High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching...High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.展开更多
Superconducting microwave resonators play a pivotal role in superconducting quantum circuits.The ability to finetune their resonant frequencies provides enhanced control and flexibility.Here,we introduce a frequency-t...Superconducting microwave resonators play a pivotal role in superconducting quantum circuits.The ability to finetune their resonant frequencies provides enhanced control and flexibility.Here,we introduce a frequency-tunable superconducting coplanar waveguide resonator.By applying electrical currents through specifically designed ground wires,we achieve the generation and control of a localized magnetic field on the central line of the resonator,enabling continuous tuning of its resonant frequency.We demonstrate a frequency tuning range of 54.85 MHz in a 6.21-GHz resonator.This integrated and tunable resonator holds great potential as a dynamically tunable filter and as a key component of communication buses and memory elements in superconducting quantum computing.展开更多
Dissipative Kerr solitons from optical microresonators,commonly referred to as soliton microcombs,have been developed for a broad range of applications,including precision measurement,optical frequency synthesis,and u...Dissipative Kerr solitons from optical microresonators,commonly referred to as soliton microcombs,have been developed for a broad range of applications,including precision measurement,optical frequency synthesis,and ultrastable microwave and millimeter wave generation,all on a chip.An important goal for microcombs is self-referencing,which requires octave-spanning bandwidths to detect and stabilize the comb carrier envelope offset frequency.Further,detection and locking of the comb spacings are often achieved using frequency division by electro-optic modulation.The thin-film lithium niobate photonic platform,with its low loss,strong second-and third-order nonlinearities,as well as large Pockels effect,is ideally suited for these tasks.However,octave-spanning soliton microcombs are challenging to demonstrate on this platform,largely complicated by strong Raman effects hindering reliable fabrication of soliton devices.Here,we demonstrate entirely connected and octave-spanning soliton microcombs on thin-film lithium niobate.With appropriate control over microresonator free spectral range and dissipation spectrum,we show that soliton-inhibiting Raman effects are suppressed,and soliton devices are fabricated with near-unity yield.Our work offers an unambiguous method for soliton generation on strongly Raman-active materials.Further,it anticipates monolithically integrated,self-referenced frequency standards in conjunction with established technologies,such as periodically poled waveguides and electro-optic modulators,on thin-film lithium niobate.展开更多
Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical...Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical temperature(T_(c)),and quasiparticle density of states(QDOS) distribution, however, deviate from the classical BCS theory due to the disorder effects. The Usadel equation, which takes account of elastic scattering, non-elastic scattering, and electro–phonon coupling,can be applied to explain and describe these deviations. This paper presents numerical simulations of the disorder effects based on the Usadel equation to investigate their effects on the △, Tc, QDOS distribution, and complex conductivity of the NbTiN film. Furthermore, NbTiN superconducting resonators with coplanar waveguide(CPW) structures are fabricated and characterized at different temperatures to validate our numerical simulations. The pair-breaking parameter α and the critical temperature in the pure state T_(c)^(P) of our NbTiN film are determined from the experimental results and numerical simulations. This study has significant implications for the development of low-temperature detectors made of disordered superconducting materials.展开更多
Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical appr...Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical approaches.The metastructure is composed of periodic rubber layers and concrete layers embedded with three-dimensional resonators,which can be freely designed with multi local resonant frequencies to attenuate vibrations at required frequencies and widen the attenuation bandgap.The metastructure can also effectively attenuate seismic responses.Compared with layered rubber-based structures,the metastructure has more excellent wave attenuation effects with greater attenuation and wider bandgap.展开更多
