1 in July, respectively, showing significant differences in different regions.展开更多
Impacts of greenhouse effects (2 × CO2) upon climate change over China as simulated by a regional climate model over China (RegCM / China) have been investigated. The model was based on RegCM2 and was nested to a...Impacts of greenhouse effects (2 × CO2) upon climate change over China as simulated by a regional climate model over China (RegCM / China) have been investigated. The model was based on RegCM2 and was nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM model). Results of the control run (1 × CO2) indicated that simulations of surface air temperature and precipitation in China by RegCM are much better than that by the global coupled model because of a higher resolution. Results of sensitive experiment by RegCM with 2 × CO2 showed that the surface air temperature over China might increase remarkably due to greenhouse effect, especially in winter season and in North China. Precipitation might also increase in most parts of China due to the CO2 doubling. Key words Regional climate model - Greenhouse effect This research was supported by National Key Programme for Developing Basic Sciences (G1998040900 — Part I), Chinese Academy of Sciences Key Program KZCX2-203 and KZ981-B1-108.展开更多
A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating p...A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating present climate over East Asia and China is investigated. Results show that RegCM3 can reproduce well the atmospheric circulation over East Asia. The simulation of the main distribution patterns of surface air temperature and precipitation over China and their seasonal cycle/evolution, are basically agree with that of the observation. Meanwhile a general cold bias is found in the simulation. As for the precipitation, the model tends to overestimate the precipitation in northern China while underestimate it in southern China, particularly in winter. In general, the model has better performance in simulating temperature than precipitation.展开更多
This paper examines the capability of three regional climate models (RCMs), i.e., RegCM3 (the International Centre for Theoretical Physics Regional Climate Model), PRECIS (Providing Regional Climates for Impacts Studi...This paper examines the capability of three regional climate models (RCMs), i.e., RegCM3 (the International Centre for Theoretical Physics Regional Climate Model), PRECIS (Providing Regional Climates for Impacts Studies) and CMM5 (the fifth-generation Pennsylvania State University-the National Center for Atmospheric Research of USA, NCAR Mesoscale Model) to simulate the near-surface-layer winds (10 m above surface) all over China in the late 20th century. Results suggest that like global climate models (GCMs), these RCMs have the certain capability of imitating the distribution of mean wind speed and fail to simulate the greatly weakening wind trends for the past 50 years in the country. However, RCMs especially RegCM3 have the better capability than that of GCMs to simulate the distribution and change feature of mean wind speed. In view of their merits, these RCMs were used to project the variability of near-surface-layer winds over China for the 21st century. The results show that 1) summer mean wind speed for 2020-2029 will be lower compared to those in 1990-1999 in most area of China; 2) annual and winter mean wind speed for 2081-2100 will be lower than those of 1971-1990 in the whole China; and 3) the changes of summer mean wind speed for 2081-2100 are uncertain. As a result, although climate models are absolutely necessary for projecting climate change to come, there are great uncertainties in projections, especially for wind speed, and these issues need to be further explored.展开更多
We simulated the impact of anthropogenic heat release (AHR) on the regional climate in three vast city agglomerations in China using the Weather Research and Forecasting model with nested high-resolution modeling.Ba...We simulated the impact of anthropogenic heat release (AHR) on the regional climate in three vast city agglomerations in China using the Weather Research and Forecasting model with nested high-resolution modeling.Based on energy consumption and high-quality land use data,we designed two scenarios to represent no-AHR and current-AHR conditions.By comparing the results of the two numerical experiments,changes of surface air temperature and precipitation due to AHR were quantified and analyzed.We concluded that AHR increases the temperature in these urbanized areas by about 0.5℃-1℃,and this increase is more pronounced in winter than in other seasons.The inclusion of AHR enhances the convergence of water vapor over urbanized areas.Together with the warming of the lower troposphere and the enhancement of ascending motions caused by AHR,the average convective available potential energy in urbanized areas is increased.Rainfall amounts in summer over urbanized areas are likely to increase and regional precipitation patterns to be altered to some extent.展开更多
Climate change significantly impacts forest ecosystems in arid and semi-arid regions.However,spatiotemporal patterns of climate-sensitive changes in individual tree growth under increased climate warming and precipita...Climate change significantly impacts forest ecosystems in arid and semi-arid regions.However,spatiotemporal patterns of climate-sensitive changes in individual tree growth under increased climate warming and precipitation in north-west China is unclear.The dendrochronological method was used to study climate response sensitivity of radial growth of Picea schrenkiana from 158 trees at six sites during 1990-2020.The results show that climate warming and increased precipitation significantly promoted the growth of trees.The response to temperature first increased,then decreased.However,the response to increased precipitation and the self-calibrating Palmer Drought Severity Index(scPDSI)increased significantly.In most areas of the Tianshan Mountains,the proportion of trees under increased precipitation and scPDSI positive response was relatively high.Over time,small-diameter trees were strongly affected by drought stress.It is predicted that under continuous warming and increased precipitation,trees in most areas of the Tianshan Mountains,especially those with small diameters,will be more affected by precipitation.展开更多
