In order to realize the in-situ evaluation of reinforced concrete bridges subjected to fatigue for a long time or after earthquake, an evaluation method for cumulative damage of concrete structures based on unloading ...In order to realize the in-situ evaluation of reinforced concrete bridges subjected to fatigue for a long time or after earthquake, an evaluation method for cumulative damage of concrete structures based on unloading elastic modulus was proposed. First, according to the concrete stress-strain curve and the statistical relationship between residual strain and cumulative strain, the calculation method of static equivalent strain and residual strain concrete based on unloading elastic modulus and the method for estimating the strength of concrete after damage were proposed. The detailed steps of field test and analysis and the practical damage indicators of residual strain were given. Then, the evaluation method of existing stress and strain of Reinforced Concrete Bridge under dead load and the concept of “equivalent dead load bending moment” were put forward. On this basis, the paper analyzed the root cause of the decrease of bearing capacity of Reinforced Concrete Bridge after fatigue damage, and pointed out that the equivalent strain or residual strain of reinforced concrete increases under the fatigue effect, which led to the decreasing of actual live moment and deformation performance while the ultimate load-carrying capacity remained constant or very little decrease. The evaluation method of structure residual capacity was given, and through comparative analysis of eight T reinforced concrete beams that had been in service for 35 years with the static failure tests, the effectiveness of the method was verified.展开更多
AIM: To investigate the effect of a Chinese medicine, Kaiyu Qingwei Jianji (KYQWJJ) used for diabetic treatment, on the morphometry and residual strain distribution of the small intestine in streptozotocin (STZ) ...AIM: To investigate the effect of a Chinese medicine, Kaiyu Qingwei Jianji (KYQWJJ) used for diabetic treatment, on the morphometry and residual strain distribution of the small intestine in streptozotocin (STZ) -induced diabetic rats. Correlation analysis was also performed between the opening angle and residual strain with the blood glucose level. METHODS: Forty-two male Wistar rats weighing 220-240 g were included in this study. Thirty-two STZ- induced diabetic rats were subdivided into four groups (n = 8 in each group), i.e. diabetic control group (DM); high dose of KYQWJJ (T1, 36g/kg per day); low dose of KYQWJJ (T2, 17 g/kg per day) and Gliclazide (T3, 50 mg/kg per day). Another ten rats were used as nondiabetic control (CON). The medicines were poured directly into stomach lumen by gastric lavage twice daily. The rats of CON and DM groups were only poured the physiological saline. Blood glucose and plasma insulin levels were measured. Experimental period was 35 d. At the end of experiment, three 5-cm long segments were harvested from the duodenum, jejunum and ileum. Three rings of 1-2 mm in length for no-load and zero-stress state tests were cut from the middle of different segments. The morphometric data, such as the circumferential length, the wall thickness and the opening angle were measured from the digitized images of intestinal segments in the no-load state and zerostress state. The residual strain was computed from the morphometry data. Furthermore, the linear regression analysis was performed between blood glucose level with morphometric and biomechanical data in the different intestinal segments. RESULTS: The blood glucose level of DM group was consistent 4-fold to 5-fold higher than those in CON group during the experiment (16.89 ± 1.11 vs 3.44 ± 0.15 mmol/L, P 〈 0.001). The blood glucose level in the T1 (16.89 ± 1.11 vs 11.08 ± 2.67 mmol/L, P 〈 0.01) and T3 groups (16.89 ± 1.11 vs 13.54 ± 1.73 mmol/L, P 〈 0.05), but not in T2 group (P 〉 0.05) was significantly lower than those in DM group. The plasma insulin levels of DM, T1, T2 and T3 groups were significantly lower than those in CON group (10.98 ± 1.02, 12.52 ± 1.42,13.54 ± 1.56,10.96 ± 0.96 vs 17.84 ± 2.34 pmol/L respectively, P 〈 0.05), but no significantly difference among the groups with exception of CON group. The wet weight/cm and total wall thickness of duodenum, jejunum and ileum in DM group were significantly higher than those in CON group (wet weight (g/cm): duodenum 0.209 ± 0.012 vs 0.166 ± 0.010, jejunum 0.149 ± 0.008 vs 0.121 ± 0.004, ileum 0.134 ± 0.013 vs 0.112 ± 0.007; Wall thickness (mm): duodenum 0.849 ± 0.027 vs 0.710 ± 0.026, jejunum 0.7259 ± 0.034 vs 0.627 ± 0.025, ileum 0.532 ± 0.023 vs 0.470 ± 0.010, all P 〈 0.05), T1 and T3 treatment could partly restore change of wall thickness, but T2 could not. The opening angle and absolute value of inner and outer residual stain were significantly smaller in duodenal segment (188 ± 11 degrees, -0.31 ± 0.02 and 0.35 ± 0.03 vs 259 ± 15 degrees, -0.40 ± 0.02 and 0.43 ± 0.05) and larger in jejunal (215 ± 20 degrees, -0.30 ± 0.03 and 0.36 ± 0.06 vs 172 ± 19 degrees, -0.25 ± 0.02 and 0.27 ± 0.02) and ileal segments (183 ± 20 degrees, -0.28 ± 0.01 and 0.34 ± 0.05 vs 153 ± 14 degrees, -0.23 ± 0.03 and 0.29 ± 0.04) in DM group than in CON group (P 〈 0.01). TI and T3 treatment could partly restore this biomechanical alteration, but strong effect was found in T1 treatment (duodenum 243 ± 14 degrees, -0.36 ± 0.02 and 0.42 ± 0.06, jejunum 180 ± 15 degrees, -0.26 ± 0.03 and 0.30 ± 0.06 and ileum 163 ± 17 degrees, -0.23 ± 0.03 and 0.30 ± 0.05, compared with DM, P 〈 0.05). The linear association was found between the glucose level with most morphometric and biomechanical data. CONCLUSION: KYQWJJ (high dose) treatment could partly restore the changes of blood glucose level and the remodeling of morphometry and residual strain of small intestine in diabetic rats. The linear regression analysis demonstrated that the effect of KYQWJJ on intestinal opening angle and residual strain is partially through its effect on the blood glucose level.展开更多
Fatigue behaviour has important implications for engineering composite structures in sectors ranging from automotive to aerospace. Optical sensing technology displays excellent performance in these fields for monitori...Fatigue behaviour has important implications for engineering composite structures in sectors ranging from automotive to aerospace. Optical sensing technology displays excellent performance in these fields for monitoring. In this paper, temperature and residual strain during fatigue of a carbon fiber reinforced polymer(CFRP) are investigated. Four autoclaved CFRP beam specimens, with fiber Bragg grating(FBG) sensors and thermocouples embedded at selected locations, are subjected to three-point bending cyclic loading on the BOSE testing machine for fatigue testing. Thennocouples are used to measure the temperature while FBGs can sense the temperature and strain as well. Seven tests in total are conducted at different frequencies, and each test lasts for several days. From the experimental results, transient steep peaks of temperature increases (up to 2.3℃) are discovered at the beginning of the load. The following constant temperature increments are around 1.0℃, which is not relevant to frequencies from 0.1 Hz to 20 Hz and suspected due to fatigue. Residual strains of 1×10^-5-2×10^-5 during fatigue, fading away rapidly when unloading, are also reported. Embedded FBGs here are validated to sense temperature and strains in composite structures, which demonstrates promising potentials in structure monitoring fields. CFRP are verified to have an excellent performance during fatigue with low temperature increase and residual strain.展开更多
