The effects of equilibrium toroidal rotation during edge-localized mode(ELM)mitigated by resonant magnetic perturbation(RMP)are studied with the experimental equilibria of the EAST tokamak based on the four-field mode...The effects of equilibrium toroidal rotation during edge-localized mode(ELM)mitigated by resonant magnetic perturbation(RMP)are studied with the experimental equilibria of the EAST tokamak based on the four-field model in the BOUT++code.As the two main parameters to determine the toroidal rotation profiles,the rotation shear and magnitudes were separately scanned to investigate their roles in the impact of RMPs on peeling-ballooning(P-B)modes.On one hand,the results show that strong toroidal rotation shear is favorable for the enhancement of the self-generated E×B shearing rate<ω_(E×B)>with RMPs,leading to significant ELM mitigation with RMP in the stronger toroidal rotation shear region.On the other hand,toroidal rotation magnitudes may affect ELM mitigation by changing the penetration of the RMPs,more precisely the resonant components.RMPs can lead to a reduction in the pedestal energy loss by enhancing the multimode coupling in the turbulence transport phase.The shielding effects on RMPs increase with the toroidal rotation magnitude,leading to the enhancement of the multimode coupling with RMPs to be significantly weakened.Hence,the reduction in pedestal energy loss by RMPs decreased with the rotation magnitude.In brief,the results show that toroidal rotation plays a dual role in ELM mitigation with RMP by changing the shielding effects of plasma by rotation magnitude and affecting<ω_(E×B)>by rotation shear.In the high toroidal rotation region,toroidal rotation shear is usually strong and hence plays a dominant role in the influence of RMP on P-B modes,whereas in the low rotation region,toroidal rotation shear is weak and has negligible impact on P-B modes,and the rotation magnitude plays a dominant role in the influence of RMPs on the P-B modes by changing the field penetration.Therefore,the dual role of toroidal rotation leads to stronger ELM mitigation with RMP,which may be achieved both in the low toroidal rotation region and the relatively high rotation region that has strong rotational shear.展开更多
The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded...The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded quadrilateral elements.The competency of the model is verified with the available results.Parametric studies are conducted for the dynamic parameters of the base-isolated tank,using a lead rubber bearing to evaluate the optimum damping and time period of the isolator.The application of base isolation has reduced the total and impulsive hydrodynamic components of pressure by 80 to 90 percent,and base shear by 15 to 95 percent,depending upon the frequency content and duration of the considered earthquakes.The sloshing amplitude of the base-isolated tank is reduced by 18 to 94 percent for most of the short-duration earthquakes,while it is increased by 17 to 60 percent for the majority of the long-duration earthquakes.Furthermore,resonance studies are carried out through a long-duration harmonic excitation to obtain the dynamic behavior of non-isolated and isolated tanks,using a nonlinear sloshing model.The seismic responses of the base-isolated tank are obtained as higher when the excitation frequency matches the fundamental sloshing frequency rather than the isolator frequency.展开更多
Developing emerging technologies in Internet of Things and artificial intelligence requires high-speed, low-power, high-sensitivity, and switchable-functionality strain sensors capable of sensing subtle mechanical sti...Developing emerging technologies in Internet of Things and artificial intelligence requires high-speed, low-power, high-sensitivity, and switchable-functionality strain sensors capable of sensing subtle mechanical stimuli in complex ambience. Resonant tunneling diodes (RTDs) are the good candidate for such sensing applications due to the ultrafast transport process, lower tunneling current, and negative differential resistance. However, notably enhancing sensing sensitivity remains one of the greatest challenges for RTD-related strain sensors. Here, we use piezotronic effect to improve sensing performance of strain sensors in double-barrier ZnO nanowire RTDs. This strain sensor not only possesses an ultrahigh gauge factor (GF) 390 GPa^(−1), two orders of magnitude higher than these reported RTD-based strain sensors, but also can switch the sensitivity with a GF ratio of 160 by adjusting bias voltage in a small range of 0.2 V. By employing Landauer–Büttiker quantum transport theory, we uncover two primary factors governing piezotronic modulation of resonant tunneling transport, i.e., the strain-mediated polarization field for manipulation of quantized subband levels, and the interfacial polarization charges for adjustment of space charge region. These two mechanisms enable strain to induce the negative differential resistance, amplify the peak-valley current ratio, and diminish the resonant bias voltage. These performances can be engineered by the regulation of bias voltage, temperature, and device architectures. Moreover, a strain sensor capable of electrically switching sensing performance within sensitive and insensitive regimes is proposed. This study not only offers a deep insight into piezotronic modulation of resonant tunneling physics, but also advances the RTD towards highly sensitive and multifunctional sensor applications.展开更多
In photonics, the quest for high-quality (high Q) resonances driven by the physics of bound states in the continuum (BIC)1,2has motivated researchers to explore innovative avenues for realizing groundbreaking applicat...In photonics, the quest for high-quality (high Q) resonances driven by the physics of bound states in the continuum (BIC)1,2has motivated researchers to explore innovative avenues for realizing groundbreaking applications in lasing3, sensing4and nonlinear photonics5. A conventional strategy to harness the properties of BICs involves breaking the symmetry of resonators in a uniform lattice, allowing uncoupled modes to interact with free space that opens a leaky channel in the form of socalled (quasi) q BIC6modes.展开更多
Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modula...Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modulation experiment, the particle transport coefficients were calculated using the experimental data, and the result shows that the particle transport coefficients increase with RMP. In this study, the six-field two-fluid model in BOUT++ is used to simulate the transport before and after density pump-out induced by RMP,respectively referred as the case without RMP and the case with RMP. In the linear simulations,the instabilities generally decreases for cases with RMP. In the nonlinear simulation, ELM only appears in the case without RMP. Additionally, the particle transport coefficient was analyzed,and the result shows that the particle transport coefficient becomes larger for the case with RMP,which is consistent with the experimental conclusion. Moreover, its magnitude is comparable to the results calculated from experimental data.展开更多
Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the developm...Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the development of new practical applications in photonics,lasing,and sensing.Here,we employ symmetry-broken metasurfaces made of centrosymmetric amorphous silicon for resonantly enhanced second-and third-order nonlinear optical response.Exploiting the rich physics of optical quasi-bound states in the continuum and guided mode resonances,we comprehensively study through rigorous numerical calculations the relative contribution of surface and bulk effects to second-harmonic generation(SHG)and the bulk contribution to third-harmonic generation(THG) from the meta-atoms.Next,we experimentally achieve optical resonances with high quality factors,which greatly boosts light-matter interaction,resulting in about 550 times SHG enhancement and nearly 5000-fold increase of THG.A good agreement between theoretical predictions and experimental measurements is observed.To gain deeper insights into the physics of the investigated nonlinear optical processes,we further numerically study the relation between nonlinear emission and the structural asymmetry of the metasurface and reveal that the generated harmonic signals arising from linear sharp resonances are highly dependent on the asymmetry of the meta-atoms.Our work suggests a fruitful strategy to enhance the harmonic generation and effectively control different orders of harmonics in all-dielectric metasurfaces,enabling the development of efficient active photonic nanodevices.展开更多
Deeply subwavelength lasers(or nanolasers)are highly demanded for compact on-chip bioimaging and sensing at the nanoscale.One of the main obstacles for the development of single-particle nanolasers with all three dime...Deeply subwavelength lasers(or nanolasers)are highly demanded for compact on-chip bioimaging and sensing at the nanoscale.One of the main obstacles for the development of single-particle nanolasers with all three dimensions shorter than the emitting wavelength in the visible range is the high lasing thresholds and the resulting overheating.Here we ex-ploit exciton-polariton condensation and mirror-image Mie modes in a cuboid CsPbBr3 nanoparticle to achieve coherent emission at the visible wavelength of around 0.53μm from its ultra-small(≈0.007μm3 or≈λ3/20)semiconductor nanocav-ity.The polaritonic nature of the emission from the nanocavity localized in all three dimensions is proven by direct com-parison with corresponding one-dimensional and two-dimensional waveguiding systems with similar material parameters.Such a deeply subwavelength nanolaser is enabled not only by the high values for exciton binding energy(≈35 meV),re-fractive index(>2.5 at low temperature),and luminescence quantum yield of CsPbBr3,but also by the optimization of po-laritons condensation on the Mie resonances with quality factors improved by the metallic substrate.Moreover,the key parameters for optimal lasing conditions are intermode free spectral range and phonons spectrum in CsPbBr3,which govern polaritons condensation path.Such chemically synthesized colloidal CsPbBr3 nanolasers can be potentially de-posited on arbitrary surfaces,which makes them a versatile tool for integration with various on-chip systems.展开更多
This article reports on the development of a simple two-step lithography process for double barrier quantum well(DBQW)InGaAs/AlAs resonant tunneling diode(RTD)on a semi-insulating indium phosphide(InP)substrate using ...This article reports on the development of a simple two-step lithography process for double barrier quantum well(DBQW)InGaAs/AlAs resonant tunneling diode(RTD)on a semi-insulating indium phosphide(InP)substrate using an air-bridge technology.This approach minimizes processing steps,and therefore the processing time as well as the required resources.It is particularly suited for material qualification of new epitaxial layer designs.A DC performance comparison between the proposed process and the conventional process shows approximately the same results.We expect that this novel technique will aid in the recent and continuing rapid advances in RTD technology.展开更多
Using ab initio nonadiabatic molecular dynamics simulation, we study the time-dependent charge transport dynamics in a single-molecule junction formed by gold(Au) electrodes and a single benzene-1,4-dithiol(BDT)molecu...Using ab initio nonadiabatic molecular dynamics simulation, we study the time-dependent charge transport dynamics in a single-molecule junction formed by gold(Au) electrodes and a single benzene-1,4-dithiol(BDT)molecule. Two different types of charge transport channels are found in the simulation. One is the routine nonresonant charge transfer path, which occurs in several picoseconds. The other is activated when the electronic state of the electrodes and that of the molecule get close in energy, which is referred to as the resonant charge transport. More strikingly, the resonant charge transfer occurs in an ultrafast manner within 100 fs, which notably increases the conductance of the device. Further analysis shows that the resonant charge transport is directly assisted by the B_(2) and A1 molecular vibration modes. Our study provides atomic insights into the time-dependent charge transport dynamics in single-molecule junctions, which is important for designing highly efficient single-molecule devices.展开更多