Metamaterial based on local resonance has excellent vibration attenuation ability in low frequency.In this research,an attempt was performed to make meta-mortar with spring-mass resonators to attenuate vibration and s...Metamaterial based on local resonance has excellent vibration attenuation ability in low frequency.In this research,an attempt was performed to make meta-mortar with spring-mass resonators to attenuate vibration and shock hazards.Single-spring-mass resonators and dual-spring-mass resonators were designed and made using lead or aluminum blocks and SWPB springs encased by PMMA(polymethyl methacrylate)or aluminum frames.These resonators were placed into mortar blocks to make metamortar specimens.Vibration attenuation effect was investigated by sweeping vibration with frequency from 50 Hz to 2000 Hz.All these meta-mortar blocks exhibit excellent vibration attenuation ability in the designed band gaps.With dual-spring-mass resonators,meta-mortar blocks have two distinct vibration attenuation bands.展开更多
This paper is focused on electrode design for piezoelectric tuning fork resonators.The relationship between the performance and electrode pattern of aluminum nitride piezoelectric tuning fork resonators vibrating in t...This paper is focused on electrode design for piezoelectric tuning fork resonators.The relationship between the performance and electrode pattern of aluminum nitride piezoelectric tuning fork resonators vibrating in the in-plane flexural mode is investigated based on a set of resonators with different electrode lengths,widths,and ratios.Experimental and simulation results show that the electrode design impacts greatly the multimode effect induced from torsional modes but has little influence on other loss mechanisms.Optimizing the electrode design suppresses the torsional mode successfully,thereby increasing the ratio of impedance at parallel and series resonant frequencies(R_(p)/R_(s))by more than 80%and achieving a quality factor(Q)of 7753,an effective electromechanical coupling coefficient(kt_(eff)^(2))of 0.066%,and an impedance at series resonant frequency(R_(m))of 23.6 kΩ.The proposed approach shows great potential for high-performance piezoelectric resonators,which are likely to be fundamental building blocks for sensors with high sensitivity and low noise and power consumption.展开更多
In valley photonic crystals, topological edge states can be gained by breaking the spatial inversion symmetry without breaking time-reversal symmetry or creating pseudo-spin structures, making highly unidirectional li...In valley photonic crystals, topological edge states can be gained by breaking the spatial inversion symmetry without breaking time-reversal symmetry or creating pseudo-spin structures, making highly unidirectional light transmission easy to achieve. This paper presents a novel physical model of a hexagonal-star valley photonic crystal. Simulations based on the finite element method(FEM) are performed to investigate the propagation of TM polarized mode and its application to ring resonators. The results show that such a topologically triangular ring resonator exhibits an optimum quality factor Q of about 1.25×104, and Q has a maximum value for both frequency and the cavity length L. Our findings are expected to have significant implications for developing topological lasers and wavelength division multiplexers.展开更多
The model of a locally resonant (LR) epoxy/PZT-4 phononic crystal (PC)nanobeam with “spring-mass” resonators periodically attached to epoxy is proposed. The corresponding band structures are calculated by coupling E...The model of a locally resonant (LR) epoxy/PZT-4 phononic crystal (PC)nanobeam with “spring-mass” resonators periodically attached to epoxy is proposed. The corresponding band structures are calculated by coupling Euler beam theory, nonlocal piezoelectricity theory and plane wave expansion (PWE) method. Three complete band gaps with the widest total width less than 10GHz can be formed in the proposed nanobeam by comprehensively comparing the band structures of three kinds of LR PC nanobeams with resonators attached or not. Furthermore, influencing rules of the coupling fields between electricity and mechanics,“spring-mass” resonator, nonlocal effect and different geometric parameters on the first three band gaps are discussed and summarized. All the investigations are expected to be applied to realize the active control of vibration in the region of ultrahigh frequency.展开更多
The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, re...The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W.展开更多