Vehicle load is among the main factors affecting the deformation of subgrade soil.In this research study,the concept of impact type traffic load is introduced to investigate the effects of vehicle load based on the dy...Vehicle load is among the main factors affecting the deformation of subgrade soil.In this research study,the concept of impact type traffic load is introduced to investigate the effects of vehicle load based on the dynamic stress and displacement time histories acquired from seasonal frozen subgrade soils.Using freezing-thawing and dynamic triaxial tests and considering the amplitude and loading sequence of impact type traffic load,the residual deformation characteristics of subgrade soil under impact type traffic loads and freezing-thawing cycles is studied.It was found that under impact type traffic load,the residual deformation of soils increased sharply as the amplitude of impact type traffic load increased.It was also found that the increase in the amplitude of impact type traffic load led to the increase of residual deformation in a scale of power and exponential function.The amplitudes of impact type traffic load affect the development stress-strain path of the residual strain.After the soil experienced the proper amount of pre-vibration of the light load,residual deformation decreased by 15%.After freezing-thawing,the residual strain of soil increased as the amplitude of the impact type traffic loads increased.Also,when the amplification effect of freezing-thawing on the residual strain was basically stable,the residual deformation increased by about 10%.The peak impact type traffic load had a large effect on soil deformation after the freezing-thawing process,leading to the observation that of the earlier the peaks,the stronger the effect of freezing-thawing.After the soil was subjected to preloading with a small load,the influence of the freezing-thawing cycles gradually stabilized.The results may be useful in preventing and controlling the risk of subgrade soil failure when construction takes place spring thaw periods.展开更多
This paper investigates an advanced grating-transferring technique combined with geometric phase analysis (GPA) for residual strain evaluation of curved surface.A standard holographic grating is first transferred to a...This paper investigates an advanced grating-transferring technique combined with geometric phase analysis (GPA) for residual strain evaluation of curved surface.A standard holographic grating is first transferred to a pre-produced epoxy resin film and then consolidated to a test region of curved surface.With a rubber mold and silicone rubber the deformed grating is replicated to a sheet metal after hole-drilling for release of residual stress.After that the grating is transferred from the sheet metal to the glass plate,which would be served as an analyzer grating (specimen grating).By GPA the local strain distributions related to the phase difference between the reference grating and analyzer grating for the released stress can be evaluated.A validation test has been conducted on the weld joint of a stainless steel tube and the obtained results demonstrate the ability of the method in measuring the residual strain of curved surface.展开更多
The Zipingpu Concrete Faced Rockfill Dam (CFRD) was subjected to significant local damage in the "5.12" Wenchuan earthquake. It is the first rockfill dam of more than one hundred meters high to encounter a strong ...The Zipingpu Concrete Faced Rockfill Dam (CFRD) was subjected to significant local damage in the "5.12" Wenchuan earthquake. It is the first rockfill dam of more than one hundred meters high to encounter a strong earthquake anywhere in the world. Based on the finite element smoothing method, the residual strains at a typical cross-section and a downstream slope of the dam were obtained by processing the dam monitored displacement data. The position of and reason for the dam settlement and deformation ofrockfill dilatancy in the earthquake were analyzed according to the section residual strain. The results show that the maximum settlement ratio on the dam body approximately occurs at 2/3 of the dam height; dilatancy occurs from the dam crest to 25-30 m in the upstream and downstream slope; the immediate cause of the face slabs horizontal construction joint dislocation is excessive residual shear strain. Meanwhile, the position of and reason for the dam fissure in the earthquake were analyzed according to the dam slope residual strain.展开更多
A Cr film with a 75 nm thickness sputtered on a Si substrate was used to fabricate microbridge and microcantilever samples with the MEMS (microelectromechanical system) technique. The profile of the buckled beams wa...A Cr film with a 75 nm thickness sputtered on a Si substrate was used to fabricate microbridge and microcantilever samples with the MEMS (microelectromechanical system) technique. The profile of the buckled beams was measured by using the interference technique with white light and fitted with a theoretical result. The uniform residual strain in the bridge samples was deduced from the variation of buckling amplitude with the beam length. On the other hand, the gradient residual strain was determined from the deflection profile of the cantilever. The residual uniform and gradient strain in the Cr film are about 4.96×10^-3 and 4.2967×10^-5, respectively.展开更多
A new semi-empirical formula for evaluating the residual strain of soils under earthquake loading is presented in this paper based on the incremental method and the increment model proposed by the authors.When the inc...A new semi-empirical formula for evaluating the residual strain of soils under earthquake loading is presented in this paper based on the incremental method and the increment model proposed by the authors.When the incident loading is uniform,the results calculated by the new formula are nearly the same as those by the existing formula.For excitation of the random earthquake loading,the results calculated by the new formula are compared to the results obtained by dynamic triaxial tests.The dynamic triaxial tests had been performed considering different seismic waves,confining stresses, consolidation ratios,and types of cohesive soils.The comparison between the calculated and tested results indicate that the presented formula can efficiently and practically describe the time-dependent process of the soil residual strains under actual seismic loads.展开更多