As x-ray probe pulses approach the subfemtosecond range,conventional x-ray photoelectron spectroscopy(XPS)is expected to experience a reduction in spectral resolution due to the effects of the pulse broadening.However...As x-ray probe pulses approach the subfemtosecond range,conventional x-ray photoelectron spectroscopy(XPS)is expected to experience a reduction in spectral resolution due to the effects of the pulse broadening.However,in the case of resonant x-ray photoemission,also known as resonant Auger scattering(RAS),the spectroscopic technique maintains spectral resolution when an x-ray pulse is precisely tuned to a core-excited state.We present theoretical simulations of XPS and RAS spectra on a showcased CO molecule using ultrashort x-ray pulses,revealing significantly enhanced resolution in the RAS spectra compared to XPS,even in the subfemtosecond regime.These findings provide a novel perspective on potential utilization of attosecond x-ray pulses,capitalizing on the well-established advantages of detecting electron signals for tracking electronic and molecular dynamics.展开更多
The creation and relaxation of double K-hole states 1s^(0)2s^(2)2p^(6)np(n≥3)of Ne^(1+)in the interaction with ultraintense ultrafast x-ray pulses are theoretically investigated.The x-ray photon energies are selected...The creation and relaxation of double K-hole states 1s^(0)2s^(2)2p^(6)np(n≥3)of Ne^(1+)in the interaction with ultraintense ultrafast x-ray pulses are theoretically investigated.The x-ray photon energies are selected so that x-rays first photoionize1s^(22)s^(22)p^(6) of a neon atom to create a single K-hole state of 1s2s^(22)p^(6) of Ne^(1+),which is further excited resonantly to double K-hole states of ls^(0)2s^(2)2p^(6)np(n≥3).A time-dependent rate equation is used to investigate the creation and relaxation processes of 1s^(0)2s^(2)2p^(6)np,where the primary microscopic atomic processes including photoexcitation,spontaneous radiation,photoionization and Auger decay are considered.The calculated Auger electron energy spectra are compared with recent experimental results,which shows good agreement.The relative intensity of Auger electrons is very sensitive to the photon energy and bandwidth of x-ray pulses,which could be used as a diagnostic tool for x-ray free electron laser and atom experiments.展开更多
This review article discusses the development of gallium arsenide(GaAs)-based resonant tunneling diodes(RTD)since the 1970s.To the best of my knowledge,this article is the first review of GaAs RTD technology which cov...This review article discusses the development of gallium arsenide(GaAs)-based resonant tunneling diodes(RTD)since the 1970s.To the best of my knowledge,this article is the first review of GaAs RTD technology which covers different epitaxialstructure design,fabrication techniques,and characterizations for various application areas.It is expected that the details presented here will help the readers to gain a perspective on the previous accomplishments,as well as have an outlook on the current trends and future developments in GaAs RTD research.展开更多
The(2+1)-dimensional elliptic Toda equation is a high-dimensional generalization of the Toda lattice and a semidiscrete Kadomtsev–Petviashvili I equation.This paper focuses on investigating the resonant interactions ...The(2+1)-dimensional elliptic Toda equation is a high-dimensional generalization of the Toda lattice and a semidiscrete Kadomtsev–Petviashvili I equation.This paper focuses on investigating the resonant interactions between two breathers,a breather/lump and line solitons as well as lump molecules for the(2+1)-dimensional elliptic Toda equation.Based on the N-soliton solution,we obtain the hybrid solutions consisting of line solitons,breathers and lumps.Through the asymptotic analysis of these hybrid solutions,we derive the phase shifts of the breather,lump and line solitons before and after the interaction between a breather/lump and line solitons.By making the phase shifts infinite,we obtain the resonant solution of two breathers and the resonant solutions of a breather/lump and line solitons.Through the asymptotic analysis of these resonant solutions,we demonstrate that the resonant interactions exhibit the fusion,fission,time-localized breather and rogue lump phenomena.Utilizing the velocity resonance method,we obtain lump–soliton,lump–breather,lump–soliton–breather and lump–breather–breather molecules.The above works have not been reported in the(2+1)-dimensional discrete nonlinear wave equations.展开更多
The resonant magnetic perturbation(RMP)system is a powerful auxiliary system on tokamaks.On the J-TEXT tokamak,a set of new in-vessel coils is designed to enhance the amplitude of the RMP.The new coils are designed to...The resonant magnetic perturbation(RMP)system is a powerful auxiliary system on tokamaks.On the J-TEXT tokamak,a set of new in-vessel coils is designed to enhance the amplitude of the RMP.The new coils are designed to be two-turn saddle coils.These two-turn saddle coils have been optimized in terms of their structure,support,and protection components to overcome the limitations of the narrow in-vessel space,resulting in a compact coil module that can be accommodated in the vessel.To verify the feasibility of this design,an electromagnetic simulation is performed to investigate the electrical parameters and the generated field of the coils.A multi-field coupled simulation is performed to investigate the capacity of heat dissipation.As a result of these efforts,the new RMP coils have been successfully installed on the J-TEXT tokamak.It has significantly enhanced the RMP amplitude and been widely applied in experiments.展开更多
Magnetically coupled resonant technology is a novel method for solving the breakpoint locating of power grounding grid.But the method can only detect breakpoints of a single mesh grounding grid at present.In this pape...Magnetically coupled resonant technology is a novel method for solving the breakpoint locating of power grounding grid.But the method can only detect breakpoints of a single mesh grounding grid at present.In this paper,a magnetically coupled resonant detection method for four-hole grounding grid breakpoint is proposed.Firstly,the equivalent circuit model of the four mesh grounding grid with two types of breakpoints,namely edge branch and intermediate branch,is established.The input impedance and phase angle of the system are obtained by analyzing the equivalent capacitance and equivalent resistance in the model.Secondly,the magnetically coupled resonant physical process of grounding grid faults is solved via HFSS software.The magnetic field intensity and phase frequency characteristic curves of four mesh holes with different branches and positions of breakpoints and different corrosion degrees are studied,and an experimental system is built to verify the feasibility.The results show that under the condition of grounding grid buried depth of 0.5 m and input frequency of 1~15MHz,and there is an inverse relationship between equivalent capacitance and distortion frequency,the phase angle is positively correlated with the degree of corrosion of grounding grid,and the error of signal distortion frequency can be positioned at 5%.This paper provides some ideas for the application of magnetic coupling grounding grid detection technology.展开更多