Based on cavity resonance and sandwich composite plate (3D) theoretical model for frequency dispersion characterization theory, this paper presents a universal three-dimensional and displacement profile shapes of th...Based on cavity resonance and sandwich composite plate (3D) theoretical model for frequency dispersion characterization theory, this paper presents a universal three-dimensional and displacement profile shapes of the film bulk acoustic resonator (FBARs). This model provides results of FBAR excited thickness-extensional and flexure modes, and the result of frequency dispersion is proposed in which the thicknesses and impedance of the electrodes and the piezoelectric material are taken into consideration; its further simplification shows good agreement with the modified Butterworth-Van-Dyke (MBVD) model. The displacement profile reflects the vibration stress distribution of electrode shapes and the lateral resonance effect, which depends on the axis ratio of the electrode shapes a/b. The results are consistent with the 3D finite element method modeling and laser interferometry measurement in general.展开更多
We review recent work on narrowband orthogonally polarized optical RF single sideband generators as well as dualchannel equalization,both based on high-Q integrated ring resonators.The devices operate in the optical t...We review recent work on narrowband orthogonally polarized optical RF single sideband generators as well as dualchannel equalization,both based on high-Q integrated ring resonators.The devices operate in the optical telecommunications C-band and enable RF operation over a range of either fixed or thermally tuneable frequencies.They operate via TE/TM mode birefringence in the resonator.We achieve a very large dynamic tuning range of over 55 dB for both the optical carrier-to-sideband ratio and the dual-channel RF equalization for both the fixed and tunable devices.展开更多
Diffraction effects will bring about more difficulties in actuating resonators,which are electrostatically actuated ones with sub-micrometer or nanometer dimensions,and in detecting the frequency of the resonator by o...Diffraction effects will bring about more difficulties in actuating resonators,which are electrostatically actuated ones with sub-micrometer or nanometer dimensions,and in detecting the frequency of the resonator by optical detection.To avoid the effects of diffraction,a new type of nanoelectromechanical systems(NEMS) resonators is fabricated and actuated to oscillate.As a comparison,a doubly clamped silicon beam is also fabricated and studied.The smallest width and thickness of the resonators are 180 and 200 nm,respectively.The mechanical oscillation responses of these two kinds of resonators are studied experimentally.Results show that the resonant frequencies are from 6.8 to 20 MHz,much lower than the theoretical values.Based on the simulation,it is found that over-etching is one of the important factors which results in lower frequencies than the theoretical values.It is also found that the difference between resonance frequencies of two types of resonators decreases with the increase in beam length.The quality factor is improved greatly by lowering the pressure in the sample chamber at room temperature.展开更多
The mode frequencies and the quality factors for the equilateral triangular resonator (ETR), the square resonator (SR) and the rhombus resonator (RR) are numerically calculated by the finite difference time domai...The mode frequencies and the quality factors for the equilateral triangular resonator (ETR), the square resonator (SR) and the rhombus resonator (RR) are numerically calculated by the finite difference time domain technique and the Padé approximation. The numerical results show that the resonant modes confined in an equilateral triangular cavity have much higher quality factors than those in the square or the rhombus cavities. The modes in the ETR are totally confined in transverse direction while those in the SR and RR are only partly confined. For the ETR with the side length of 4μm and the refractive index of 3 2, the mode quality factor of about 5 5×10 3 at the wavelength of 1 55μm has been obtained.展开更多
We designed a reconfigurable dual-interferometer coupled silicon nitride microring resonator.By tuning the integrated heater on interferometer's arms,the"critical coupling"bandwidth of resonant mode is c...We designed a reconfigurable dual-interferometer coupled silicon nitride microring resonator.By tuning the integrated heater on interferometer's arms,the"critical coupling"bandwidth of resonant mode is continuously adjustable whose quality factor varies from 7.9×10^(4) to 1.9×10^(5) with the extinction ratio keeping higher than 25 dB.Also a variety of coupling spanning from"under-coupling"to"over-coupling"were achieved,showing the ability to tune the quality factor from 6.0×10^(3) to 2.3×10^(5).Our design can provide an adjustable filtering method on silicon nitride photonic chip and contribute to optimize the nonlinear process for quantum photonics and all-optical signal processing.展开更多