Urban environments lie at the confluence of social,cultural,and economic activities and have unique biophysical characteristics due to continued infrastructure development that generally replaces natural landscapes wi...Urban environments lie at the confluence of social,cultural,and economic activities and have unique biophysical characteristics due to continued infrastructure development that generally replaces natural landscapes with built-up structures.The vast majority of studies on urban perturbation of local weather and climate have been centered on the urban heat island(UHI)effect,referring to the higher temperature in cities compared to their natural surroundings.Besides the UHI effect and heat waves,urbanization also impacts atmospheric moisture,wind,boundary layer structure,cloud formation,dispersion of air pollutants,precipitation,and storms.In this review article,we first introduce the datasets and methods used in studying urban areas and their impacts through both observation and modeling and then summarize the scientific insights on the impact of urbanization on various aspects of regional climate and extreme weather based on more than 500 studies.We also highlight the major research gaps and challenges in our understanding of the impacts of urbanization and provide our perspective and recommendations for future research priorities and directions.展开更多
Considering a detailed hydrologic model in the land surface scheme helps to improve the simulation of regional hydro-climatology. A hydrologic model, which includes spatial heterogeneities in precipitation and infiltr...Considering a detailed hydrologic model in the land surface scheme helps to improve the simulation of regional hydro-climatology. A hydrologic model, which includes spatial heterogeneities in precipitation and infiltration, is constructed and incorporated into the land surface scheme BATS. Via the coupled-model (i.e., a regional climate model) simulations, the following major conclusions are obtained: the simulation of surface hydrology is sensitive to the inclusion of heterogeneities in precipitation and infiltration; the runoff ratio is increased after considering the infiltration heterogeneity, a result which is more consistent with the observations of surface moisture balance over humid areas; the introduction of the parameterization of infiltration heterogeneity can have a greater influence on the regional hydro-climatology than the precipitation heterogeneity; and the consideration of the impermeable fraction for the region reveals some features that are closer to the trend of aridification over northern China.展开更多
Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The loc...Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The locus of the study was on the ensemble projection of cli- mate change in the mid-21st century (2031-50) over China. Validation of each simulation and the ensemble average showed good performances of the models overall, as well as advantages of the ensemble in reproducing present day (1981 2000) December-February (DJF), June-August (JJA), and annual (ANN) mean temperature and precipitation. Significant wanning was projected for the mid-21st century, with larger values of temperature increase found in the northern part of China and in the cold seasons. The ensemble average changes of precipitation in DJF, JJA, and ANN were determined, and the uncertainties of the projected changes analyzed based on the consistencies of the simulations. It was concluded that the largest uncertainties in precipitation projection are in eastern China during the summer season (monsoon pre-cipitation).展开更多
Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). ...Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). A control experiment is performed with two runs driven by the mean ERA-40 data during 1958-1977 and 1981 2000, respectively. The model reproduces the major decadal-scale circulation changes in late spring over East Asia, including a cooling in the upper troposphere and an anomalous meridional cell. Accordingly, the precipitation decrease is also captured in the southeast of the upper-level cooling region. To quantify the role of the upper-level cooling in the drought mechanism, a sensitivity experiment is further conducted with the cooling imposed in the upper troposphere. It is demonstrated that the upper-level cooling can generate the anomalous meridional cell and consequently the drought to the southeast of the cooling center. Therefore, upper tropospheric cooling should have played a dominant role in the observed late spring drought over Southeast China in recent decades.展开更多
The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation.The rates of change in future precipitation extremes are quantified with changes ...The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation.The rates of change in future precipitation extremes are quantified with changes in surface air temperature.Precipitation extremes in China are determined for the 21st century in six simulations using a regional climate model,RegCM4,and 17 global climate models that participated in CMIP5.First,we assess the performance of the CMIP5 models and RCM runs in their simulation of extreme precipitation for the current period(RF:1982-2001).The CMIP5 models and RCM results can capture the spatial variations of precipitation extremes,as well as those based on observations:OBS and XPP.Precipitation extremes over four subregions in China are predicted to increase in the mid-future(MF:2039-58)and far-future(FF:2079-98)relative to those for the RF period based on both the CMIP5 ensemble mean and RCM ensemble mean.The secular trends in the extremes of the CMIP5 models are predicted to increase from 2008 to 2058,and the RCM results show higher interannual variability relative to that of the CMIP5 models.Then,we quantify the increasing rates of change in precipitation extremes in the MF and FF periods in the subregions of China with the changes in surface air temperature.Finally,based on the water vapor equation,changes in precipitation extremes in China for the MF and FF periods are found to correlate positively with changes in the atmospheric vertical wind multiplied by changes in surface specific humidity(significant at the p<0.1 level).展开更多