This study reports the variation of residual strains within the posterior ventral area of the Ensis siliqua mollusc shell, as determined using glancing incidence synchrotron X-ray diffraction. The outer layer of this ...This study reports the variation of residual strains within the posterior ventral area of the Ensis siliqua mollusc shell, as determined using glancing incidence synchrotron X-ray diffraction. The outer layer of this structure exhibits a tensile strain, in contrast to a compressive strain observed within the inner layer. Fluctuations in unit cell parameters for the inner layer have been determined, showing that the microscopic prismatic layer of the structure exhibits a compressive strain orientated parallel to the surface of the shell. This is thought to enhance the crack deflection properties of this layer, and aid in resisting catastrophic failure. Further analysis of residual strains has been performed using the same method, throughout several stages of compressive testing of the anterior dorsal region of the shell. This identified no variation in residual strains at various levels of loading, and it is therefore proposed that load may be transferred via the organic matrix of mollusc shell structures. A Raman spectroscopic investigation, comparing whole and powdered shell with non-biogenic aragonite, has shown that residual strains are also present in this analagous material which is devoid of organic content. This indicates that the observed strain is not entirely due to the organic matrix.展开更多
The residual strain and the damage induced by Si implantation in GaN samples have been studied, as well as the electronic characteristics. These as-grown samples are implanted with different doses of Si(1 × 10^1...The residual strain and the damage induced by Si implantation in GaN samples have been studied, as well as the electronic characteristics. These as-grown samples are implanted with different doses of Si(1 × 10^14 cm^-2, 1×10^15 cm^-2 or ] × 10^16 cm^-2, ]00 keV) and following annealed by rapid thermal anneal(RTA) at 1 000℃ or 1 100℃ for 60 s. High resolution X-ray diffractometer(HRXRD) measurement reveals that the damage peak induced by the implantation appears and increases with the rise of the impurity dose, expanding the crystal lattice. The absolute value of biaxial strain decreases with the increase of the annealing temperature for the same sample. RT-Hall test reveals that the sample annealed at 1 100℃ acquires higher mobility and higher carrier density than that annealed at 1 000 ℃, which reflects that the residual strain(or residual stress) is the main scattering factor. And the sample C3(1 × 10^16 cm^-2 and annealed at 1100 ℃) acquires the best electronic characteristic with the carrier density of 3.25 × 10^19 cm^-3 and the carrier mobility of 31 cm2/(V·S).展开更多
Based on the orthotropic elastic theory of rock masses, the X-ray method was used to measure the distribution of macro-residual strain energy density along a depth profile,using core samples taken from 47 large-apertu...Based on the orthotropic elastic theory of rock masses, the X-ray method was used to measure the distribution of macro-residual strain energy density along a depth profile,using core samples taken from 47 large-aperture deep boreholes in four regions of Southwest China: the Longmenshan, Anninghe, Honghe, and Xianshuihe fault zones.Then, the vertical gradients of the macro-residual strain energy density and the macroresidual strain energy contained in high-energy cuboid block segments along each fault zone were determined. The results demonstrate that the macro-residual strain energy stored at shallow levels in the rock mass in these fault zones may be partly responsible for generating many large earthquakes and may explain why the large earthquakes in this region are typically shallow.展开更多
Austenitic stainless steels are usually chosen to make many components of nuclear power plants (NPPs). However, their microstructure in the heat-affected zone (HAZ) will change during the welding process. Some fai...Austenitic stainless steels are usually chosen to make many components of nuclear power plants (NPPs). However, their microstructure in the heat-affected zone (HAZ) will change during the welding process. Some failures of the weld joints, mainly stress corrosion cracking (SCC), have been found to be located in the HAZ. In this research, the microstructure, micro-hardness, residual strain and SCC behavior at different locations of the 316L HAZ cut from a safeend dissimilar metal weld joint were studied. However, traditional optical microscope observation could not find any microstructural difference between the HAZ and the base metal, higher residual strain and micro-hardness, and higher fraction of random high-angle grain boundaries were found in the HAZ than in the base metal when studied by using electron back-scattering diffraction scanning and micro-hardness test. What's more, the residual strain, the microhardness and the fraction of random grain boundaries decreased, while the fraction of coincidence site lattice grain boundaries increased with increasing the distance from the fusion boundary in 316L HAZ. Creviced bent beam test was applied to evaluate the SCC susceptibility at different locations of 316L HAZ and base metal. It was found that the HAZ had higher SCC susceptibility than the base metal and SCC resistance increased when increasing the distance from the fusion boundary in 316L HAZ.展开更多
Al composites are of interest due to their appropriate ratio of strength to weight.In our research,an Al/Co3O4 nanocomposite was generated using a sintering technique.The powders of Al with various Co3O4 nanoparticle ...Al composites are of interest due to their appropriate ratio of strength to weight.In our research,an Al/Co3O4 nanocomposite was generated using a sintering technique.The powders of Al with various Co3O4 nanoparticle contents(0 wt%,0.5 wt%,1.0 wt%,1.5 wt%,2.0 wt%,and2.5 wt%)were first blended using planetary milling for 30 min,and compressed in a cylindrical steel mold with a diameter of 1 cm and a height of5 cm at a pressure of 80 MPa.The samples were evaluated with X-ray diffractometry(XRD),scanning electron microscopy(SEM),Vickers hardness,and a vibrating sample magnetometer(VSM).Although the crystallite size of the Al particles remained constant at 7–10 nm,the accumulation of nanoparticles in the Al particle interspace increased the structural tensile strain from 0.0045 to 0.0063,the hardness from HV 28 to HV 52 and the magnetic saturation from 0.044 to 0.404 emu/g with an increase in Co3O4 nanoparticle content from 0 wt%to 2.5 wt%.展开更多
Single crystalline CdTe nanowires have been synthesized using Au-catalyzed chemical vapor deposition. X-ray diffraction reveals the existence of non- negligible inhomogeneous compressive strain in the nanowires along ...Single crystalline CdTe nanowires have been synthesized using Au-catalyzed chemical vapor deposition. X-ray diffraction reveals the existence of non- negligible inhomogeneous compressive strain in the nanowires along the 〈111〉 growth direction. The effect of the strain on the electronic structure is manifested by the blue-shifted and broadened photoluminescence spectra involving shallow donor/acceptor states. Such residual strain is of great importance for a better understanding of the optical and electrical behaviors of various semiconductor nanomaterials as well as for device design and applications.展开更多