Spherical aberrations of the thermal lens of the active media are severe when solid state lasers are strongly pumped. The fundamental mode profile deteriorates due to the aberrations. Self-consistent modes of a resona...Spherical aberrations of the thermal lens of the active media are severe when solid state lasers are strongly pumped. The fundamental mode profile deteriorates due to the aberrations. Self-consistent modes of a resonator with aberrations are calculated by using the Fox-Li diffraction iterative algorithm. Calculation results show that the aberration induced fundamental mode beam quality deterioration depends greatly on the resonator design. The tolerance of a flat-flat resonator to the aberration coefficient is about 30λ in the middle of stability, where λ is the wavelength of laser beam. But for a dynamically stable resonator, 2λ of spherical aberration will create diffraction loss of more than 40%, if inappropriate design criteria are used. A birefringence compensated laser resonator with two Nd:YAG rods is experimentally studied. The experimental data are in quite good agreement with simulation results.展开更多
Effects of oblique incidence of terahertz waves on the response of planar split-ring resonators are investigated, both experimentally and by simulation. It is found that the incident angle dependent phase delay and co...Effects of oblique incidence of terahertz waves on the response of planar split-ring resonators are investigated, both experimentally and by simulation. It is found that the incident angle dependent phase delay and coupling conditions of neighboring split-ring resonator (SRR) units play important roles and greatly change both the transmission and reflection spectra for the resonant feature of linear charge oscillations. Our results show that the SRR structure-supported magne- toelectric couplings at oblique excitation are trivial and can be ignored. A highly symmetric response is found in the cross-polarization effects, which may manifest the bianisotropic properties of the SRR system but this needs further study.展开更多
The optimization method by adjusting load and distances between two adjacent coils( or resonators) is presented on basis of wireless power transfer( WPT) system with relay resonators. 2-port network and impedance matc...The optimization method by adjusting load and distances between two adjacent coils( or resonators) is presented on basis of wireless power transfer( WPT) system with relay resonators. 2-port network and impedance matching theory are applied to analyzing power flow of incidence and reflection in WPT system,then setting up power flow model. The maximum power transmission efficiency can be obtained when the load and distance between secondary resonator and output coil meets impedance matching at 2-port network's output port. The simulation and experimental results shown the impedance matching method can effectively improve and maintain transmission efficiency by adjusting load and distances between coils or relay resonators.展开更多
We investigate properties of the ponderomotive squeezing in an optomechanical system with two coupled resonators,where the tunable two-mode squeezing spectrum can be observed from the output field.It is realized that ...We investigate properties of the ponderomotive squeezing in an optomechanical system with two coupled resonators,where the tunable two-mode squeezing spectrum can be observed from the output field.It is realized that the squeezing orientation can be controlled by the detuning between the left cavity and pump laser.Especially,both cavity decay and environment temperature play a positive role in generating better pondermotive squeezing light.Strong squeezing spectra with a wide squeezing frequency range can be obtained by appropriate choice of parameters present in our optomechanical system.展开更多
An effective approach to expand the bandwidth of negative permeability of small-sized planax materials is proposed. Based on qualitative analysis of equivalent circuit models, the fractional bandwidth of an μ-negati...An effective approach to expand the bandwidth of negative permeability of small-sized planax materials is proposed. Based on qualitative analysis of equivalent circuit models, the fractional bandwidth of an μ-negative (MNG) material is expanded from 3.53% up to 12.87% by adding split-ring resonators (SRRs) and arranging them by proposed steps. Moreover, the experimental results validate the effectiveness of bandwidth-expanding methods, which is promising for the extensive application of metamaterials in the microwave field.展开更多
基金support from the National Key Research and Development Program of China (2020YFA0714504,2019YFA0709100).