This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC freq...This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC frequency was considerably overestimated. Additionally, the tracks of some TCs tended to have larger radii of curvature and were shifted eastward. The large-scale environments of westerly monsoon flows and subtropical Pacific highs were unreasonably simulated. The overestimated frequency of TC formation was attributed to a strengthened westerly wind field in the southern quadrants of the TC center. In comparison with the experiment with the spectral nudging method, the strengthened wind speed was mainly modulated by large-scale flow that was greater than approximately 1000 km in the model domain. The spurious formation and undesirable tracks of TCs in the CTL were considerably improved by reproducing realistic large-scale atmospheric monsoon circulation with substantial adjustment between large-scale flow in the model domain and large-scale boundary forcing modified by the spectral nudging method. The realistic monsoon circulation took a vital role in simulating realistic TCs. It revealed that, in the downscaling from large-scale fields for regional climate simulations, scale interaction between model-generated regional features and forced large-scale fields should be considered, and spectral nudging is a desirable method in the downscaling method.展开更多
The West Development Policy being implemented in China causes significant land use and land cover (LULC) changes in West China, of which the two most important types of LULC change are replacing farmland and re-greeni...The West Development Policy being implemented in China causes significant land use and land cover (LULC) changes in West China, of which the two most important types of LULC change are replacing farmland and re-greening the desertification land with forest or grass. This paper modifies the prevailing regional climate model (RCM) by updating its lower boundary conditions with the up-to-date satellite database of the Global Land Cover Characteristics Database (GLCCD) created by the United States Geological Survey and the University of Nebraska-Lincoln. The modified RCM is used to simulate the possible regional climate changes due to the LULC variations. The preliminary results can be summarized as that the two main types of LULC variation, replacing farmland and greening the desertification lands with forest or grass in west China, will affect the regional climate mostly in northwest and north China, where the surface temperature will decrease and the precipitation will increase. The regional climate adjustments in South, Southwest China and on the Tibet Plateau are uncertain.展开更多
The extreme summer precipitation over East China during 1982-2007 was simulated using the LASG/IAP regional climate model CREM(the Climate version of a Regional Eta-coordinate Model).The results show that the probabil...The extreme summer precipitation over East China during 1982-2007 was simulated using the LASG/IAP regional climate model CREM(the Climate version of a Regional Eta-coordinate Model).The results show that the probability density functions(PDFs) of precipitation intensities are reasonably simulated,except that the PDFs of light and moderate rain are underestimated and that the PDFs of heavy rain are overestimated.The extreme precipitation amount(R95p) and the percent contribution of extreme precipitation to the total precipitation(R95pt) are also reasonably reproduced by the CREM.However,the R95p and R95pt over most of East China are generally overestimated,while the R95p along the coastal area of South China(SC) is underestimated.The bias of R95pt is consistent with the bias of precipitation intensity on wet days(SDII).The interannual variation for R95p anomalies(PC1) is well simulated,but that of R95pt anomalies(PC2) is poorly simulated.The skill of the model in simulating PC1(PC2) increases(decreases) from north to south.The bias of water vapor transport associated with the 95th percentile of summer daily precipitation(WVTr95) explains well the bias of the simulated extreme precipitation.展开更多
The "combined approach", which is suitable to represent subgrid land surface heterogeneity in both interpatch and intra-patch variabilities, is employed in the BiOsphere/Atmosphere Transfer Scheme (BATS) as a land...The "combined approach", which is suitable to represent subgrid land surface heterogeneity in both interpatch and intra-patch variabilities, is employed in the BiOsphere/Atmosphere Transfer Scheme (BATS) as a land surface component of the regional climate model RegCM3 to consider the heterogeneities in temperature and moisture at the land surface, and then annual-scale simulations for 5 years (1988-1992) were conducted. Results showed that on the annual scale, the model's response to the heterogeneities is quite sensitive, and that the effect of the temperature heterogeneity (TH) is more pronounced than the moisture heterogeneity (MH). On the intraannual scale, TH may lead to more (less) precipitation in warm (cold) seasons, and hence lead to larger intraannual variability in precipitation; the major MH effects may be lagged by about 1 month during the warm, rainy seasons, inducing -6% more precipitation for some sub-regions. Additionally, the modeled climate for the northern sub-regions shows larger sensitivities to the land surface heterogeneities than those for the southern sub-regions. Since state-of-art land surface models seldom account for surface intra-patch variabilities, this study emphasizes the importance of including this kind of variability in the land surface models.展开更多