In this study, the residual strain of a thin conductive metal wire on a polymer substrate after electrical failure is measured with SEM moir′e. Focused ion beam(FIB) milling is applied to fabricate micron moir′e gra...In this study, the residual strain of a thin conductive metal wire on a polymer substrate after electrical failure is measured with SEM moir′e. Focused ion beam(FIB) milling is applied to fabricate micron moir′e gratings on the surfaces of constantan wires and the random phase shifting technique is used to process moir′e fringes. The virtual strain method is briefly introduced and used to calculate the real strain of specimens. In order to study the influence of a defect on the electrical failure of the constantan wire, experiments were conducted on two specimens, one with a crack, while the other one without any crack. By comparing the results, we found that the defect makes the critical beam current of electrical failure decrease. In addition, the specimens were subjected to compression after electrical failure, in agreement with the observed crack closure of the specimen. The successful results demonstrate that the moir′e method is effective to characterize the full-field deformation of constantan wires on the polymer membrane, and has a good potential for further application to the deformation measurement of thin films.展开更多
The effect of strain hardening and strain softening behavior of flow stress changing with temperature on welding residual stress, plastic strain and welding distortion of ATN0 1-T4 aluminum alloy was studied by finite...The effect of strain hardening and strain softening behavior of flow stress changing with temperature on welding residual stress, plastic strain and welding distortion of ATN0 1-T4 aluminum alloy was studied by finite simulation method. The simulation results show that the weld seam undergoes strain hardening in the temperature range of 180-250 ℃, however, it exhibits strain softening at temperature above 250 ℃ during welding heating and cooling process. As a result, the strain hardening and strain softening effects counteract each other, introducing slightly influence on the welding residual stress, residual plastic strain and distortion. The welding longitudinal residual stress was determined by ultrasonic stress measurement method for the flat plates of A7N01-T4 aluminum alloy. The simulation results are well accordant with test ones.展开更多
A fundamental theory for the analysis of residual welding stresses and deformation based on the inherent strain distribution along the welded joint is introduced. Distribution of inherent strains and longitudinal resi...A fundamental theory for the analysis of residual welding stresses and deformation based on the inherent strain distribution along the welded joint is introduced. Distribution of inherent strains and longitudinal residual stresses in medium thickness plate weldment is calculated and analyzed. A new method of calculating inherent strains and longitudinal residual stresses is proposed.展开更多
The dynamic swain and strength of frozen silt under long-term dynamic loading are studied based on creep tests. Three groups of tests are performed (Groups I, II, and III). The initial deviator stresses of Groups I an...The dynamic swain and strength of frozen silt under long-term dynamic loading are studied based on creep tests. Three groups of tests are performed (Groups I, II, and III). The initial deviator stresses of Groups I and II are same and the dynamic stress ampli- tude of Group II is twice as that of Group I. The minimum value of dynamic stress in Group IlI is near zero and its dynamic stress amplitude is larger than those of Groups I and II. In tests of all three groups there are similar change trends of accttmulative sWain, but with different values. The accumulative swain curves consist of three stages, namely, the initial stage, the steady stage, and the gradual flow stage. In the tests of Groups I and II, during the initial stage with vibration times less than 50 loops the strain ampli- tude decreased with the increase of vibration times and then basically remained constant, fluctuating in a very small range. For the tests of Group III, during the initial and steady stages the sWain amplitude decreased with the increase of vibration times, and then increased rapidly in the gradual flow stage. The dynamic strength of frozen silt decreases and trends to terminal dynamic strength as the vibration times of loading increase.展开更多
Coal burst remains one of the gravest safety risks that will be encountered in mining in the future, because the stress conditions will become more complex as mining depths increase. Various influencing elements exist...Coal burst remains one of the gravest safety risks that will be encountered in mining in the future, because the stress conditions will become more complex as mining depths increase. Various influencing elements exist, and varied geological and mining circumstances might result in diverse coal burst phenomena. The impact propensity of coal has variations as a result of the distinct physical and mechanical qualities of each. To identify the impact propensity of coal and then understand the rules of coal burst occurrence, laboratory tests can be conducted to identify the physical and mechanical parameters affecting coal samples. The mechanical properties, energy absorption, and energy dissipation characteristics of coal samples were examined experimentally in this paper using coal samples that were taken from the mine. On the basis of the evaluation of the impact inclination parameters for four fundamental coal samples, novel impact inclination indicators and the relationship between the fractures in the coal sample and the impact inclination parameters were discussed. The following are the key conclusions: 1) On-site samples of No. 15 coal from the Qi yuan Coal Mine were taken (15 s) and processed in accordance with the guidelines for the coal specimen impact inclination test. The accuracy of the specimen was sufficient for the test. 2) Analysis is done on the mechanical relevance and calculation techniques of the four fundamental coal sample impact tendency characteristics, dynamic failure time (DT), elastic strain energy index (W<sub>ET</sub>), impact energy index (K<sub>E</sub>), as well as uniaxial compressive strength (R<sub>C</sub>). 3) Regarding the rock burst danger of rock samples, the potential use of the ratio of pre-peak and post- peak deformation modulus to Kλ and the residual elastic strain energy index C<sub>EF</sub> as the impact propensity indices of coal samples are discussed. It is possible to utilize two new impact propensity indices to evaluate the impact propensity of coal samples, according to test results that reveal a linear correlation between two new impact inclination indexes and four fundamental impact tendency indexes. 4) The statistical analysis of the crack ratio with the four impact propensity indicators after coal specimen failure, and the correlation among the crack ratio with the indicators, are both done. The findings indicate that the four impact propensity indicators have a linear relationship with the crack ratio of the coal sample surface cracks.展开更多