From a combination of Maxwell’s electromagnetism with Planck’s law and the de Broglie hypothesis, we arrive at quantized photonic wave groups whose constant phase velocity is equal to the speed of light c = ω/k and...From a combination of Maxwell’s electromagnetism with Planck’s law and the de Broglie hypothesis, we arrive at quantized photonic wave groups whose constant phase velocity is equal to the speed of light c = ω/k and to their group velocity dω/dk. When we include special relativity expressed in simplest units, we find that, for particulate matter, the square of rest mass , i.e., angular frequency squared minus wave vector squared. This equation separates into a conservative part and a uniform responsive part. A wave function is derived in manifold rank 4, and from it are derived uncertainties and internal motion. The function solves four anomalies in quantum physics: the point particle with prescribed uncertainties;spooky action at a distance;time dependence that is consistent with the uncertainties;and resonant reduction of the wave packet by localization during measurement. A comparison between contradictory mathematical and physical theories leads to similar empirical conclusions because probability amplitudes express hidden variables. The comparison supplies orthodox postulates that are compared to physical principles that formalize the difference. The method is verified by dual harmonics found in quantized quasi-Bloch waves, where the quantum is physical;not axiomatic.展开更多
Light absorption and radiation are fundamental processes in optical science and engineering.Materials with perfect absorption properties play an important role in numerous optical applications.Following the meteoric r...Light absorption and radiation are fundamental processes in optical science and engineering.Materials with perfect absorption properties play an important role in numerous optical applications.Following the meteoric rise of MoS_(2)material,global opportunities and challenges coexist due to its extremely weak light-matter interaction capability beyond its energy band.In this work,we designed a kind of sandwich resonance structure and investigated MoS_(2)as a perfect absorber in the infrared spectrum that should be transparent according to the optical band theory.The infrared absorption properties of W or Au/MoS_(2)/Au models at 800 nm-2400 nm were systematic simulated.By optimizing the structural parameters,the resonant wavelength of perfect absorption can be modulated from 830 nm to 1700 nm with angle insensitivity and polar independence.Moreover,we discovered that the bandwidth of absorption exceeding 50%of the W-top model reaches500 nm,while that of the Au-top model is less than 100 nm,indicating that the top metal material has a great influence on the resonance absorption spectrum.Our work provides a practical route for enhancing and manipulating the light-matter interactions of low-dimensional materials beyond their own band gaps,which will be critical in the future design and implementation of optoelectronic devices and systems.展开更多
The impact of resonant magnetic perturbation(RMP)on blob motion and structure in the SOL of the HL-2A tokamak is studied using a gas puff imaging diagnostic.Ellipse fitting is applied to study the structure and motion...The impact of resonant magnetic perturbation(RMP)on blob motion and structure in the SOL of the HL-2A tokamak is studied using a gas puff imaging diagnostic.Ellipse fitting is applied to study the structure and motion of blobs quantitatively.The radial locations,amplitudes and scale sizes of blobs are obtained based on the fitted ellipse.Furthermore,based on the measurement of blob location,the radial and poloidal velocities of blobs are calculated.With the application of RMP,the edge poloidal shear flow is significantly weakened and the wave number spectrum changes from quasisymmetric to significantly up-down asymmetric.The application of RMP also causes the detected blob location to be much further into the far scrape-off layer(SOL)and increases the blob amplitude.Blob poloidal velocity in the SOL is slowed.Larger-size and longer-lifetime blobs are observed with RMP.With the application of RMP,stronger-amplitude and larger-size blobs are detected in the far SOL and they may cause a more serious erosion problem to the first wall.展开更多
Resonant accelerometer is designed,which includes two double-ended tuning forks,a proof mass,four-leverage system amplifying inertial force,and drive/sense combs.Each tuning fork is electrostatically actuated and sens...Resonant accelerometer is designed,which includes two double-ended tuning forks,a proof mass,four-leverage system amplifying inertial force,and drive/sense combs.Each tuning fork is electrostatically actuated and sensed at resonance using comb electrodes.The device is fabricated using MEMS bulk-silicon technology,whose sensitive degree is 27 3Hz/g,and the resolution is 167 8μg.展开更多
In order to address the issues that the magnetic coupled resonant wireless power transfer (MCR-WPT) system is sensitive to the resonant frequency and that transmission power is difficult to control with the non-resi...In order to address the issues that the magnetic coupled resonant wireless power transfer (MCR-WPT) system is sensitive to the resonant frequency and that transmission power is difficult to control with the non-resistive load in the MCR-WPT, a single-side regulation scheme for frequency and transmission power online is proposed, which is based on the inherent constraint relationships the among system parameters in the primary side. Thus, the communication between the primary side and the secondary side is avoided. First, the transfer models of resistance-capacitance load and resistance- inductance load are established, respectively. Next, the relationship between the input voltage phasor and the input current phasor is used to recognize the load property and value. Then, the coaxial rotation of the stepper motor and the rotating vacuum variable capacitor is conducted to unify resonant frequency both in the primary side and the secondary side. Finally, the regulations of both frequency and amplitude of input voltage are made to guarantee transmission power under a new resonant frequency point the same as the one when the only pure resistance part of load is accessed under the former resonant frequency point. Both simulation and experimental results indicate that the proposed regulation scheme can track remnant frequency and maintain transmission power constant.展开更多