文摘High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA0718802 and 2018YFA0209002)the National Natural Science Foundation of China(Grant Nos.62274086,62288101,61971464,62101243,and 11961141002)+3 种基金the Excellent Young Scholar Program of Jiangsu Province,China(Grant Nos.BK20200008 and BK20200060)the Outstanding Postdoctoral Program of Jiangsu Province,Chinathe Fundamental Research Funds for the Central Universitiesthe Fund from Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves。
文摘Superconducting microwave resonators play a pivotal role in superconducting quantum circuits.The ability to finetune their resonant frequencies provides enhanced control and flexibility.Here,we introduce a frequency-tunable superconducting coplanar waveguide resonator.By applying electrical currents through specifically designed ground wires,we achieve the generation and control of a localized magnetic field on the central line of the resonator,enabling continuous tuning of its resonant frequency.We demonstrate a frequency tuning range of 54.85 MHz in a 6.21-GHz resonator.This integrated and tunable resonator holds great potential as a dynamically tunable filter and as a key component of communication buses and memory elements in superconducting quantum computing.
基金supported by the Defense Advanced Research Projects Agency(HR001120C0137,D23AP00251-00)Office of Naval Research(N00014-22-C-1041)+4 种基金National Science Foundation(OMA-2137723,OMA2138068)U.S.Navy(N68335-22-C-0413)National Research Foundation of Korea.The device fabrication in this work was performed at the Harvard University Center for Nanoscale Systems(CNS)a member of the National Nanotechnology Coordinated Infrastructure Network(NNCI)which is supported by the National Science Foundation under NSF award no.ECCS-2025158.
文摘Dissipative Kerr solitons from optical microresonators,commonly referred to as soliton microcombs,have been developed for a broad range of applications,including precision measurement,optical frequency synthesis,and ultrastable microwave and millimeter wave generation,all on a chip.An important goal for microcombs is self-referencing,which requires octave-spanning bandwidths to detect and stabilize the comb carrier envelope offset frequency.Further,detection and locking of the comb spacings are often achieved using frequency division by electro-optic modulation.The thin-film lithium niobate photonic platform,with its low loss,strong second-and third-order nonlinearities,as well as large Pockels effect,is ideally suited for these tasks.However,octave-spanning soliton microcombs are challenging to demonstrate on this platform,largely complicated by strong Raman effects hindering reliable fabrication of soliton devices.Here,we demonstrate entirely connected and octave-spanning soliton microcombs on thin-film lithium niobate.With appropriate control over microresonator free spectral range and dissipation spectrum,we show that soliton-inhibiting Raman effects are suppressed,and soliton devices are fabricated with near-unity yield.Our work offers an unambiguous method for soliton generation on strongly Raman-active materials.Further,it anticipates monolithically integrated,self-referenced frequency standards in conjunction with established technologies,such as periodically poled waveguides and electro-optic modulators,on thin-film lithium niobate.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11925304 and 12020101002)the Chinese Academy of Sciences Program(Grant No.GJJSTD20210002).
文摘Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical temperature(T_(c)),and quasiparticle density of states(QDOS) distribution, however, deviate from the classical BCS theory due to the disorder effects. The Usadel equation, which takes account of elastic scattering, non-elastic scattering, and electro–phonon coupling,can be applied to explain and describe these deviations. This paper presents numerical simulations of the disorder effects based on the Usadel equation to investigate their effects on the △, Tc, QDOS distribution, and complex conductivity of the NbTiN film. Furthermore, NbTiN superconducting resonators with coplanar waveguide(CPW) structures are fabricated and characterized at different temperatures to validate our numerical simulations. The pair-breaking parameter α and the critical temperature in the pure state T_(c)^(P) of our NbTiN film are determined from the experimental results and numerical simulations. This study has significant implications for the development of low-temperature detectors made of disordered superconducting materials.
基金Supports from National Natural Science Foundation of China(Grant Nos.U20A20286 and 11972184)the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Engineering Safety(Grant No.2021ZDK006)+1 种基金Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201286)Science and Technology Project of Jiangsu Province of China(Grant No.BE2020716)are gratefully acknowledged.
文摘Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical approaches.The metastructure is composed of periodic rubber layers and concrete layers embedded with three-dimensional resonators,which can be freely designed with multi local resonant frequencies to attenuate vibrations at required frequencies and widen the attenuation bandgap.The metastructure can also effectively attenuate seismic responses.Compared with layered rubber-based structures,the metastructure has more excellent wave attenuation effects with greater attenuation and wider bandgap.