The hole-drilling method is one of the most wellknown methods for measuring residual stresses. To identify unknown plane stresses in a specimen, a circular hole is first drilled in the infinite plate under plane stres...The hole-drilling method is one of the most wellknown methods for measuring residual stresses. To identify unknown plane stresses in a specimen, a circular hole is first drilled in the infinite plate under plane stress, then the strains resulting from the hole drilling is measured. The strains may be acquired from interpreting the Moire signature around the hole. In crossed grating Moire interferometry, the horizontal and vertical displacement fields (u and v) can be obtained to determinate two strain fields and one shearing strain field. In this paper, by means of Moire interferometry and three directions grating (grating rosette) developed by the authors, three displacement fields (u, v and s) are obtained to acquire three strain fields. As a practical application, the hole-drilling method is adopted to measure the relief strains for aluminum and fiber reinforced composite. It is a step by step method; in each step a single laminate or equivalent depth is drilled to find some relationships between the drilling depth and the residual strains relieved in the fiber reinforced composite materials.展开更多
文摘In order to realize the in-situ evaluation of reinforced concrete bridges subjected to fatigue for a long time or after earthquake, an evaluation method for cumulative damage of concrete structures based on unloading elastic modulus was proposed. First, according to the concrete stress-strain curve and the statistical relationship between residual strain and cumulative strain, the calculation method of static equivalent strain and residual strain concrete based on unloading elastic modulus and the method for estimating the strength of concrete after damage were proposed. The detailed steps of field test and analysis and the practical damage indicators of residual strain were given. Then, the evaluation method of existing stress and strain of Reinforced Concrete Bridge under dead load and the concept of “equivalent dead load bending moment” were put forward. On this basis, the paper analyzed the root cause of the decrease of bearing capacity of Reinforced Concrete Bridge after fatigue damage, and pointed out that the equivalent strain or residual strain of reinforced concrete increases under the fatigue effect, which led to the decreasing of actual live moment and deformation performance while the ultimate load-carrying capacity remained constant or very little decrease. The evaluation method of structure residual capacity was given, and through comparative analysis of eight T reinforced concrete beams that had been in service for 35 years with the static failure tests, the effectiveness of the method was verified.
文摘AIM: To investigate the effect of a Chinese medicine, Kaiyu Qingwei Jianji (KYQWJJ) used for diabetic treatment, on the morphometry and residual strain distribution of the small intestine in streptozotocin (STZ) -induced diabetic rats. Correlation analysis was also performed between the opening angle and residual strain with the blood glucose level. METHODS: Forty-two male Wistar rats weighing 220-240 g were included in this study. Thirty-two STZ- induced diabetic rats were subdivided into four groups (n = 8 in each group), i.e. diabetic control group (DM); high dose of KYQWJJ (T1, 36g/kg per day); low dose of KYQWJJ (T2, 17 g/kg per day) and Gliclazide (T3, 50 mg/kg per day). Another ten rats were used as nondiabetic control (CON). The medicines were poured directly into stomach lumen by gastric lavage twice daily. The rats of CON and DM groups were only poured the physiological saline. Blood glucose and plasma insulin levels were measured. Experimental period was 35 d. At the end of experiment, three 5-cm long segments were harvested from the duodenum, jejunum and ileum. Three rings of 1-2 mm in length for no-load and zero-stress state tests were cut from the middle of different segments. The morphometric data, such as the circumferential length, the wall thickness and the opening angle were measured from the digitized images of intestinal segments in the no-load state and zerostress state. The residual strain was computed from the morphometry data. Furthermore, the linear regression analysis was performed between blood glucose level with morphometric and biomechanical data in the different intestinal segments. RESULTS: The blood glucose level of DM group was consistent 4-fold to 5-fold higher than those in CON group during the experiment (16.89 ± 1.11 vs 3.44 ± 0.15 mmol/L, P 〈 0.001). The blood glucose level in the T1 (16.89 ± 1.11 vs 11.08 ± 2.67 mmol/L, P 〈 0.01) and T3 groups (16.89 ± 1.11 vs 13.54 ± 1.73 mmol/L, P 〈 0.05), but not in T2 group (P 〉 0.05) was significantly lower than those in DM group. The plasma insulin levels of DM, T1, T2 and T3 groups were significantly lower than those in CON group (10.98 ± 1.02, 12.52 ± 1.42,13.54 ± 1.56,10.96 ± 0.96 vs 17.84 ± 2.34 pmol/L respectively, P 〈 0.05), but no significantly difference among the groups with exception of CON group. The wet weight/cm and total wall thickness of duodenum, jejunum and ileum in DM group were significantly higher than those in CON group (wet weight (g/cm): duodenum 0.209 ± 0.012 vs 0.166 ± 0.010, jejunum 0.149 ± 0.008 vs 0.121 ± 0.004, ileum 0.134 ± 0.013 vs 0.112 ± 0.007; Wall thickness (mm): duodenum 0.849 ± 0.027 vs 0.710 ± 0.026, jejunum 0.7259 ± 0.034 vs 0.627 ± 0.025, ileum 0.532 ± 0.023 vs 0.470 ± 0.010, all P 〈 0.05), T1 and T3 treatment could partly restore change of wall thickness, but T2 could not. The opening angle and absolute value of inner and outer residual stain were significantly smaller in duodenal segment (188 ± 11 degrees, -0.31 ± 0.02 and 0.35 ± 0.03 vs 259 ± 15 degrees, -0.40 ± 0.02 and 0.43 ± 0.05) and larger in jejunal (215 ± 20 degrees, -0.30 ± 0.03 and 0.36 ± 0.06 vs 172 ± 19 degrees, -0.25 ± 0.02 and 0.27 ± 0.02) and ileal segments (183 ± 20 degrees, -0.28 ± 0.01 and 0.34 ± 0.05 vs 153 ± 14 degrees, -0.23 ± 0.03 and 0.29 ± 0.04) in DM group than in CON group (P 〈 0.01). TI and T3 treatment could partly restore this biomechanical alteration, but strong effect was found in T1 treatment (duodenum 243 ± 14 degrees, -0.36 ± 0.02 and 0.42 ± 0.06, jejunum 180 ± 15 degrees, -0.26 ± 0.03 and 0.30 ± 0.06 and ileum 163 ± 17 degrees, -0.23 ± 0.03 and 0.30 ± 0.05, compared with DM, P 〈 0.05). The linear association was found between the glucose level with most morphometric and biomechanical data. CONCLUSION: KYQWJJ (high dose) treatment could partly restore the changes of blood glucose level and the remodeling of morphometry and residual strain of small intestine in diabetic rats. The linear regression analysis demonstrated that the effect of KYQWJJ on intestinal opening angle and residual strain is partially through its effect on the blood glucose level.