基金supported by the National MCF Energy R&D Program of China(Nos.2019YFE03090400 and 2019YFE03030004)National Natural Science Foundation of China(Nos.12375222 and 11775154)National Key R&D Program of China(Nos.2017YFE0301203 and 2017YFE0301101)。
文摘The effects of equilibrium toroidal rotation during edge-localized mode(ELM)mitigated by resonant magnetic perturbation(RMP)are studied with the experimental equilibria of the EAST tokamak based on the four-field model in the BOUT++code.As the two main parameters to determine the toroidal rotation profiles,the rotation shear and magnitudes were separately scanned to investigate their roles in the impact of RMPs on peeling-ballooning(P-B)modes.On one hand,the results show that strong toroidal rotation shear is favorable for the enhancement of the self-generated E×B shearing rate<ω_(E×B)>with RMPs,leading to significant ELM mitigation with RMP in the stronger toroidal rotation shear region.On the other hand,toroidal rotation magnitudes may affect ELM mitigation by changing the penetration of the RMPs,more precisely the resonant components.RMPs can lead to a reduction in the pedestal energy loss by enhancing the multimode coupling in the turbulence transport phase.The shielding effects on RMPs increase with the toroidal rotation magnitude,leading to the enhancement of the multimode coupling with RMPs to be significantly weakened.Hence,the reduction in pedestal energy loss by RMPs decreased with the rotation magnitude.In brief,the results show that toroidal rotation plays a dual role in ELM mitigation with RMP by changing the shielding effects of plasma by rotation magnitude and affecting<ω_(E×B)>by rotation shear.In the high toroidal rotation region,toroidal rotation shear is usually strong and hence plays a dominant role in the influence of RMP on P-B modes,whereas in the low rotation region,toroidal rotation shear is weak and has negligible impact on P-B modes,and the rotation magnitude plays a dominant role in the influence of RMPs on the P-B modes by changing the field penetration.Therefore,the dual role of toroidal rotation leads to stronger ELM mitigation with RMP,which may be achieved both in the low toroidal rotation region and the relatively high rotation region that has strong rotational shear.
文摘The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded quadrilateral elements.The competency of the model is verified with the available results.Parametric studies are conducted for the dynamic parameters of the base-isolated tank,using a lead rubber bearing to evaluate the optimum damping and time period of the isolator.The application of base isolation has reduced the total and impulsive hydrodynamic components of pressure by 80 to 90 percent,and base shear by 15 to 95 percent,depending upon the frequency content and duration of the considered earthquakes.The sloshing amplitude of the base-isolated tank is reduced by 18 to 94 percent for most of the short-duration earthquakes,while it is increased by 17 to 60 percent for the majority of the long-duration earthquakes.Furthermore,resonance studies are carried out through a long-duration harmonic excitation to obtain the dynamic behavior of non-isolated and isolated tanks,using a nonlinear sloshing model.The seismic responses of the base-isolated tank are obtained as higher when the excitation frequency matches the fundamental sloshing frequency rather than the isolator frequency.
基金supported from the National Natural Science Foundation of China(No.62404125)the Hubei Provincial Natural Science Foundation of China(No.2024AFB359)+5 种基金the Yichang City Natural Science Foundation of China(No.A24-3-004)the China Three Gorges University(No.2023RCKJ0035)the Basic Research Programs of Taicang,2021(No.TC2021JC20)the China Postdoctoral Science Foundation(No.2022M722588)the Young Talent Fund of Xi’an Association for Science and Technology(No.959202313090)the Key Research and Development Projects of Shaanxi Province(No.2024GX-YBXM-029).
文摘Developing emerging technologies in Internet of Things and artificial intelligence requires high-speed, low-power, high-sensitivity, and switchable-functionality strain sensors capable of sensing subtle mechanical stimuli in complex ambience. Resonant tunneling diodes (RTDs) are the good candidate for such sensing applications due to the ultrafast transport process, lower tunneling current, and negative differential resistance. However, notably enhancing sensing sensitivity remains one of the greatest challenges for RTD-related strain sensors. Here, we use piezotronic effect to improve sensing performance of strain sensors in double-barrier ZnO nanowire RTDs. This strain sensor not only possesses an ultrahigh gauge factor (GF) 390 GPa^(−1), two orders of magnitude higher than these reported RTD-based strain sensors, but also can switch the sensitivity with a GF ratio of 160 by adjusting bias voltage in a small range of 0.2 V. By employing Landauer–Büttiker quantum transport theory, we uncover two primary factors governing piezotronic modulation of resonant tunneling transport, i.e., the strain-mediated polarization field for manipulation of quantized subband levels, and the interfacial polarization charges for adjustment of space charge region. These two mechanisms enable strain to induce the negative differential resistance, amplify the peak-valley current ratio, and diminish the resonant bias voltage. These performances can be engineered by the regulation of bias voltage, temperature, and device architectures. Moreover, a strain sensor capable of electrically switching sensing performance within sensitive and insensitive regimes is proposed. This study not only offers a deep insight into piezotronic modulation of resonant tunneling physics, but also advances the RTD towards highly sensitive and multifunctional sensor applications.
文摘In photonics, the quest for high-quality (high Q) resonances driven by the physics of bound states in the continuum (BIC)1,2has motivated researchers to explore innovative avenues for realizing groundbreaking applications in lasing3, sensing4and nonlinear photonics5. A conventional strategy to harness the properties of BICs involves breaking the symmetry of resonators in a uniform lattice, allowing uncoupled modes to interact with free space that opens a leaky channel in the form of socalled (quasi) q BIC6modes.