A surface runoff parameterization scheme that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell together with a consideration of the subgrid-scaie soil heterogeneity, i...A surface runoff parameterization scheme that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell together with a consideration of the subgrid-scaie soil heterogeneity, is implemented into the National Climate Center regional climate model (RegCM_NCC). The effects of the modified surface runoff scheme on RegCMANCC performance are tested with an abnormal heavy rainfall process which occurred in summer 1998. Simulated results show that the model with the original surface runoff scheme (noted as CTL) basically captures the spatial pattern of precipitation, circulation and land surface variables, but generally overestimates rainfall compared to observations. The model with the new surface runoff scheme (noted as NRM) reasonably reproduces the distribution pattern of various variables and effectively diminishes the excessive precipitation in the CTL. The processes involved in the improvement of NRM-simulated rainfall may be as follows: with the new surface runoff scheme, simulated surface runoff is larger, soil moisture and evaporation (latent heat flux) are decreased, the available water into the atmosphere is decreased; correspondingly, the atmosphere is drier and rainfall is decreased through various processes. Therefore, the implementation of the new runoff scheme into the RegCMANCC has a significant effect on results at not only the land surface, but also the overlying atmosphere.展开更多
文摘Climate effects of land use change in China as simulated by a regional climate model (RegCM2) are investigated. The model is nested in one-way mode within a global coupled atmosphere-ocean model (CSIRO R21L9 AOGCM). Two multi-year simulations, one with current land use and the other with potential vegetation cover, are conducted. Statistically significant changes of precipitation, surface air temperature, and daily maximum and daily minimum temperature are analyzed based on the difference between the two simulations. The simulated effects of land use change over China include a decrease of mean annual precipitation over Northwest China, a region with a prevalence of arid and semi-arid areas; an increase of mean annual surface air temperature over some areas; and a decrease of temperature along coastal areas. Summer mean daily maximum temperature increases in many locations, while winter mean daily minimum temperature decreases in East China and increases in Northwest China. The upper soil moisture decreases significantly across China. The results indicate that the same land use change may cause different climate effects in different regions depending on the surrounding environment and climate characteristics.
基金Thanks are due to CSIRO in Australia and the Institute of Botany,Chinese Academy of Sciences,National Climate Center of China , for providing the data sets of the GCM and the vegetation coverThis research was supported by the National Natural Science Foundation of China under Grant No, 40125014National Key Programme for Developing Basic Sciences (G1998040900-part 1).
文摘Changes of extreme events due to greenhouse effects (2 × CO<SUB>2</SUB>) over East Asia, with a focus on the China region as simulated by a regional climate model (RegCM2), are investigated. The model is nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM). Analysis of the control run of the regional model indicates that it can reproduce well the extreme events in China. Statistically significant changes of the events are analyzed. Results show that both daily maximum and daily minimum temperature increase in 2 × CO<SUB>2</SUB> conditions, while the diurnal temperature range decreases. The number of hot spell days increases while the number of cold spell days decreases. The number of rainy days and heavy rain days increases over some sub-regions of China. The 2 × CO<SUB>2</SUB> conditions also cause some changes in the tropical storms affecting China.
文摘A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcasts, with a special emphasis on the adequate choice of physical parameterization schemes suitable for the East Asian monsoon climate. This regional climate model is nested with the NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM to make an experimental seasonal prediction for China and East Asia. The four-year (2001 to 2004) prediction results are encouraging. This paper is the first part of a two-part paper, and it mainly describes the sensitivity study of the physical process paraxneterization represented in the model. The systematic errors produced by the different physical parameterization schemes such as the land surface processes, convective precipitation, cloud-radiation transfer process, boundary layer process and large-scale terrain features have been identified based on multi-year and extreme flooding event simulations. A number of comparative experiments has shown that the mass flux scheme (MFS) and Betts-Miller scheme (BM) for convective precipitation, the LPMI (land surface process model I) and LPMII (land surface process model Ⅱ) for the land surface process, the CCM3 radiation transfer scheme for cloud-radiation transfer processes, the TKE (turbulent kinetic energy) scheme for the boundary layer processes and the topography treatment schemes for the Tibetan Plateau are suitable for simulations and prediction of the East Asia monsoon climate in rainy seasons. Based on the above sensitivity study, a modified version of the RegCM2 (RegCM_NCC) has been set up for climate simulations and seasonal predictions.