文摘Fatigue behaviour has important implications for engineering composite structures in sectors ranging from automotive to aerospace. Optical sensing technology displays excellent performance in these fields for monitoring. In this paper, temperature and residual strain during fatigue of a carbon fiber reinforced polymer(CFRP) are investigated. Four autoclaved CFRP beam specimens, with fiber Bragg grating(FBG) sensors and thermocouples embedded at selected locations, are subjected to three-point bending cyclic loading on the BOSE testing machine for fatigue testing. Thennocouples are used to measure the temperature while FBGs can sense the temperature and strain as well. Seven tests in total are conducted at different frequencies, and each test lasts for several days. From the experimental results, transient steep peaks of temperature increases (up to 2.3℃) are discovered at the beginning of the load. The following constant temperature increments are around 1.0℃, which is not relevant to frequencies from 0.1 Hz to 20 Hz and suspected due to fatigue. Residual strains of 1×10^-5-2×10^-5 during fatigue, fading away rapidly when unloading, are also reported. Embedded FBGs here are validated to sense temperature and strains in composite structures, which demonstrates promising potentials in structure monitoring fields. CFRP are verified to have an excellent performance during fatigue with low temperature increase and residual strain.
基金Fundamental Research Foundation for Universities of Heilongjiang Province under Grant No.2018-KYYWF-1651Natural Science Foundation of Heilongjiang Province under Grant Nos.ZD2019E009 and E2016045+1 种基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2018D12 and 2019D16National Natural Science Foundation of China under Grant No.51378164。
文摘Vehicle load is among the main factors affecting the deformation of subgrade soil.In this research study,the concept of impact type traffic load is introduced to investigate the effects of vehicle load based on the dynamic stress and displacement time histories acquired from seasonal frozen subgrade soils.Using freezing-thawing and dynamic triaxial tests and considering the amplitude and loading sequence of impact type traffic load,the residual deformation characteristics of subgrade soil under impact type traffic loads and freezing-thawing cycles is studied.It was found that under impact type traffic load,the residual deformation of soils increased sharply as the amplitude of impact type traffic load increased.It was also found that the increase in the amplitude of impact type traffic load led to the increase of residual deformation in a scale of power and exponential function.The amplitudes of impact type traffic load affect the development stress-strain path of the residual strain.After the soil experienced the proper amount of pre-vibration of the light load,residual deformation decreased by 15%.After freezing-thawing,the residual strain of soil increased as the amplitude of the impact type traffic loads increased.Also,when the amplification effect of freezing-thawing on the residual strain was basically stable,the residual deformation increased by about 10%.The peak impact type traffic load had a large effect on soil deformation after the freezing-thawing process,leading to the observation that of the earlier the peaks,the stronger the effect of freezing-thawing.After the soil was subjected to preloading with a small load,the influence of the freezing-thawing cycles gradually stabilized.The results may be useful in preventing and controlling the risk of subgrade soil failure when construction takes place spring thaw periods.
基金supported by the National Natural Science Foundation of China (11072033 and 90916010)Specialized Research Fund for the Doctoral Program of Higher Education (20090002110048)
文摘This paper investigates an advanced grating-transferring technique combined with geometric phase analysis (GPA) for residual strain evaluation of curved surface.A standard holographic grating is first transferred to a pre-produced epoxy resin film and then consolidated to a test region of curved surface.With a rubber mold and silicone rubber the deformed grating is replicated to a sheet metal after hole-drilling for release of residual stress.After that the grating is transferred from the sheet metal to the glass plate,which would be served as an analyzer grating (specimen grating).By GPA the local strain distributions related to the phase difference between the reference grating and analyzer grating for the released stress can be evaluated.A validation test has been conducted on the weld joint of a stainless steel tube and the obtained results demonstrate the ability of the method in measuring the residual strain of curved surface.
基金National Natural Science Foundation of China under Grant No. 50979014, 51179024China Higher School Specialized Research Funds for Doctors under Grant No. 20090041110016
文摘The Zipingpu Concrete Faced Rockfill Dam (CFRD) was subjected to significant local damage in the "5.12" Wenchuan earthquake. It is the first rockfill dam of more than one hundred meters high to encounter a strong earthquake anywhere in the world. Based on the finite element smoothing method, the residual strains at a typical cross-section and a downstream slope of the dam were obtained by processing the dam monitored displacement data. The position of and reason for the dam settlement and deformation ofrockfill dilatancy in the earthquake were analyzed according to the section residual strain. The results show that the maximum settlement ratio on the dam body approximately occurs at 2/3 of the dam height; dilatancy occurs from the dam crest to 25-30 m in the upstream and downstream slope; the immediate cause of the face slabs horizontal construction joint dislocation is excessive residual shear strain. Meanwhile, the position of and reason for the dam fissure in the earthquake were analyzed according to the dam slope residual strain.
基金supported by the National Natural Sci-ence Foundation of China (No. 10402023)
文摘A Cr film with a 75 nm thickness sputtered on a Si substrate was used to fabricate microbridge and microcantilever samples with the MEMS (microelectromechanical system) technique. The profile of the buckled beams was measured by using the interference technique with white light and fitted with a theoretical result. The uniform residual strain in the bridge samples was deduced from the variation of buckling amplitude with the beam length. On the other hand, the gradient residual strain was determined from the deflection profile of the cantilever. The residual uniform and gradient strain in the Cr film are about 4.96×10^-3 and 4.2967×10^-5, respectively.