基金supported by the National Magnetic Confinement Fusion Program of China(No.2019YFE03090200)by National Natural Science Foundation of China(Nos.11975231,12175277 and 12305249).
文摘Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modulation experiment, the particle transport coefficients were calculated using the experimental data, and the result shows that the particle transport coefficients increase with RMP. In this study, the six-field two-fluid model in BOUT++ is used to simulate the transport before and after density pump-out induced by RMP,respectively referred as the case without RMP and the case with RMP. In the linear simulations,the instabilities generally decreases for cases with RMP. In the nonlinear simulation, ELM only appears in the case without RMP. Additionally, the particle transport coefficient was analyzed,and the result shows that the particle transport coefficient becomes larger for the case with RMP,which is consistent with the experimental conclusion. Moreover, its magnitude is comparable to the results calculated from experimental data.
基金supported by the Australian Research Council(Grant No.DP210101292)the International Technology Center Indo-Pacific (ITC IPAC) via Army Research Office (contract FA520923C0023)。
文摘Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the development of new practical applications in photonics,lasing,and sensing.Here,we employ symmetry-broken metasurfaces made of centrosymmetric amorphous silicon for resonantly enhanced second-and third-order nonlinear optical response.Exploiting the rich physics of optical quasi-bound states in the continuum and guided mode resonances,we comprehensively study through rigorous numerical calculations the relative contribution of surface and bulk effects to second-harmonic generation(SHG)and the bulk contribution to third-harmonic generation(THG) from the meta-atoms.Next,we experimentally achieve optical resonances with high quality factors,which greatly boosts light-matter interaction,resulting in about 550 times SHG enhancement and nearly 5000-fold increase of THG.A good agreement between theoretical predictions and experimental measurements is observed.To gain deeper insights into the physics of the investigated nonlinear optical processes,we further numerically study the relation between nonlinear emission and the structural asymmetry of the metasurface and reveal that the generated harmonic signals arising from linear sharp resonances are highly dependent on the asymmetry of the meta-atoms.Our work suggests a fruitful strategy to enhance the harmonic generation and effectively control different orders of harmonics in all-dielectric metasurfaces,enabling the development of efficient active photonic nanodevices.
基金supported by the Federal Program'Priority 2030'and NSFC(Project 62350610272)A.K.Samusev acknowledges Deutsche Forschungsgemeinschaft-project No.529710370。
文摘Deeply subwavelength lasers(or nanolasers)are highly demanded for compact on-chip bioimaging and sensing at the nanoscale.One of the main obstacles for the development of single-particle nanolasers with all three dimensions shorter than the emitting wavelength in the visible range is the high lasing thresholds and the resulting overheating.Here we ex-ploit exciton-polariton condensation and mirror-image Mie modes in a cuboid CsPbBr3 nanoparticle to achieve coherent emission at the visible wavelength of around 0.53μm from its ultra-small(≈0.007μm3 or≈λ3/20)semiconductor nanocav-ity.The polaritonic nature of the emission from the nanocavity localized in all three dimensions is proven by direct com-parison with corresponding one-dimensional and two-dimensional waveguiding systems with similar material parameters.Such a deeply subwavelength nanolaser is enabled not only by the high values for exciton binding energy(≈35 meV),re-fractive index(>2.5 at low temperature),and luminescence quantum yield of CsPbBr3,but also by the optimization of po-laritons condensation on the Mie resonances with quality factors improved by the metallic substrate.Moreover,the key parameters for optimal lasing conditions are intermode free spectral range and phonons spectrum in CsPbBr3,which govern polaritons condensation path.Such chemically synthesized colloidal CsPbBr3 nanolasers can be potentially de-posited on arbitrary surfaces,which makes them a versatile tool for integration with various on-chip systems.
基金funded by Horizon 2020 Future and Emerging Technologies ChipAI project under the grant agreement 828841.
文摘This article reports on the development of a simple two-step lithography process for double barrier quantum well(DBQW)InGaAs/AlAs resonant tunneling diode(RTD)on a semi-insulating indium phosphide(InP)substrate using an air-bridge technology.This approach minimizes processing steps,and therefore the processing time as well as the required resources.It is particularly suited for material qualification of new epitaxial layer designs.A DC performance comparison between the proposed process and the conventional process shows approximately the same results.We expect that this novel technique will aid in the recent and continuing rapid advances in RTD technology.