基金Supports from National Natural Science Foundation of China(Grant No.12002160,and Grant No.11972184)China National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact(Grant No.6142902200203)+2 种基金Natural Science Foundation of Jiangsu Province of China(Grant No.BK20200412,BK20201286)National Defense Basic Scientific Research Program of China(TCA20030)Science and Technology Project of Jiangsu Province of China(Grant No.BE2020716)。
文摘Metamaterial based on local resonance has excellent vibration attenuation ability in low frequency.In this research,an attempt was performed to make meta-mortar with spring-mass resonators to attenuate vibration and shock hazards.Single-spring-mass resonators and dual-spring-mass resonators were designed and made using lead or aluminum blocks and SWPB springs encased by PMMA(polymethyl methacrylate)or aluminum frames.These resonators were placed into mortar blocks to make metamortar specimens.Vibration attenuation effect was investigated by sweeping vibration with frequency from 50 Hz to 2000 Hz.All these meta-mortar blocks exhibit excellent vibration attenuation ability in the designed band gaps.With dual-spring-mass resonators,meta-mortar blocks have two distinct vibration attenuation bands.
基金supported in part by the National Key Research and Development Program of China (Grant No.2020YFB2008800)the Nanchang Institute for Microtechnology of Tianjin University。
文摘This paper is focused on electrode design for piezoelectric tuning fork resonators.The relationship between the performance and electrode pattern of aluminum nitride piezoelectric tuning fork resonators vibrating in the in-plane flexural mode is investigated based on a set of resonators with different electrode lengths,widths,and ratios.Experimental and simulation results show that the electrode design impacts greatly the multimode effect induced from torsional modes but has little influence on other loss mechanisms.Optimizing the electrode design suppresses the torsional mode successfully,thereby increasing the ratio of impedance at parallel and series resonant frequencies(R_(p)/R_(s))by more than 80%and achieving a quality factor(Q)of 7753,an effective electromechanical coupling coefficient(kt_(eff)^(2))of 0.066%,and an impedance at series resonant frequency(R_(m))of 23.6 kΩ.The proposed approach shows great potential for high-performance piezoelectric resonators,which are likely to be fundamental building blocks for sensors with high sensitivity and low noise and power consumption.
基金Project supported by the National Natural Science Foundation of China (Grant No. 1217040857)。
文摘In valley photonic crystals, topological edge states can be gained by breaking the spatial inversion symmetry without breaking time-reversal symmetry or creating pseudo-spin structures, making highly unidirectional light transmission easy to achieve. This paper presents a novel physical model of a hexagonal-star valley photonic crystal. Simulations based on the finite element method(FEM) are performed to investigate the propagation of TM polarized mode and its application to ring resonators. The results show that such a topologically triangular ring resonator exhibits an optimum quality factor Q of about 1.25×104, and Q has a maximum value for both frequency and the cavity length L. Our findings are expected to have significant implications for developing topological lasers and wavelength division multiplexers.
基金supported by the National Natural Science Foundation of China(51979130,11847009)the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)+1 种基金the Natural Science Foundation of Jiangsu Higher Education Institutions of China(22KJB580005)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX221961)。
文摘The model of a locally resonant (LR) epoxy/PZT-4 phononic crystal (PC)nanobeam with “spring-mass” resonators periodically attached to epoxy is proposed. The corresponding band structures are calculated by coupling Euler beam theory, nonlocal piezoelectricity theory and plane wave expansion (PWE) method. Three complete band gaps with the widest total width less than 10GHz can be formed in the proposed nanobeam by comprehensively comparing the band structures of three kinds of LR PC nanobeams with resonators attached or not. Furthermore, influencing rules of the coupling fields between electricity and mechanics,“spring-mass” resonator, nonlocal effect and different geometric parameters on the first three band gaps are discussed and summarized. All the investigations are expected to be applied to realize the active control of vibration in the region of ultrahigh frequency.