基金National Natural Science Foundation of China(Grant No.59978049)
文摘A new semi-empirical formula for evaluating the residual strain of soils under earthquake loading is presented in this paper based on the incremental method and the increment model proposed by the authors.When the incident loading is uniform,the results calculated by the new formula are nearly the same as those by the existing formula.For excitation of the random earthquake loading,the results calculated by the new formula are compared to the results obtained by dynamic triaxial tests.The dynamic triaxial tests had been performed considering different seismic waves,confining stresses, consolidation ratios,and types of cohesive soils.The comparison between the calculated and tested results indicate that the presented formula can efficiently and practically describe the time-dependent process of the soil residual strains under actual seismic loads.
文摘This study reports the variation of residual strains within the posterior ventral area of the Ensis siliqua mollusc shell, as determined using glancing incidence synchrotron X-ray diffraction. The outer layer of this structure exhibits a tensile strain, in contrast to a compressive strain observed within the inner layer. Fluctuations in unit cell parameters for the inner layer have been determined, showing that the microscopic prismatic layer of the structure exhibits a compressive strain orientated parallel to the surface of the shell. This is thought to enhance the crack deflection properties of this layer, and aid in resisting catastrophic failure. Further analysis of residual strains has been performed using the same method, throughout several stages of compressive testing of the anterior dorsal region of the shell. This identified no variation in residual strains at various levels of loading, and it is therefore proposed that load may be transferred via the organic matrix of mollusc shell structures. A Raman spectroscopic investigation, comparing whole and powdered shell with non-biogenic aragonite, has shown that residual strains are also present in this analagous material which is devoid of organic content. This indicates that the observed strain is not entirely due to the organic matrix.
文摘The residual strain and the damage induced by Si implantation in GaN samples have been studied, as well as the electronic characteristics. These as-grown samples are implanted with different doses of Si(1 × 10^14 cm^-2, 1×10^15 cm^-2 or ] × 10^16 cm^-2, ]00 keV) and following annealed by rapid thermal anneal(RTA) at 1 000℃ or 1 100℃ for 60 s. High resolution X-ray diffractometer(HRXRD) measurement reveals that the damage peak induced by the implantation appears and increases with the rise of the impurity dose, expanding the crystal lattice. The absolute value of biaxial strain decreases with the increase of the annealing temperature for the same sample. RT-Hall test reveals that the sample annealed at 1 100℃ acquires higher mobility and higher carrier density than that annealed at 1 000 ℃, which reflects that the residual strain(or residual stress) is the main scattering factor. And the sample C3(1 × 10^16 cm^-2 and annealed at 1100 ℃) acquires the best electronic characteristic with the carrier density of 3.25 × 10^19 cm^-3 and the carrier mobility of 31 cm2/(V·S).
基金supported by the Joint Seismology Science Foundation(85012,850708,863017,88138,91046)Old Professor Science Foundation(201041)
文摘Based on the orthotropic elastic theory of rock masses, the X-ray method was used to measure the distribution of macro-residual strain energy density along a depth profile,using core samples taken from 47 large-aperture deep boreholes in four regions of Southwest China: the Longmenshan, Anninghe, Honghe, and Xianshuihe fault zones.Then, the vertical gradients of the macro-residual strain energy density and the macroresidual strain energy contained in high-energy cuboid block segments along each fault zone were determined. The results demonstrate that the macro-residual strain energy stored at shallow levels in the rock mass in these fault zones may be partly responsible for generating many large earthquakes and may explain why the large earthquakes in this region are typically shallow.
基金financially supported by the National Natural Science Foundation of China (No. 51301183)Science and Technology Commission of Shanghai Municipality under Grant No. 14DZ2250300, Shanghai, China
文摘Austenitic stainless steels are usually chosen to make many components of nuclear power plants (NPPs). However, their microstructure in the heat-affected zone (HAZ) will change during the welding process. Some failures of the weld joints, mainly stress corrosion cracking (SCC), have been found to be located in the HAZ. In this research, the microstructure, micro-hardness, residual strain and SCC behavior at different locations of the 316L HAZ cut from a safeend dissimilar metal weld joint were studied. However, traditional optical microscope observation could not find any microstructural difference between the HAZ and the base metal, higher residual strain and micro-hardness, and higher fraction of random high-angle grain boundaries were found in the HAZ than in the base metal when studied by using electron back-scattering diffraction scanning and micro-hardness test. What's more, the residual strain, the microhardness and the fraction of random grain boundaries decreased, while the fraction of coincidence site lattice grain boundaries increased with increasing the distance from the fusion boundary in 316L HAZ. Creviced bent beam test was applied to evaluate the SCC susceptibility at different locations of 316L HAZ and base metal. It was found that the HAZ had higher SCC susceptibility than the base metal and SCC resistance increased when increasing the distance from the fusion boundary in 316L HAZ.
文摘Al composites are of interest due to their appropriate ratio of strength to weight.In our research,an Al/Co3O4 nanocomposite was generated using a sintering technique.The powders of Al with various Co3O4 nanoparticle contents(0 wt%,0.5 wt%,1.0 wt%,1.5 wt%,2.0 wt%,and2.5 wt%)were first blended using planetary milling for 30 min,and compressed in a cylindrical steel mold with a diameter of 1 cm and a height of5 cm at a pressure of 80 MPa.The samples were evaluated with X-ray diffractometry(XRD),scanning electron microscopy(SEM),Vickers hardness,and a vibrating sample magnetometer(VSM).Although the crystallite size of the Al particles remained constant at 7–10 nm,the accumulation of nanoparticles in the Al particle interspace increased the structural tensile strain from 0.0045 to 0.0063,the hardness from HV 28 to HV 52 and the magnetic saturation from 0.044 to 0.404 emu/g with an increase in Co3O4 nanoparticle content from 0 wt%to 2.5 wt%.
文摘Single crystalline CdTe nanowires have been synthesized using Au-catalyzed chemical vapor deposition. X-ray diffraction reveals the existence of non- negligible inhomogeneous compressive strain in the nanowires along the 〈111〉 growth direction. The effect of the strain on the electronic structure is manifested by the blue-shifted and broadened photoluminescence spectra involving shallow donor/acceptor states. Such residual strain is of great importance for a better understanding of the optical and electrical behaviors of various semiconductor nanomaterials as well as for device design and applications.