基金the support of the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0450101)the National Key R&D Program of China (Grant No. 2017YFA0204904)+3 种基金the National Natural Science Foundation of China (Grant Nos. 11974322 and 12125408)the Informatization Plan of Chinese Academy of Sciences (Grant No. CAS-WX2021SF-0105)the National Natural Science Foundation of China (Grant No. 12174363)support from the National Science Foundation (Grant No. CHE-2102601)。
文摘Using ab initio nonadiabatic molecular dynamics simulation, we study the time-dependent charge transport dynamics in a single-molecule junction formed by gold(Au) electrodes and a single benzene-1,4-dithiol(BDT)molecule. Two different types of charge transport channels are found in the simulation. One is the routine nonresonant charge transfer path, which occurs in several picoseconds. The other is activated when the electronic state of the electrodes and that of the molecule get close in energy, which is referred to as the resonant charge transport. More strikingly, the resonant charge transfer occurs in an ultrafast manner within 100 fs, which notably increases the conductance of the device. Further analysis shows that the resonant charge transport is directly assisted by the B_(2) and A1 molecular vibration modes. Our study provides atomic insights into the time-dependent charge transport dynamics in single-molecule junctions, which is important for designing highly efficient single-molecule devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.11934004 and 11974230)Russian Science Foundation(Grant No.21-12-00193)。
文摘As x-ray probe pulses approach the subfemtosecond range,conventional x-ray photoelectron spectroscopy(XPS)is expected to experience a reduction in spectral resolution due to the effects of the pulse broadening.However,in the case of resonant x-ray photoemission,also known as resonant Auger scattering(RAS),the spectroscopic technique maintains spectral resolution when an x-ray pulse is precisely tuned to a core-excited state.We present theoretical simulations of XPS and RAS spectra on a showcased CO molecule using ultrashort x-ray pulses,revealing significantly enhanced resolution in the RAS spectra compared to XPS,even in the subfemtosecond regime.These findings provide a novel perspective on potential utilization of attosecond x-ray pulses,capitalizing on the well-established advantages of detecting electron signals for tracking electronic and molecular dynamics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074430 and 11974423)。
文摘The creation and relaxation of double K-hole states 1s^(0)2s^(2)2p^(6)np(n≥3)of Ne^(1+)in the interaction with ultraintense ultrafast x-ray pulses are theoretically investigated.The x-ray photon energies are selected so that x-rays first photoionize1s^(22)s^(22)p^(6) of a neon atom to create a single K-hole state of 1s2s^(22)p^(6) of Ne^(1+),which is further excited resonantly to double K-hole states of ls^(0)2s^(2)2p^(6)np(n≥3).A time-dependent rate equation is used to investigate the creation and relaxation processes of 1s^(0)2s^(2)2p^(6)np,where the primary microscopic atomic processes including photoexcitation,spontaneous radiation,photoionization and Auger decay are considered.The calculated Auger electron energy spectra are compared with recent experimental results,which shows good agreement.The relative intensity of Auger electrons is very sensitive to the photon energy and bandwidth of x-ray pulses,which could be used as a diagnostic tool for x-ray free electron laser and atom experiments.
文摘This review article discusses the development of gallium arsenide(GaAs)-based resonant tunneling diodes(RTD)since the 1970s.To the best of my knowledge,this article is the first review of GaAs RTD technology which covers different epitaxialstructure design,fabrication techniques,and characterizations for various application areas.It is expected that the details presented here will help the readers to gain a perspective on the previous accomplishments,as well as have an outlook on the current trends and future developments in GaAs RTD research.
基金the National Natural Science Foundation of China(Grant Nos.12061051 and 11965014)。
文摘The(2+1)-dimensional elliptic Toda equation is a high-dimensional generalization of the Toda lattice and a semidiscrete Kadomtsev–Petviashvili I equation.This paper focuses on investigating the resonant interactions between two breathers,a breather/lump and line solitons as well as lump molecules for the(2+1)-dimensional elliptic Toda equation.Based on the N-soliton solution,we obtain the hybrid solutions consisting of line solitons,breathers and lumps.Through the asymptotic analysis of these hybrid solutions,we derive the phase shifts of the breather,lump and line solitons before and after the interaction between a breather/lump and line solitons.By making the phase shifts infinite,we obtain the resonant solution of two breathers and the resonant solutions of a breather/lump and line solitons.Through the asymptotic analysis of these resonant solutions,we demonstrate that the resonant interactions exhibit the fusion,fission,time-localized breather and rogue lump phenomena.Utilizing the velocity resonance method,we obtain lump–soliton,lump–breather,lump–soliton–breather and lump–breather–breather molecules.The above works have not been reported in the(2+1)-dimensional discrete nonlinear wave equations.
基金supported by Hubei Provincial Natural Science Foundation of China(No.BZQ22006)Fundamental Research Funds for the Central Universities(No.CZY20028)+1 种基金National Magnetic Confinement Fusion Energy R&D Program of China(No.2018YFE0309102)National Natural Science Foundation of China(No.51821005)。
文摘The resonant magnetic perturbation(RMP)system is a powerful auxiliary system on tokamaks.On the J-TEXT tokamak,a set of new in-vessel coils is designed to enhance the amplitude of the RMP.The new coils are designed to be two-turn saddle coils.These two-turn saddle coils have been optimized in terms of their structure,support,and protection components to overcome the limitations of the narrow in-vessel space,resulting in a compact coil module that can be accommodated in the vessel.To verify the feasibility of this design,an electromagnetic simulation is performed to investigate the electrical parameters and the generated field of the coils.A multi-field coupled simulation is performed to investigate the capacity of heat dissipation.As a result of these efforts,the new RMP coils have been successfully installed on the J-TEXT tokamak.It has significantly enhanced the RMP amplitude and been widely applied in experiments.
基金supported by the Science and Technology Research Innovation Team Project LT2019007 of the Department of Education of Liaoning Provincethe Discipline Innovation Team Project LNTU20TD-02,29 of Liaoning Technical University。
文摘Magnetically coupled resonant technology is a novel method for solving the breakpoint locating of power grounding grid.But the method can only detect breakpoints of a single mesh grounding grid at present.In this paper,a magnetically coupled resonant detection method for four-hole grounding grid breakpoint is proposed.Firstly,the equivalent circuit model of the four mesh grounding grid with two types of breakpoints,namely edge branch and intermediate branch,is established.The input impedance and phase angle of the system are obtained by analyzing the equivalent capacitance and equivalent resistance in the model.Secondly,the magnetically coupled resonant physical process of grounding grid faults is solved via HFSS software.The magnetic field intensity and phase frequency characteristic curves of four mesh holes with different branches and positions of breakpoints and different corrosion degrees are studied,and an experimental system is built to verify the feasibility.The results show that under the condition of grounding grid buried depth of 0.5 m and input frequency of 1~15MHz,and there is an inverse relationship between equivalent capacitance and distortion frequency,the phase angle is positively correlated with the degree of corrosion of grounding grid,and the error of signal distortion frequency can be positioned at 5%.This paper provides some ideas for the application of magnetic coupling grounding grid detection technology.