文摘A nested regional climate model has been experimentally used in the seasonal prediction at the China National Climate Center (NCC) since 2001. The NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM (CGCM) provides the boundary and initial conditions for driving the regional climate model (RegCM_NCC). The latter has a 60-km horizontal resolution and improved physical parameterization schemes including the mass flux cumulus parameterization scheme, the turbulent kinetic energy closure scheme (TKE) and an improved land process model (LPM). The large-scale terrain features such as the Tibetan Plateau are included in the larger domain to produce the topographic forcing on the rain-producing systems. A sensitivity study of the East Asian climate with regard to the above physical processes has been presented in the first part of the present paper. This is the second part, as a continuation of Part Ⅰ. In order to verify the performance of the nested regional climate model, a ten-year simulation driven by NCEP reanalysis datasets has been made to explore the performance of the East Asian climate simulation and to identify the model's systematic errors. At the same time, comparative simulation experiments for 5 years between the RegCM2 and RegCM_NCC have been done to further understand their differences in simulation performance. Also, a ten-year hindcast (1991-2000) for summer (June-August), the rainy season in China, has been undertaken. The preliminary results have shown that the RegCM_NCC is capable of predicting the major seasonal rain belts. The best predicted regions with high anomaly correlation coefficient (ACC) are located in the eastern part of West China, in Northeast China and in North China, where the CGCM has maximum prediction skill as well. This fact may reflect the importance of the largescale forcing. One significant improvement of the prediction derived from RegCM_NCC is the increase of ACC in the Yangtze River valley where the CGCM has a very low, even a negative, ACC. The reason behind this improvement is likely to be related to the more realistic representation of the large-scale terrain features of the Tibetan Plateau. Presumably, many rain-producing systems may be generated over or near the Tibetan Plateau and may then move eastward along the Yangtze River basin steered by upper-level westerly airflow, thus leading to enhancement of rainfalls in the mid and lower basins of the Yangtze River. The real-time experimental predictions for summer in 2001, 2002, 2003 and 2004 by using this nested RegCM-NCC were made. The results are basically reasonable compared with the observations.
基金supported by the National Basic Research Program of China (Grant Nos. 2006CB403706 and 2006CB403703)the National Science and Technology Support Program (Grant No.2007BAC03A01)the Jiangsu Natural Science Foundation (Grant No. BK2006515)
文摘The regional climate model (RegCM3) and a tropospheric atmosphere chemistry model (TACM) were coupled, thus a regional climate chemistry modeling system (RegCCMS) was constructed, which was applied to investigate the spatial distribution of anthropogenic nitrate aerosols, indirect radiative forcing, as well as its climatic effect over China. TACM includes the thermodynamic equilibrium model ISORROPIA and a condensed gas-phase chemistry model. Investigations show that the concentration of nitrate aerosols is relatively high over North and East China with a maximum of 29μg m-3 in January and 8 μg m-3 in July. Due to the influence of air temperature on thermodynamic equilibrium, wet scavenging of precipitation and the monsoon climate, there are obvious seasonal differences in nitrate concentrations. The average indirect radiative forcing at the tropopause due to nitrate aerosols is -1.63 W m 2 in January and -2.65 W m 2 in July, respectively. In some areas, indirect radiative forcing reaches -10 W m-2. Sensitivity tests show that nitrate aerosols make the surface air temperature drop and the precipitation reduce on the national level. The mean changes in surface air temperature and precipitation are 0.13 K and -0.01 mm d-1 in January and -0.09 K and -0.11 mm d-1 in July, respectively, showing significant differences in different regions.
基金This research was supported by National Key Programme for Developing Basic Sciences(G1998040900 - Part I) Chinese Academy of
文摘Impacts of greenhouse effects (2 × CO2) upon climate change over China as simulated by a regional climate model over China (RegCM / China) have been investigated. The model was based on RegCM2 and was nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM model). Results of the control run (1 × CO2) indicated that simulations of surface air temperature and precipitation in China by RegCM are much better than that by the global coupled model because of a higher resolution. Results of sensitive experiment by RegCM with 2 × CO2 showed that the surface air temperature over China might increase remarkably due to greenhouse effect, especially in winter season and in North China. Precipitation might also increase in most parts of China due to the CO2 doubling. Key words Regional climate model - Greenhouse effect This research was supported by National Key Programme for Developing Basic Sciences (G1998040900 — Part I), Chinese Academy of Sciences Key Program KZCX2-203 and KZ981-B1-108.
基金Research supported by the National Key Program for Developing Basic Sciences(2006CB400506) of China Climate Change Study Fund of the China Meteorological Administration(CCSF2008-8)
文摘A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating present climate over East Asia and China is investigated. Results show that RegCM3 can reproduce well the atmospheric circulation over East Asia. The simulation of the main distribution patterns of surface air temperature and precipitation over China and their seasonal cycle/evolution, are basically agree with that of the observation. Meanwhile a general cold bias is found in the simulation. As for the precipitation, the model tends to overestimate the precipitation in northern China while underestimate it in southern China, particularly in winter. In general, the model has better performance in simulating temperature than precipitation.