基金Project supported by the National Natural Science Foundation of China(Nos.11232008,11227801 and 11302082)the Doctoral Program of University of Jinan(No.XBS1307)
文摘In this study, the residual strain of a thin conductive metal wire on a polymer substrate after electrical failure is measured with SEM moir′e. Focused ion beam(FIB) milling is applied to fabricate micron moir′e gratings on the surfaces of constantan wires and the random phase shifting technique is used to process moir′e fringes. The virtual strain method is briefly introduced and used to calculate the real strain of specimens. In order to study the influence of a defect on the electrical failure of the constantan wire, experiments were conducted on two specimens, one with a crack, while the other one without any crack. By comparing the results, we found that the defect makes the critical beam current of electrical failure decrease. In addition, the specimens were subjected to compression after electrical failure, in agreement with the observed crack closure of the specimen. The successful results demonstrate that the moir′e method is effective to characterize the full-field deformation of constantan wires on the polymer membrane, and has a good potential for further application to the deformation measurement of thin films.
基金Project(2007DFR70070) supported by China-Russia Government-to-Government Scientific and Technical Cooperation Foundation
文摘The effect of strain hardening and strain softening behavior of flow stress changing with temperature on welding residual stress, plastic strain and welding distortion of ATN0 1-T4 aluminum alloy was studied by finite simulation method. The simulation results show that the weld seam undergoes strain hardening in the temperature range of 180-250 ℃, however, it exhibits strain softening at temperature above 250 ℃ during welding heating and cooling process. As a result, the strain hardening and strain softening effects counteract each other, introducing slightly influence on the welding residual stress, residual plastic strain and distortion. The welding longitudinal residual stress was determined by ultrasonic stress measurement method for the flat plates of A7N01-T4 aluminum alloy. The simulation results are well accordant with test ones.
文摘A fundamental theory for the analysis of residual welding stresses and deformation based on the inherent strain distribution along the welded joint is introduced. Distribution of inherent strains and longitudinal residual stresses in medium thickness plate weldment is calculated and analyzed. A new method of calculating inherent strains and longitudinal residual stresses is proposed.
基金supported by the National Natural Science Foundation of China (Nos. 40971046, 41023003)the Project from the State Key Laboratory of Frozen Soil Engineering of China (No. 09SF102003)
文摘The dynamic swain and strength of frozen silt under long-term dynamic loading are studied based on creep tests. Three groups of tests are performed (Groups I, II, and III). The initial deviator stresses of Groups I and II are same and the dynamic stress ampli- tude of Group II is twice as that of Group I. The minimum value of dynamic stress in Group IlI is near zero and its dynamic stress amplitude is larger than those of Groups I and II. In tests of all three groups there are similar change trends of accttmulative sWain, but with different values. The accumulative swain curves consist of three stages, namely, the initial stage, the steady stage, and the gradual flow stage. In the tests of Groups I and II, during the initial stage with vibration times less than 50 loops the strain ampli- tude decreased with the increase of vibration times and then basically remained constant, fluctuating in a very small range. For the tests of Group III, during the initial and steady stages the sWain amplitude decreased with the increase of vibration times, and then increased rapidly in the gradual flow stage. The dynamic strength of frozen silt decreases and trends to terminal dynamic strength as the vibration times of loading increase.
文摘Coal burst remains one of the gravest safety risks that will be encountered in mining in the future, because the stress conditions will become more complex as mining depths increase. Various influencing elements exist, and varied geological and mining circumstances might result in diverse coal burst phenomena. The impact propensity of coal has variations as a result of the distinct physical and mechanical qualities of each. To identify the impact propensity of coal and then understand the rules of coal burst occurrence, laboratory tests can be conducted to identify the physical and mechanical parameters affecting coal samples. The mechanical properties, energy absorption, and energy dissipation characteristics of coal samples were examined experimentally in this paper using coal samples that were taken from the mine. On the basis of the evaluation of the impact inclination parameters for four fundamental coal samples, novel impact inclination indicators and the relationship between the fractures in the coal sample and the impact inclination parameters were discussed. The following are the key conclusions: 1) On-site samples of No. 15 coal from the Qi yuan Coal Mine were taken (15 s) and processed in accordance with the guidelines for the coal specimen impact inclination test. The accuracy of the specimen was sufficient for the test. 2) Analysis is done on the mechanical relevance and calculation techniques of the four fundamental coal sample impact tendency characteristics, dynamic failure time (DT), elastic strain energy index (W<sub>ET</sub>), impact energy index (K<sub>E</sub>), as well as uniaxial compressive strength (R<sub>C</sub>). 3) Regarding the rock burst danger of rock samples, the potential use of the ratio of pre-peak and post- peak deformation modulus to Kλ and the residual elastic strain energy index C<sub>EF</sub> as the impact propensity indices of coal samples are discussed. It is possible to utilize two new impact propensity indices to evaluate the impact propensity of coal samples, according to test results that reveal a linear correlation between two new impact inclination indexes and four fundamental impact tendency indexes. 4) The statistical analysis of the crack ratio with the four impact propensity indicators after coal specimen failure, and the correlation among the crack ratio with the indicators, are both done. The findings indicate that the four impact propensity indicators have a linear relationship with the crack ratio of the coal sample surface cracks.
基金the National Natural Science Foundation of China (10772117, 10572089)
文摘The hole-drilling method is one of the most wellknown methods for measuring residual stresses. To identify unknown plane stresses in a specimen, a circular hole is first drilled in the infinite plate under plane stress, then the strains resulting from the hole drilling is measured. The strains may be acquired from interpreting the Moire signature around the hole. In crossed grating Moire interferometry, the horizontal and vertical displacement fields (u and v) can be obtained to determinate two strain fields and one shearing strain field. In this paper, by means of Moire interferometry and three directions grating (grating rosette) developed by the authors, three displacement fields (u, v and s) are obtained to acquire three strain fields. As a practical application, the hole-drilling method is adopted to measure the relief strains for aluminum and fiber reinforced composite. It is a step by step method; in each step a single laminate or equivalent depth is drilled to find some relationships between the drilling depth and the residual strains relieved in the fiber reinforced composite materials.