文摘From a combination of Maxwell’s electromagnetism with Planck’s law and the de Broglie hypothesis, we arrive at quantized photonic wave groups whose constant phase velocity is equal to the speed of light c = ω/k and to their group velocity dω/dk. When we include special relativity expressed in simplest units, we find that, for particulate matter, the square of rest mass , i.e., angular frequency squared minus wave vector squared. This equation separates into a conservative part and a uniform responsive part. A wave function is derived in manifold rank 4, and from it are derived uncertainties and internal motion. The function solves four anomalies in quantum physics: the point particle with prescribed uncertainties;spooky action at a distance;time dependence that is consistent with the uncertainties;and resonant reduction of the wave packet by localization during measurement. A comparison between contradictory mathematical and physical theories leads to similar empirical conclusions because probability amplitudes express hidden variables. The comparison supplies orthodox postulates that are compared to physical principles that formalize the difference. The method is verified by dual harmonics found in quantized quasi-Bloch waves, where the quantum is physical;not axiomatic.
基金Project supported by the National Natural Science Foundation of China(Grant No.62105169)Natural Science Foundation of Ningbo(Grant No.2021J078)Special fund for Talents Project of Ningbo University(Grant No.432094940)。
文摘Light absorption and radiation are fundamental processes in optical science and engineering.Materials with perfect absorption properties play an important role in numerous optical applications.Following the meteoric rise of MoS_(2)material,global opportunities and challenges coexist due to its extremely weak light-matter interaction capability beyond its energy band.In this work,we designed a kind of sandwich resonance structure and investigated MoS_(2)as a perfect absorber in the infrared spectrum that should be transparent according to the optical band theory.The infrared absorption properties of W or Au/MoS_(2)/Au models at 800 nm-2400 nm were systematic simulated.By optimizing the structural parameters,the resonant wavelength of perfect absorption can be modulated from 830 nm to 1700 nm with angle insensitivity and polar independence.Moreover,we discovered that the bandwidth of absorption exceeding 50%of the W-top model reaches500 nm,while that of the Au-top model is less than 100 nm,indicating that the top metal material has a great influence on the resonance absorption spectrum.Our work provides a practical route for enhancing and manipulating the light-matter interactions of low-dimensional materials beyond their own band gaps,which will be critical in the future design and implementation of optoelectronic devices and systems.
基金supported by the National Key Research and Development Program of China(Nos.2022YFE03100002,2022YFE03010004 and 2019YFE03060002)National Natural Science Foundation of China(Nos.U1867222,U1967206 and 51821005)the Sichuan Natural Science Foundation(Nos.2022NSFSC1791 and 2020JDTD0030).
文摘The impact of resonant magnetic perturbation(RMP)on blob motion and structure in the SOL of the HL-2A tokamak is studied using a gas puff imaging diagnostic.Ellipse fitting is applied to study the structure and motion of blobs quantitatively.The radial locations,amplitudes and scale sizes of blobs are obtained based on the fitted ellipse.Furthermore,based on the measurement of blob location,the radial and poloidal velocities of blobs are calculated.With the application of RMP,the edge poloidal shear flow is significantly weakened and the wave number spectrum changes from quasisymmetric to significantly up-down asymmetric.The application of RMP also causes the detected blob location to be much further into the far scrape-off layer(SOL)and increases the blob amplitude.Blob poloidal velocity in the SOL is slowed.Larger-size and longer-lifetime blobs are observed with RMP.With the application of RMP,stronger-amplitude and larger-size blobs are detected in the far SOL and they may cause a more serious erosion problem to the first wall.
文摘Resonant accelerometer is designed,which includes two double-ended tuning forks,a proof mass,four-leverage system amplifying inertial force,and drive/sense combs.Each tuning fork is electrostatically actuated and sensed at resonance using comb electrodes.The device is fabricated using MEMS bulk-silicon technology,whose sensitive degree is 27 3Hz/g,and the resolution is 167 8μg.
基金The National Natural Science Youth Foundation of China(No.51507032)the Natural Science Foundation of Jiangsu Province(No.BK20150617)the Fundamental Research Funds for the Central Universities
文摘In order to address the issues that the magnetic coupled resonant wireless power transfer (MCR-WPT) system is sensitive to the resonant frequency and that transmission power is difficult to control with the non-resistive load in the MCR-WPT, a single-side regulation scheme for frequency and transmission power online is proposed, which is based on the inherent constraint relationships the among system parameters in the primary side. Thus, the communication between the primary side and the secondary side is avoided. First, the transfer models of resistance-capacitance load and resistance- inductance load are established, respectively. Next, the relationship between the input voltage phasor and the input current phasor is used to recognize the load property and value. Then, the coaxial rotation of the stepper motor and the rotating vacuum variable capacitor is conducted to unify resonant frequency both in the primary side and the secondary side. Finally, the regulations of both frequency and amplitude of input voltage are made to guarantee transmission power under a new resonant frequency point the same as the one when the only pure resistance part of load is accessed under the former resonant frequency point. Both simulation and experimental results indicate that the proposed regulation scheme can track remnant frequency and maintain transmission power constant.