基金Project(61104088)supported by the National Natural Science Foundation of ChinaProject(12C0741)supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W.
基金supported by the National Natural Science Foundation of China(Grant No.61275081)
文摘Based on cavity resonance and sandwich composite plate (3D) theoretical model for frequency dispersion characterization theory, this paper presents a universal three-dimensional and displacement profile shapes of the film bulk acoustic resonator (FBARs). This model provides results of FBAR excited thickness-extensional and flexure modes, and the result of frequency dispersion is proposed in which the thicknesses and impedance of the electrodes and the piezoelectric material are taken into consideration; its further simplification shows good agreement with the modified Butterworth-Van-Dyke (MBVD) model. The displacement profile reflects the vibration stress distribution of electrode shapes and the lateral resonance effect, which depends on the axis ratio of the electrode shapes a/b. The results are consistent with the 3D finite element method modeling and laser interferometry measurement in general.
文摘We review recent work on narrowband orthogonally polarized optical RF single sideband generators as well as dualchannel equalization,both based on high-Q integrated ring resonators.The devices operate in the optical telecommunications C-band and enable RF operation over a range of either fixed or thermally tuneable frequencies.They operate via TE/TM mode birefringence in the resonator.We achieve a very large dynamic tuning range of over 55 dB for both the optical carrier-to-sideband ratio and the dual-channel RF equalization for both the fixed and tunable devices.
基金The National High Technology Research and Development Program of China(863 Program)(No.2007AA04Z301)
文摘Diffraction effects will bring about more difficulties in actuating resonators,which are electrostatically actuated ones with sub-micrometer or nanometer dimensions,and in detecting the frequency of the resonator by optical detection.To avoid the effects of diffraction,a new type of nanoelectromechanical systems(NEMS) resonators is fabricated and actuated to oscillate.As a comparison,a doubly clamped silicon beam is also fabricated and studied.The smallest width and thickness of the resonators are 180 and 200 nm,respectively.The mechanical oscillation responses of these two kinds of resonators are studied experimentally.Results show that the resonant frequencies are from 6.8 to 20 MHz,much lower than the theoretical values.Based on the simulation,it is found that over-etching is one of the important factors which results in lower frequencies than the theoretical values.It is also found that the difference between resonance frequencies of two types of resonators decreases with the increase in beam length.The quality factor is improved greatly by lowering the pressure in the sample chamber at room temperature.
文摘The mode frequencies and the quality factors for the equilateral triangular resonator (ETR), the square resonator (SR) and the rhombus resonator (RR) are numerically calculated by the finite difference time domain technique and the Padé approximation. The numerical results show that the resonant modes confined in an equilateral triangular cavity have much higher quality factors than those in the square or the rhombus cavities. The modes in the ETR are totally confined in transverse direction while those in the SR and RR are only partly confined. For the ETR with the side length of 4μm and the refractive index of 3 2, the mode quality factor of about 5 5×10 3 at the wavelength of 1 55μm has been obtained.
基金the National Key Research and Development Program of China(Grant Nos.2019YFA0308700and 2017YFA0303700)the National Natural Science Foundation of China(Grant Nos.11627810 and 11690031)the Open Funds from the State Key Laboratory of High Performance Computing of China(HPCL,National University of Defense Technology).
文摘We designed a reconfigurable dual-interferometer coupled silicon nitride microring resonator.By tuning the integrated heater on interferometer's arms,the"critical coupling"bandwidth of resonant mode is continuously adjustable whose quality factor varies from 7.9×10^(4) to 1.9×10^(5) with the extinction ratio keeping higher than 25 dB.Also a variety of coupling spanning from"under-coupling"to"over-coupling"were achieved,showing the ability to tune the quality factor from 6.0×10^(3) to 2.3×10^(5).Our design can provide an adjustable filtering method on silicon nitride photonic chip and contribute to optimize the nonlinear process for quantum photonics and all-optical signal processing.