基金Under the jointly auspices of the Special Public Research for Meteorological Industry (No. GYHY200806009)Wind Energy Resources Detailed Survey and Assessment WorkEU-China Energy and Environment Program (No. Europe Aid/ 123310/D/Ser/CN)
文摘This paper examines the capability of three regional climate models (RCMs), i.e., RegCM3 (the International Centre for Theoretical Physics Regional Climate Model), PRECIS (Providing Regional Climates for Impacts Studies) and CMM5 (the fifth-generation Pennsylvania State University-the National Center for Atmospheric Research of USA, NCAR Mesoscale Model) to simulate the near-surface-layer winds (10 m above surface) all over China in the late 20th century. Results suggest that like global climate models (GCMs), these RCMs have the certain capability of imitating the distribution of mean wind speed and fail to simulate the greatly weakening wind trends for the past 50 years in the country. However, RCMs especially RegCM3 have the better capability than that of GCMs to simulate the distribution and change feature of mean wind speed. In view of their merits, these RCMs were used to project the variability of near-surface-layer winds over China for the 21st century. The results show that 1) summer mean wind speed for 2020-2029 will be lower compared to those in 1990-1999 in most area of China; 2) annual and winter mean wind speed for 2081-2100 will be lower than those of 1971-1990 in the whole China; and 3) the changes of summer mean wind speed for 2081-2100 are uncertain. As a result, although climate models are absolutely necessary for projecting climate change to come, there are great uncertainties in projections, especially for wind speed, and these issues need to be further explored.
基金supported by the Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (Grant No. XDA05090000)the National Key Program for Developing Basic Sciences of China (Grant No. 2009CB421401)+1 种基金the Special Fund for Meteorological Scientific Research in Public Interest (Grant No. GYHY201106028)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-EW-202)
文摘We simulated the impact of anthropogenic heat release (AHR) on the regional climate in three vast city agglomerations in China using the Weather Research and Forecasting model with nested high-resolution modeling.Based on energy consumption and high-quality land use data,we designed two scenarios to represent no-AHR and current-AHR conditions.By comparing the results of the two numerical experiments,changes of surface air temperature and precipitation due to AHR were quantified and analyzed.We concluded that AHR increases the temperature in these urbanized areas by about 0.5℃-1℃,and this increase is more pronounced in winter than in other seasons.The inclusion of AHR enhances the convergence of water vapor over urbanized areas.Together with the warming of the lower troposphere and the enhancement of ascending motions caused by AHR,the average convective available potential energy in urbanized areas is increased.Rainfall amounts in summer over urbanized areas are likely to increase and regional precipitation patterns to be altered to some extent.
基金funded by the National Natural Science Foundation of China(No.31971460 and 32271646)the National Key Research and Development Program of China(2021YFD2200401)。
文摘Climate change significantly impacts forest ecosystems in arid and semi-arid regions.However,spatiotemporal patterns of climate-sensitive changes in individual tree growth under increased climate warming and precipitation in north-west China is unclear.The dendrochronological method was used to study climate response sensitivity of radial growth of Picea schrenkiana from 158 trees at six sites during 1990-2020.The results show that climate warming and increased precipitation significantly promoted the growth of trees.The response to temperature first increased,then decreased.However,the response to increased precipitation and the self-calibrating Palmer Drought Severity Index(scPDSI)increased significantly.In most areas of the Tianshan Mountains,the proportion of trees under increased precipitation and scPDSI positive response was relatively high.Over time,small-diameter trees were strongly affected by drought stress.It is predicted that under continuous warming and increased precipitation,trees in most areas of the Tianshan Mountains,especially those with small diameters,will be more affected by precipitation.
基金supported by the US Department of Energy,Office of Science,Biological and Environmental Research program,as part of the Regional and Global Modeling and Analysis(RGMA)program,Multi-sector Dynamics Modeling(MSD)program,and Earth System Model Development(ESMD)program,through the collaborative,multiprogram Integrated Coastal Modeling(ICoM)project,HyperFACETS project,and COMPASS-GLM projectPacific Northwest National Laboratory is operated for the Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830.
文摘Urban environments lie at the confluence of social,cultural,and economic activities and have unique biophysical characteristics due to continued infrastructure development that generally replaces natural landscapes with built-up structures.The vast majority of studies on urban perturbation of local weather and climate have been centered on the urban heat island(UHI)effect,referring to the higher temperature in cities compared to their natural surroundings.Besides the UHI effect and heat waves,urbanization also impacts atmospheric moisture,wind,boundary layer structure,cloud formation,dispersion of air pollutants,precipitation,and storms.In this review article,we first introduce the datasets and methods used in studying urban areas and their impacts through both observation and modeling and then summarize the scientific insights on the impact of urbanization on various aspects of regional climate and extreme weather based on more than 500 studies.We also highlight the major research gaps and challenges in our understanding of the impacts of urbanization and provide our perspective and recommendations for future research priorities and directions.
基金This work was jointly supported by the National Natural Science Foundation of China under Grant No. 40205012, and 40201048, the Chinese NKBRSF Project G1999043400 and the Foundation of the China Ministry of Education (Grant No. 20010284027). The computat
文摘Considering a detailed hydrologic model in the land surface scheme helps to improve the simulation of regional hydro-climatology. A hydrologic model, which includes spatial heterogeneities in precipitation and infiltration, is constructed and incorporated into the land surface scheme BATS. Via the coupled-model (i.e., a regional climate model) simulations, the following major conclusions are obtained: the simulation of surface hydrology is sensitive to the inclusion of heterogeneities in precipitation and infiltration; the runoff ratio is increased after considering the infiltration heterogeneity, a result which is more consistent with the observations of surface moisture balance over humid areas; the introduction of the parameterization of infiltration heterogeneity can have a greater influence on the regional hydro-climatology than the precipitation heterogeneity; and the consideration of the impermeable fraction for the region reveals some features that are closer to the trend of aridification over northern China.
基金supported by the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201306019)the National Natural Science Foundation of China (Grant No. 41375104)the China-UK-Swiss Adapting to Climate Change in China Project (ACCC)-Climate Science
文摘Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The locus of the study was on the ensemble projection of cli- mate change in the mid-21st century (2031-50) over China. Validation of each simulation and the ensemble average showed good performances of the models overall, as well as advantages of the ensemble in reproducing present day (1981 2000) December-February (DJF), June-August (JJA), and annual (ANN) mean temperature and precipitation. Significant wanning was projected for the mid-21st century, with larger values of temperature increase found in the northern part of China and in the cold seasons. The ensemble average changes of precipitation in DJF, JJA, and ANN were determined, and the uncertainties of the projected changes analyzed based on the consistencies of the simulations. It was concluded that the largest uncertainties in precipitation projection are in eastern China during the summer season (monsoon pre-cipitation).
文摘Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). A control experiment is performed with two runs driven by the mean ERA-40 data during 1958-1977 and 1981 2000, respectively. The model reproduces the major decadal-scale circulation changes in late spring over East Asia, including a cooling in the upper troposphere and an anomalous meridional cell. Accordingly, the precipitation decrease is also captured in the southeast of the upper-level cooling region. To quantify the role of the upper-level cooling in the drought mechanism, a sensitivity experiment is further conducted with the cooling imposed in the upper troposphere. It is demonstrated that the upper-level cooling can generate the anomalous meridional cell and consequently the drought to the southeast of the cooling center. Therefore, upper tropospheric cooling should have played a dominant role in the observed late spring drought over Southeast China in recent decades.
基金`This study was supported by the National Key Research and Development Program of China(Grant No.2019YFA0606903)the National Natural Science Foundation of China(Grant No.42075162)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA23090102).
文摘The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation.The rates of change in future precipitation extremes are quantified with changes in surface air temperature.Precipitation extremes in China are determined for the 21st century in six simulations using a regional climate model,RegCM4,and 17 global climate models that participated in CMIP5.First,we assess the performance of the CMIP5 models and RCM runs in their simulation of extreme precipitation for the current period(RF:1982-2001).The CMIP5 models and RCM results can capture the spatial variations of precipitation extremes,as well as those based on observations:OBS and XPP.Precipitation extremes over four subregions in China are predicted to increase in the mid-future(MF:2039-58)and far-future(FF:2079-98)relative to those for the RF period based on both the CMIP5 ensemble mean and RCM ensemble mean.The secular trends in the extremes of the CMIP5 models are predicted to increase from 2008 to 2058,and the RCM results show higher interannual variability relative to that of the CMIP5 models.Then,we quantify the increasing rates of change in precipitation extremes in the MF and FF periods in the subregions of China with the changes in surface air temperature.Finally,based on the water vapor equation,changes in precipitation extremes in China for the MF and FF periods are found to correlate positively with changes in the atmospheric vertical wind multiplied by changes in surface specific humidity(significant at the p<0.1 level).
基金funded by the Korea Meteorological Administration Research and Development Program under grant KMIPA 2015–2083
文摘This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC frequency was considerably overestimated. Additionally, the tracks of some TCs tended to have larger radii of curvature and were shifted eastward. The large-scale environments of westerly monsoon flows and subtropical Pacific highs were unreasonably simulated. The overestimated frequency of TC formation was attributed to a strengthened westerly wind field in the southern quadrants of the TC center. In comparison with the experiment with the spectral nudging method, the strengthened wind speed was mainly modulated by large-scale flow that was greater than approximately 1000 km in the model domain. The spurious formation and undesirable tracks of TCs in the CTL were considerably improved by reproducing realistic large-scale atmospheric monsoon circulation with substantial adjustment between large-scale flow in the model domain and large-scale boundary forcing modified by the spectral nudging method. The realistic monsoon circulation took a vital role in simulating realistic TCs. It revealed that, in the downscaling from large-scale fields for regional climate simulations, scale interaction between model-generated regional features and forced large-scale fields should be considered, and spectral nudging is a desirable method in the downscaling method.