基金Project supported by the National Natural Science Foundation-the Science Foundation of China Academy of Engineering Physics(NSAF) (Grant No 10876037)China Postdoctoral Science Foundation (Grant No 20080441238)
文摘Spherical aberrations of the thermal lens of the active media are severe when solid state lasers are strongly pumped. The fundamental mode profile deteriorates due to the aberrations. Self-consistent modes of a resonator with aberrations are calculated by using the Fox-Li diffraction iterative algorithm. Calculation results show that the aberration induced fundamental mode beam quality deterioration depends greatly on the resonator design. The tolerance of a flat-flat resonator to the aberration coefficient is about 30λ in the middle of stability, where λ is the wavelength of laser beam. But for a dynamically stable resonator, 2λ of spherical aberration will create diffraction loss of more than 40%, if inappropriate design criteria are used. A birefringence compensated laser resonator with two Nd:YAG rods is experimentally studied. The experimental data are in quite good agreement with simulation results.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB339800)the National Natural Science Foundation of China(Grant Nos.11374358 and 61077082)
文摘Effects of oblique incidence of terahertz waves on the response of planar split-ring resonators are investigated, both experimentally and by simulation. It is found that the incident angle dependent phase delay and coupling conditions of neighboring split-ring resonator (SRR) units play important roles and greatly change both the transmission and reflection spectra for the resonant feature of linear charge oscillations. Our results show that the SRR structure-supported magne- toelectric couplings at oblique excitation are trivial and can be ignored. A highly symmetric response is found in the cross-polarization effects, which may manifest the bianisotropic properties of the SRR system but this needs further study.
基金Human Provincial Natural Science Foudation of China(No.2016JJ4043)Youth Foundation of Education Bureau of Hunan Province,China(No.16B137)Science and Technology Projects of Loudi City,China
文摘The optimization method by adjusting load and distances between two adjacent coils( or resonators) is presented on basis of wireless power transfer( WPT) system with relay resonators. 2-port network and impedance matching theory are applied to analyzing power flow of incidence and reflection in WPT system,then setting up power flow model. The maximum power transmission efficiency can be obtained when the load and distance between secondary resonator and output coil meets impedance matching at 2-port network's output port. The simulation and experimental results shown the impedance matching method can effectively improve and maintain transmission efficiency by adjusting load and distances between coils or relay resonators.
基金Project supported by the Doctoral Program of Guangdong Natural Science Foundation,China(Grant No.2018A030310109)the Doctoral Project of Guangdong Medical University(Grant No.B2017019)the Project of Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education of China(Grant No.QSQC1808)。
文摘We investigate properties of the ponderomotive squeezing in an optomechanical system with two coupled resonators,where the tunable two-mode squeezing spectrum can be observed from the output field.It is realized that the squeezing orientation can be controlled by the detuning between the left cavity and pump laser.Especially,both cavity decay and environment temperature play a positive role in generating better pondermotive squeezing light.Strong squeezing spectra with a wide squeezing frequency range can be obtained by appropriate choice of parameters present in our optomechanical system.
基金Project supported partially by the National Natural Science Foundation of China (Grant Nos. 60872034 and 60971029)the New-Century Talent Program of the Education Department of China (Grant No. NCET070154)+1 种基金the National Defense Research Funding (Grant No. ZJ10DZ02111)the Hi-Tech Research and Development Program of China (Grant No. 2009AA01Z231)
文摘An effective approach to expand the bandwidth of negative permeability of small-sized planax materials is proposed. Based on qualitative analysis of equivalent circuit models, the fractional bandwidth of an μ-negative (MNG) material is expanded from 3.53% up to 12.87% by adding split-ring resonators (SRRs) and arranging them by proposed steps. Moreover, the experimental results validate the effectiveness of bandwidth-expanding methods, which is promising for the extensive application of metamaterials in the microwave field.