基金This study was supported bythe National Key Basic Research Development Programgranted by the Ministry of Science and Technology ofChina (MSTC) with project number G1999043500. Itwas also partly supported by the Innovation Program ofthe Chinese
文摘The West Development Policy being implemented in China causes significant land use and land cover (LULC) changes in West China, of which the two most important types of LULC change are replacing farmland and re-greening the desertification land with forest or grass. This paper modifies the prevailing regional climate model (RCM) by updating its lower boundary conditions with the up-to-date satellite database of the Global Land Cover Characteristics Database (GLCCD) created by the United States Geological Survey and the University of Nebraska-Lincoln. The modified RCM is used to simulate the possible regional climate changes due to the LULC variations. The preliminary results can be summarized as that the two main types of LULC variation, replacing farmland and greening the desertification lands with forest or grass in west China, will affect the regional climate mostly in northwest and north China, where the surface temperature will decrease and the precipitation will increase. The regional climate adjustments in South, Southwest China and on the Tibet Plateau are uncertain.
基金supported by the China-UK-Swiss Adapting to Climate Change in China Project (ACCC)- Climate Sciencethe Public Science and Technology Research Funds Projects of Ocean (Grant No. 201105019-3)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q11-04)
文摘The extreme summer precipitation over East China during 1982-2007 was simulated using the LASG/IAP regional climate model CREM(the Climate version of a Regional Eta-coordinate Model).The results show that the probability density functions(PDFs) of precipitation intensities are reasonably simulated,except that the PDFs of light and moderate rain are underestimated and that the PDFs of heavy rain are overestimated.The extreme precipitation amount(R95p) and the percent contribution of extreme precipitation to the total precipitation(R95pt) are also reasonably reproduced by the CREM.However,the R95p and R95pt over most of East China are generally overestimated,while the R95p along the coastal area of South China(SC) is underestimated.The bias of R95pt is consistent with the bias of precipitation intensity on wet days(SDII).The interannual variation for R95p anomalies(PC1) is well simulated,but that of R95pt anomalies(PC2) is poorly simulated.The skill of the model in simulating PC1(PC2) increases(decreases) from north to south.The bias of water vapor transport associated with the 95th percentile of summer daily precipitation(WVTr95) explains well the bias of the simulated extreme precipitation.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(IAP09306)the National Natural Science Foundation of China under Grant Nos. 40875067 and 40675040the National Basic Research Program of China under Grant No.2006CB400505
文摘The "combined approach", which is suitable to represent subgrid land surface heterogeneity in both interpatch and intra-patch variabilities, is employed in the BiOsphere/Atmosphere Transfer Scheme (BATS) as a land surface component of the regional climate model RegCM3 to consider the heterogeneities in temperature and moisture at the land surface, and then annual-scale simulations for 5 years (1988-1992) were conducted. Results showed that on the annual scale, the model's response to the heterogeneities is quite sensitive, and that the effect of the temperature heterogeneity (TH) is more pronounced than the moisture heterogeneity (MH). On the intraannual scale, TH may lead to more (less) precipitation in warm (cold) seasons, and hence lead to larger intraannual variability in precipitation; the major MH effects may be lagged by about 1 month during the warm, rainy seasons, inducing -6% more precipitation for some sub-regions. Additionally, the modeled climate for the northern sub-regions shows larger sensitivities to the land surface heterogeneities than those for the southern sub-regions. Since state-of-art land surface models seldom account for surface intra-patch variabilities, this study emphasizes the importance of including this kind of variability in the land surface models.
文摘A surface runoff parameterization scheme that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell together with a consideration of the subgrid-scaie soil heterogeneity, is implemented into the National Climate Center regional climate model (RegCM_NCC). The effects of the modified surface runoff scheme on RegCMANCC performance are tested with an abnormal heavy rainfall process which occurred in summer 1998. Simulated results show that the model with the original surface runoff scheme (noted as CTL) basically captures the spatial pattern of precipitation, circulation and land surface variables, but generally overestimates rainfall compared to observations. The model with the new surface runoff scheme (noted as NRM) reasonably reproduces the distribution pattern of various variables and effectively diminishes the excessive precipitation in the CTL. The processes involved in the improvement of NRM-simulated rainfall may be as follows: with the new surface runoff scheme, simulated surface runoff is larger, soil moisture and evaporation (latent heat flux) are decreased, the available water into the atmosphere is decreased; correspondingly, the atmosphere is drier and rainfall is decreased through various processes. Therefore, the implementation of the new runoff scheme into the RegCMANCC has a significant effect on results at not only the land surface, but also the overlying atmosphere.